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A machine learning based analysis to probe the relationship

between odorant structure and olfactory behaviour in C. elegans
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The chemical basis of smell remains an unsolved problem, with ongoing stud-

ies mapping perceptual descriptor data from human participants to the chemical

structures using computational methods. These approaches are, however, limited

by linguistic capabilities and inter-individual differences in participants. We use

olfactory behaviour data from the nematode C. elegans, which has isogenic popula-

tions in a laboratory setting, and employ machine learning approaches for a binary

classification task predicting whether or not the worm will be attracted to a given

monomolecular odorant. Among others, we use architectures based on Natural Lan-

guage Processing methods on the SMILES representation of chemicals for molecular

descriptor generation and show that machine learning algorithms trained on the de-

scriptors give robust prediction results. We further show, by data augmentation,

that increasing the number of samples increases the accuracy of the models. From

this detailed analysis, we are able to achieve accuracies comparable to that in human

studies and infer that there exists a non trivial relationship between the features of

chemical structures and the nematode’s behaviour.

∗ rati@iiserb.ac.in
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I. INTRODUCTION

Olfaction is one of the primary senses that helps an organism navigate its environment,

i.e., search for food, avoid potential threats and even find mates [1]. The study of olfaction,

therefore, is one of the major research areas and model organisms such as Caenorhabditis

elegans have been used since the early 1990s to elucidate the relationship between chemical

environments and related animal behavior [2]. C. elegans is a free- living nematode that has

been a preferred model organism not only for olfaction studies, but also for various other

research areas, ranging from aging to behaviour, ever since it was first used by Sydney Bren-

ner in the 1960s [3]. This is primarily due to the presence of genes and signaling pathways

that have homologs in humans and the relative ease in performing genetic manipulations.

The C. elegans olfactory system, itself being a constituent of the larger chemosensory

system, helps it integrate and make use of ecologically relevant information efficiently [4–6].

Its chemosensory system consists of 32 neurons that are either directly or indirectly exposed

to the environment and helps sense both soluble and volatile (olfactory) cues, with AWA,

AWB and AWC being the most prominent ones among them. The soluble chemicals or

odorants bind to the receptors present on these neurons, and the downstream signalling

these trigger give rise to various behavioral phenotypes.

The first assays to observe the behaviour of worms in response to chemicals were carried

out by Ward in 1973 [7], followed by Dusenbery in 1974 [8]. However, later in the 1990s,

there were much more elaborate studies carried out by Bargmann et al. [9, 10] which not

only described worm behaviour to a long list of chemicals but also discovered the associated

neurons and genes involved. These studies also gave way to an interest in getting insights

into the dynamics of worm movements during chemotaxis [11, 12], with a large number of

works now focusing on finding the accurate mathematical model that can describe the same

[13]. Since then, there is a growing list of known C. elegans attractants and repellents, which

has lead to efforts in harnessing the olfactory behaviour to aid diagnostics in tuberculosis

[14] and cancer [15]. The individual or group of neurons involved in the sensing have been

identified using ablation [9, 16] and RNAi studies [17]. Additionally, sensory glia cells have

also been implicated in olfaction [18, 19], albeit in a neuron independent manner.

The olfactory representation of molecules in the brain, however, remains an unsolved prob-

lem even with a considerable amount of work being put into deciphering the underlying

structures and mechanisms involved. With research on vision being aided by machine learn-

ing approaches, there is now an interest in applying computational techniques to olfaction
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research as well, both in human and animal studies. There have been efforts to construct

an odorant chemical space and connect it to the resulting subjective experience of smell [20]

through deep learning [21, 22] and supervised machine learning [23] approaches using data

from human subjects. Alternatively, there is also an interest in learning the organisation of

olfactory systems to make better deep and machine learning algorithms as opposed to the

pre-existing ones that derive inspiration from the organisation of visual processing systems.

Most of the work in this area has been in insects, with a relatively simpler olfactory system

when compared to humans, and this has resulted in the development of olfaction based

classification [24] and similarity search algorithms [25].

Most of the studies concerning human olfaction use the Dialogue for Reverse Engineering

And Methods (DREAM) olfaction challenge dataset [20], which suffers from the drawback of

the perceptual descriptors being subjective and highly variable between individuals. This is

because of genetic variability, which manifests in the form of variability in olfactory receptors

and, in turn gives rise to differences in olfactory perception [26]. Apart from genetics, odor

perception depends on age, environmental factors and linguistic capabilities of individuals

[27]. However, that is not the case with lower animals, especially in the isogenic population

of C. elegans grown and maintained in a laboratory setting, which are genetically identical

and are also exposed to similar environments.

With a simple nervous system and its connectome being complete[28], C. elegans can

be useful in building biologically inspired neural networks, as was done recently by Hasani

et al. [29]. It’s simple nervous system nonetheless gives rise to complex behaviours, which

renders it an ideal system to study the problem of olfactory representation and construct

simpler models for the same. In that light, a recent study employs computational approaches

to predict the structures of olfactory receptors in C. elegans [30]. The authors used protein

threading followed by a simulated molecular docking approach to find out the relationship

between the structure of odorant receptors present on the neurons and the chemicals that

bind to it. Therefore, in this work, we curate experimental data from the literature and

propose a machine learning approach to find out if there are underlying relationships be-

tween C. elegans olfactory behavioural data and odorant structure. Our proposed method

for the olfaction-chemical structure problem is based on observables rather than subjective

experience. It is employed here to perform a binary classification task linking olfactory

behaviour to chemical structure and can easily be tested for reliability using standardised

behavioral assays.

The rest of the article is organized as follows. Section II gives an overview of the ap-
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proach followed and the models analyzed. Section III presents the results obtained and

compares the accuracies of the various models. The final section, Section IV, provides a

discussion of the results and reflects on possible future extensions of this study.

II. METHODS

Figure 1: Flow chart showing the steps involved

The complete research scheme is shown in Fig. 1. The key steps are as follows: (i) Data

curation and cleaning, (ii) Pre-processing to extract features in the form of molecular de-
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scriptors or one-hot encodings, (iii) Model training and (iv) Model validation. The following

sections go into details of each of these four steps.

A. Data set preparation

1. Data collection

The first step in analyzing the structure-behavior relationship is data curation. To this

end, we carried out a literature survey to make a list of chemicals with known corresponding

C. elegans behaviours [5, 6, 9, 10, 12, 14, 31–55]. However, different concentrations of some

of the chemicals have been reported to show conflicting C. elegans behaviours. Therefore,

we removed such chemicals from the list in order to avoid any inadvertent discrepancies.

The resulting data set consists of 192 chemicals, 100 of which are attractants, 44 are repel-

lents, and the rest are neutral. Since the number of attractants far exceeds the number of

repellent and neutral chemicals, we assigned the chemicals to either one of the two classes -

”attractive” or class ”1” (100 chemicals) and ”not attractive” or class ”0” (92 chemicals) -

in order to get a more balanced data set.

The labels (or classes) assigned to the chemicals are a result of the observations made

through various experimental chemotaxis assays perfomed on C. elegans. However, due to

the heterogeneity in the methods used among various studies, especially in terms of differ-

ences in concentrations and tests, the precise values of the quantitative measures are not

considered, and instead, qualitative information is used for analysis. The most commonly

used assay in the literature, for example, is the chemotactic index assay, wherein, a single or

multiple worms are allowed to move freely on a plate that has both the control and the test

chemical. The Chemotactic Index (CI) is then given by the fraction of worms that prefer

the test chemical over the control. CI is therefore calculated using the following equation.

Chemotactic Index =
No. of worms moving towards test−No. ofworms moving towards control

Total no. of worms
(1)

The chemicals showing significant positive CI values (> 0.1) are assigned to the class ”at-

tractive”, and the rest, which either have negative values or values that are not significantly

different from 0, are assigned to the class ”Not attractive”. This list is provided in the

Supplementary Information, Table S1.
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2. Pre-processing

After having collected and labeled the data, the next step in the process is feature ex-

traction. In Quantitative structure-activity relationship (QSAR) studies, such as those used

in drug discovery and toxicology research, molecular descriptors are used as features for the

purpose of applying algorithms to the data [56, 57]. These descriptors are generally sym-

bolic or mathematical representations of chemicals that allow a computational analysis to be

carried out on them. They can either be obtained from experimental measures of physical

and chemical properties or can be calculated theoretically from different multi-dimensional

representations of chemicals- for example, fragments [58], SMILES (2D) and graphs (3D)

[59]. Depending on the method used, they can either have a direct physical interpretation

or can be abstract representations of the properties encoded without direct interpretations.

Simplified molecular input line entry system (SMILES) is one such system that represents

molecules in the form of strings of characters. This system can be thought of as a language

with simple vocabulary and defined grammatical rules. It is also a convenient way to store

chemical information and has been used for the prediction of drug-target interactions using

machine learning methods [60]. SMILES representations of molecules have also been used

recently in a human olfactory prediction study [22] that employed deep neural networks.

In our study, these representations were generated using the Chemical Identifier Resolver

service designed by the CADD group of the Chemical Biology Laboratory at the National

Cancer Institute [61].

The next step in pre-processing is to extract molecular descriptors from the SMILES

representation of the chemicals. One such method developed by Winter et al. uses deep

learning methods to learn a latent vector based representation of molecules that can accu-

rately translate them from one format (SMILES) to the other (InCHI) [62]. This tool, in

turn, is built on Xu et al.’s work on Seq2seq methods in natural language processing [63].

Similar methods have also been used by Gomez-Bombarelli et al. that allow the explo-

ration of the chemical space of molecules to find their neighbours with applications in drug

designing [64]. For the present study though, Winter et al.’s software was found more suit-

able as it allows extraction of molecular descriptors at an intermediate step [62]. However,

having been designed for drug discovery, there is a pre-processing step involved in the tool

that removes out salts and inorganic molecules. The resulting data set, therefore, only has

organic molecules (with stereo-chemical information removed) with the following properties:

molecular weight between 12 and 600 Da, more than 3 heavy atoms, and partition coeffi-

cient (measure of the solubility of a compound in two immiscible liquids at equilibrium),
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log P, between 7 and 5. Further analysis was carried out with the remaining 173 organic

compounds - 81 belonging to class 0 and 92 to class 1. Molecular descriptors were also gen-

erated by RDkit using the ChemDes platform [65]. The resulting data set had 189 entries-

99 belonging to class 1 and 90 belonging to class 0. Further, the two types of descriptors,

viz. (i) from Winter et al.’s Seq2seq tool and (ii) from RDkit, were merged, keeping the

molecules that were common to both data sets. This data set had 170 entries- 90 belonging

to class 1 and 80 to class 0. The models were trained on each of the three data sets and

checked for prediction accuracy.

B. Machine learning models

1. Model selection

After having obtained the features in terms of molecular descriptors for the data set,

machine learning (ML) methods were applied to it in a python setting. In earlier studies,

especially those involving problems in a biological setting, two ML methods have been

used extensively - Support Vector Classifier (SVC) and Random forest (RF) [66–68]. SVC

operates by constructing a hyperplane to distinguish between classes, with the form of

the hyperplane being determined by the underlying kernel and other parameters. Random

forest, on the other hand, is an ensemble model that picks up decision trees that are fit to

the data at random and uses the majority voting to give its predictions. Both of these are

robust algorithms that learn from the data and can be used for better fits via hyperparam-

eter optimizations. In our study, we used both these models and their variations in order

to find the best model for the task of binary classification of the data set.

Before training the models though, the data set itself was first split into training and

test sets in a 70-30 ratio using the train test split() function of the sci-kit learn library. For

the train-test split, a random integer seed is used to shuffle and split the data. It is not

a hyperparameter to be tuned, however, at times models are known to be overfitted to a

particular random state. In order to avoid that, in our workflow, the same procedures were

repeated for two different random states. To further avoid biases that might result during

splitting, the stratify parameter was set to TRUE. This made sure that the same proportion

of the two classes was maintained in both training and test sets.

Following the above mentioned train-test split, Python’s sci-kit learn library was used

to fit simple random forest and SVC models, the results of which are shown in later fig-

ures. Apart from SVC and RF, other machine learning (ML) algorithms such as Gradient
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Boosting Classifier(GBC) and K-Nearest Neighbors (KNN) were also applied to the data in

a similar manner. Since the initial data set consisted of a large number of features (more

than twice the samples), Principal component analysis (PCA) was applied to it in order to

avoid the curse of higher dimensionality. PCA is a dimensionality reduction technique that

takes the projection of data from a higher dimensional space onto a lower dimensional space

such that the highest variance comes to lie along the first principal component, the second

highest along the second principal component and so on, with all the principal components

being orthogonal to each other. The threshold for percentage of variance explained was kept

at 80 percent and optimum number of principal components were then selected for each

case via trial and error. The results of the PCA fitted models are given in Table S2.

PCA assumes the relationship to be linear which might not always be the case so we

also tried non linear dimensionality reduction techniques, but they performed worse than

the PCA models. The python implementation of the automatic feature selection method,

Boruta (BorutaPy) was also tried for Random Forest models. It works for ensemble methods

and creates shadow features according to a given threshold. It then compares them with

real features and selects the ones that perform better at the task than the shadow features.

This helps in reducing the number of features while keeping the original features rather

than some linear or non linear combination of them as is the case in other dimensionality

reduction methods.

We finally also used a Voting Classifier to make the best prediction. A voting classi-

fier trains on various models and predicts the output by considering the majority vote from

them. It can employ two types of voting strategies - hard voting and soft voting. In hard

voting, the predicted output is the class which has the highest number of votes from the

different models, while in soft voting, an average of prediction probabilities from the various

models is taken, and the class with the highest average probability is selected as the out-

put predicted class. To further increase the accuracy and to do away with any individual

shortcomings the standalone models might have, two ensemble models were made using the

voting classifier for both the random states. The confusion matrices and ROC-AUC curves

for the same are given in Figs. 2(d) and 3(b), respectively, more context for which will be

provided in the next Section.

2. Hyperparameter optimization and performance evaluation

We carried out a five-fold cross-validation and used a grid search to optimize the hyper-

parameters of the SVC models. However, similar hyperparameter optimization process was
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not carried out for Random forest models since the algorithm has inbuilt mechanisms for

the same.

The following performance metrics were used for the purpose of evaluating the models:

1. AUC-ROC scores: The area under the receiver operating characteristic curve (AUC-

ROC) is a performance metric used in binary classification problems to assess the

ability of the classifier to distinguish between the two classes. It gives the probability

of separating into the classes at various threshold values by plotting True Positive

Rate (TPR, also known as recall) against False Positive Rate (FPR), where TPR and

FPR are given by:

TPR =
True positives

True positives+ False negatives
(2)

FPR =
False positives

False positives+ True negatives
(3)

The curves were obtained for SVC and RF models for both the random states. The

model with a steeper curve (higher positive slope) represents higher probability of a

true positive in comparison to a false positive and therefore gives a better AUC score.

The curves along with the AUC scores for these four models are given in Fig. 3.

2. F1 scores: F1 score is a performance metric which can be described as a weighted

sum of Precision and Recall and is given by

F1 = 2.
P recision ∗ Recall

Precision + Recall
(4)

With,

Precision =
True positives

True positives+ False positives
(5)

and Recall defined in Eq. 2

3. Data augmentation

Data augmentation can solve the limited data availability problem and has been carried out

for image data sets in the past [69, 70]. Since then, similar efforts have also been made to

augment datasets for QSAR studies [71–73] and have been shown to increase the accuracy of

prediction. One of these augmentation methods developed by Bjerrum [71] makes use of the

fact that chemicals can be seen as graphs with the atoms being nodes and the bonds being

the vertices of the graph. The whole graph can then be traversed starting from any node
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in the graph. Doing so gives rise to different SMILES strings for the same molecule and in

effect increases the data set available for training. This method utilizes the randomization

of SMILES using the RDKit library of python, followed by vectorization, which gives rise

to one-hot encodings on which machine learning algorithms can be trained.

The average number of atoms present in the molecules for the data set (containing 173

molecules) was calculated to be 10, and that was used as a factor to augment SMILES. This

was done in order to prevent biasing the data set in the favour of molecules that have a

higher number of atoms. The resulting data set contained 11X (original smiles + 10X) the

number of entries. After the duplicates were removed, the final data set consisted of 1404

entries- 692 belonging to class 0 and 712 belonging to class 1. Further, Random Forest,

SVC and other models were trained on the original as well as the augmented data following

the same process as described for Seq2seq descriptors.

III. RESULTS

A. Behaviour is dependent on the chemical signature of the odorant.

As stated in Section II of this article, we converted the list of chemicals into three differ-

ent types of feature sets, namely, (i) Seq2seq, (ii) RDKit and (iii) a combination of Seq2seq

and RDKit descriptors, which we call Merged descriptors. We trained and tested each of

these three descriptors on SVC, RF, KNN and a combination of these. Fig. 2 shows the

confusion matrices for the various models in the first random state trained using the Seq2seq

descriptors. The respective performances of the standalone models are comparable to that

of the ensemble model (Voting Classifier) of SVC and RF, with GBC performing the best

(11 mis-classifications) out of these.

The AUC-ROC curves, along with the corresponding AUC scores for the standalone and

ensemble models trained using Seq2seq descriptors in two random states are given in Figs.

3(a) and 3(b) respectively. These too give comparable scores for all the models with one of

the models, GBC applied to random state 1, giving the best score of 0.807.

A selection of the models tested are listed in Table I, while the complete set is listed in

Table S2. Table I also summarises the F1 scores for various models obtained after dimen-

sionality reduction and hyperparameter tuning, in both random states and for the three

different descriptor sets. Barring one discrepancy in the case of the SVC model for RDKit
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Figure 2: Confusion matrices for the first random state for (a) Support Vector

Classifier (SVC), (b) Random Forest (RF), (c) Gradient Boosting Classifier (GBC) and (d)

Voting Classifier

Figure 3: AUC-ROC curves for the following models trained using Seq2seq

descriptors: (a) Support Vector Classifier in the first random state (blue) and the second

random state (green), Random Forest in the first random state (orange) and the second

random state (red), Gradient Boosting Classifier in the first random state (purple) and the

second random state (brown); (b) Ensemble model in the first random state (blue) and the

second random state (orange)
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Model Random state 1 Random state 2

Seq2seq Descriptors

Support vector classifier 0.787 0.750

Random Forest 0.780 0.762

Random Forest(BorutaPy) 0.733 0.7

KNN 0.764 0.767

Ensemble(RF+SVC) 0.800 0.800

Gradient Boosting Classifier 0.807 0.794

RDKit Descriptors

Support vector classifier 0.767 0.638

Random Forest 0.716 0.689

Random Forest(BorutaPy) 0.706 0.708

KNN 0.698 0.656

Ensemble (RF+SVC) 0.758 0.698

Gradient Boosting Classifier 0.758 0.776

Merged Descriptors

Support vector classifier 0.653 0.689

Random Forest 0.717 0.711

Random Forest(BorutaPy) 0.679 0.678

Gradient Boosting Classifier 0.741 0.702

Ensemble(RF+SVC) 0.735 0.667

Table I: F1 scores of various models

descriptors, all the other models gave comparable predictions in both the random states.

Following are the main observations from this analysis.

• For Seq2seq descriptors, the models SVC, RF, KNN and GBC give F1 scores that are

comparable to each other as well as to the ensemble models that considered voting

from RF and SVC. GBC performed the best among the standalone models followed

closely by SVC and RF.

• In the case of RDKit descriptors, ensemble models of SVC and RF perform better

than the individual models, but there is an overall reduction in scores when compared

to that trained on Seq2seq descriptors. Here too, GBC performs best among all the

models.
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• Overall reduction in scores is also seen in the case of merged descriptors with GBC

models performing better than the rest.

In the end, we also looked closely to see if there are any similarities in the samples that

are being misclassified across all the models. We found that the samples in the test data set

that were being misclassified in all the models across the three types of descriptors could be

grouped into the following two categories.

1. Samples labelled attractant or neutral, all belonging to the study carried out by

Bargmann et al [10]: There are 8 such samples for Seq2seq descriptors, 3 for RD-

kit descriptors and 7 for merged descriptors. This could possibly be a reflection of

threshold values used to define category boundaries in that particular study. This can

be mitigated by using (i) uniform behavioral assays and (ii) a three class classification

subject to availability of more data. To further verify this, we performed a multi class

classification on the augmented one hot encoding data (Supplementary Figure 1), and

found that the distribution of misclassifications from the confusion matrices point to-

wards the model performing poorly on classification between attractants and neutral

which might be an artifact of threshold boundaries.

2. Ions : Only the RDkit descriptors set had ions in the dataset and three of them - all

labelled repellants, were misclassified in all the models.

Despite a few misclassifications, this analysis shows that there is a non-trivial relationship

between the arrangement of atoms that make up the chemical and the chemosensation and

behavior exhibited by C. elegans.

B. Training on an augmented data set leads to better accuracy

Having established the existence of the structure behavior relationship between the odor-

ant and the organism, we next sought to increase the accuracy of the models. One way

to do this is to have a larger data set for training. For this, we converted the SMILES

format of the chemical into one-hot encodings and applied the augmentation methodology

developed by Bjerrum [71]. Table II summarises the F1 scores for the models using one-hot

encodings as features for both the original and the augmented data sets. SVC, RF and

ensemble models give comparable scores in both the random states. However, scores are

higher when training is carried out on the augmented data set instead of the original data

set for all the models. The AUC-ROC curves for the ensemble models in both the random

states, shown in (Fig.4), depict this increase. One can also notice that these curves are

smoother for the augmented data set because of the increased number of samples that the
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Figure 4: AUC-ROC curves for ensemble models for the first random state (blue)

and the second random state (orange) for (a) the original and (b) the augmented data set.

model can be trained on.

Model Random state 1 Random state 2

one-hot encodings

Support vector classifier 0.645 0.667

Random Forest 0.667 0.687

Ensemble 0.620 0.704

one hot encodings -

augmented

Support vector classifier 0.796 0.835

Random Forest 0.816 0.761

Ensemble 0.815 0.839

Table II: F1 scores of various models

Finally, deep neural networks, specifically Long Short-Term Memory (LSTM) networks,

like the one used by Bjerrum, were trained on the vectorised data both by automated

augmentation using data generators and the augmented data set produced earlier. In both

the cases, deep neural networks failed to match the performance of RF and SVC models

used on the original data set containing 173 entries. Therefore, we did not pursue this

methodology further. The most probable reason for the failure of the LSTM model on this

particular data set is the data hungry nature of neural networks. This causes the model to

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.26.453815doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453815
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

remain under trained in the absence of a data set much larger than what was achieved via

augmentation.

IV. DISCUSSION

We began our analysis by splitting the data into a test and training set using two dif-

ferent random states. Following this, we fit the data to simple RF and SVC models. We

found that both the RF and SVC models in the two random states were overfitting to the

training data, and in order to avoid that, we used principal component analysis onto our

data. This reduced the overfitting and gave better scores with an average improvement of

3.9 % for RF and 0.8 % for SVC, respectively. To improve the models further, we tuned

the hyperparameters using grid search and five fold cross validation implemented through

the GridSearchCV method of the Sci-kit learn library. The hyperparameters thus obtained

were used to build models that were more robust and less prone to overfitting while giving

comparable or better F1 scores. We further used a voting classifier to take a vote of the two

models obtained after the hyperparameter tuning. This adds up the probability scores from

the given models and gives out a result with the highest sum of probabilities. As the data

was split using two random states, we obtained two voting classifiers, and the average of the

two F1 scores (0.8) was then used to compare with the standalone models. The four models

- two RFs and two SVCs all have comparable scores to the average of the two ensemble

models. However, the two voting classifiers give better results with a high F1 score (0.800)

(Table I) and can be selected from all. We also trained other models like KNN and GBC

on the same data and compared the scores to that of SVC, RF and the voting classifier.

Both performed comparably to the previous models ( Avg F1 scores: KNN = 0.765, GBC

= 0.800), with GBC outperforming all the other models.

We repeated the process for RDKit (Avg F1 score= 0.714) and Merged (Avg F1 score=

0.697) descriptors and found that Seq2seq descriptors (Avg F1 score= 0.77) performed bet-

ter than the other two. Here too, the GBC gave comparable scores to the voting classifiers

and outperformed all other models. The average F1 score seems restricted by limited data

availability and increased from 0.665 to 0.81 when an augmented data set was used with

ensemble models trained on one-hot encodings of the same.

Our analysis gives consistent prediction scores and points towards the presence of an under-

lying relationship between odorant structure and worm behaviour. However, it suffers from

the drawback of not being able to differentiate between enantiomers, which, even though

they have the same SMILES string, are known to smell different [74]. Additionally, the data
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used is only for monomolecular olfactants as compared to the complex mixture of odors an

organism encounters in it’s natural environment. Further, because of a lack of consensus

about a single standard experimental method in the scientific community, the data itself

is taken from multiple sources that used different concentrations of odorants and different

measurements to determine if the worm is attracted to an odorant or not. However, since

we are limited by data from the literature, as mentioned in Section II, we have removed

all conflicting or contradictory samples from the data set, thereby ensuring at least some

degree of uniformity.

Another shortfall is the interpretability of descriptors. The Seq2seq descriptors don’t

correspond to any physico-chemical properties and cannot tell us what property of the

chemical structure is important for predicting worm behaviour. Moreover, the use of PCA

as a dimensionality reduction method compromises the interpretability of features. To

shed some light on the importance of features, we have used Boruta (listed as BorutaPy

in Table I) for feature selection as an alternative to PCA. In the case of RDKit descrip-

tors, where the features correspond to physico-chemical properties, we found that ’Chi1n’,

’Kappa1’, ’MinAbsPartialCharge’ were selected for the first random state and ’Kappa1’,

’MaxAbsPartialCharge’ for the second random state. The ’MinAbsPartialCharge’ and the

’MaxAbsPartialCharge’ return the minimum and the maximum absolute charge, respec-

tively, for the molecule considering all the atoms. ’Chi1n’ and ’Kappa1’, on the other hand,

are molecular graph theory based descriptors corresponding to first order molecular connec-

tivity chi index and first order molecular shape attribute respectively [75]. The emergence of

these descriptors reflects upon the significance of the chemical structure and the constituent

atoms. However, a more detailed study will require a larger data set than currently available.

In order to improve upon and further validate the analysis, experimental methods involving

a standardised chemotaxis assay can be employed for a set of chemicals, and numerical

chemotactic index values can be calculated and fed into machine learning models in place

of the current categorical binaries. It has been shown that the incorporation of odorant

receptor data increases the accuracy of prediction in humans [76]. However, there is only a

limited set of olfactory receptor data available for C. elegans due to the complexity arising

from their co-expression on neurons and the presence of a large number(≈ 1200) of GPCR

genes [30, 77]. As and when more data is available, that too can be incorporated into the

model. Alternatively, simulated olfactory receptor data as generated by Milanetti et al. [30]

can be used for the same. Further, with the neural connectome being complete, more ad-

vanced models incorporating neuronal activity and network connectivity can be constructed.
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Finally, this study concludes that there exists a non-trivial relationship between the odorant

and the olfactory behavior that can be harnessed to predict the action of worms in response

to a given odorant. With ongoing research on odorant receptor characterisation and that

on deciphering the underlying circuitry [78], C. elegans can serve as a model system for a

detailed study of olfactory systems and help crack the olfactory code.
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