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*e electroencephalogram (EEG) signals are a big data which are frequently corrupted by motion artifacts. As human neural
diseases, diagnosis and analysis need a robust neurological signal. Consequently, the EEG artifacts’ eradication is a vital step. In
this research paper, the primarymotion artifact is detected from a single-channel EEG signal using support vector machine (SVM)
and preceded with further artifacts’ suppression.*e signal features’ abstraction and further detection are done through ensemble
empirical mode decomposition (EEMD) algorithm. Moreover, canonical correlation analysis (CCA) filtering approach is applied
for motion artifact removal. Finally, leftover motion artifacts’ unpredictability is removed by applying wavelet transform (WT)
algorithm. Finally, results are optimized by using Harris hawks optimization (HHO) algorithm. *e results of the assessment
confirm that the algorithm recommended is superior to the algorithms currently in use.

1. Introduction

An effective diagnosis and analysis of neurological diseases
are possible when a vital neurological signal is acquired from
the patient. However, this signal is apprehended even in the
highly hospitably environment and besmirched by some
nonphysiological signals (artifacts). *e most vital neuro-
physiological signal is electroencephalography (EEG) which
represents the human brain electrical activities. *erefore,
mitigation of these artifacts from EEG signals is a vibrant
topic for research [1].

Different algorithms are applied for this EEG artifacts’
suppression [2]. *ese motion artifacts are superimposed on
the EEG signal. *us, algorithms based on source separation
must be applied for effective artifacts’ elimination [3]. *e
EEG signal decomposition is done through the EEMD

algorithm [4–9].*e blind source separation (BSS) approach
is extensively used for artifacts’ mitigation [10–15]. Addi-
tional, the most broadly applied algorithm is the wavelet
transform [16–18] for EEG artifact elimination. *e algo-
rithms applied to detect artifacts from EEG signals are
discussed in [19, 20] to better classify artifacts from EEG
signals.

Experimentation is done on synthesized data which is
detailed in [21]. *e Ground-Truth (GT) EEG data is
considered from online open resources [22].

1.1. Synthesized Artifact Signal Generation. A more accurate
artifact removal method is developed in this research work
and applied to remove motion artifacts, as this artifact is the
most recurrent and distressing component in the EEG data.
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However, this GT signal only is not capable to relate the
effectiveness of the artifact elimination procedure. *e
simulated data consist of GT EEG data and an artifact
template (which can be manually produced or separately
chronicled). *e simulated or synthesized data are created
by adding this artifact template to the GT signal. *us, the
simulated data will be more effective because, after artifact
removal, the signal can be compared with pure signal and the
artifact elimination algorithm effectiveness is checked.*ese
motion artifacts are generated synthetically by simulation.
*ey are created by adding random noise sequences to the
amplitude modulated EEG signal to be clearly seen in the
EEG signal as artifacts.

*ese motion artifacts thoroughly distress the EEG data
quality. *erefore, effective suppression is highly recom-
mended before any neurological disorder diagnosis and
analysis. Various artifact removal algorithms are applied to
suppress these artifacts in the state-of-the-art research.
However, the most suitable and efficient algorithms are
applied in this recommended work to mitigate these artifacts
effectively.

In this recommended work, ensemble empirical mode
decomposition (EEMD) [9], blind source separation (BSS)
[13], and wavelet transform (WT) [16] are applied in cascade
for effective elimination of these motion artifacts. For re-
moving the randomness and unpredictability of motion
artifacts, the wavelet transform is more effective [7]. Finally,
results are optimized by using Harris hawks optimization
(HHO) algorithm.

A detailed architecture of the recommended method-
ology based on these algorithms is discussed in Section 2.

2. Recommended System Model

As shown in Figure 1, a system model is used to show a
schematic representation of the recommended algorithm.

In this recommended work, primarily, the synthesized
artifactual signal is preprocessed to eliminate the line and
external noises [23]. Furthermore, these signals are
decomposed through the EEMD approach. *e decompo-
sition is done for both pure EEG data and artifact-con-
taminated EEG data to generate IMFs.*ese generated IMFs
are passes to the support vector machine (SVM) classifier for
training. Subsequently, this classifier is used for the detection
of motion artifacts from EEG. Once artifacts are identified,
subsequently, the IMFs generated are sourced to a cascaded
approach of CCA and SWT algorithm for purifying [24].
*is cascaded algorithm will take some more time to exe-
cute. However, in medical diagnosis, this increased time is
considerable. *is approach is applied in an automated
system where artifacts are automatically identified and re-
moved with the most efficient algorithm to attain a clean
signal [25].

2.1. Recommended Algorithm. *e main goal of the rec-
ommended procedure is to remove the motion artifacts.
Moreover, the neural information must be preserved after
this EEG artifact removal. *e recommended algorithm is

divided into five categories.*e details of the stages are given
below [26]:

(i) Preprocessing: first, EEG data available as an online
open-source interface [22] are preprocessed
through a third-order butter worth filter for baseline
wandering with two passband frequencies of 0.5Hz
to 99Hz.

(ii) Synthetic artifact generation: the preprocessed
signal of 120 datasets is considered as the ground-
truth signal. Each data set contains 10000 samples.
Furthermore, synthesized data are prepared by
creating artifact templates of sinusoids and simu-
lating these templates with a different amplitude,
duration, and location and, finally, superimposed
these templates onto the ground-truth signal. *is
artifact-contaminated EEG signal set also has 120
datasets with 10000 samples in each dataset [27].

(iii) Motion artifact detection: the motion artifact de-
tection from single-channel artifact-contaminated
EEG data has been carried out in two stages.

2.1.1. Decomposition Using EEMD. *e preprocessed EEG
signal is decomposed by using EEMD algorithm [9, 28].

2.1.2. Motion Artifact Detection Using SVM. *ese gener-
ated IMFs are used to attain statistical features such as
kurtosis, mean, skewness, and variance, as discussed in [29].
*ese features are applied to support vector machine (SVM)
to detect motion artifacts from EEG data.

2.1.3. Motion Artifact Removal. Once the artifact is detected
in EEG data, artifacts’ EEG data IMFs are applied to a
cascaded approach of CCA-SWT for effective mitigation of
EEG motion artifact. *ese correlation components (CCs)
generated by the CCA algorithm are created based on self-
correlation and uncorrelation. Statistically, uncorrelated
components have distinguished properties. *reshold out-
puts are reconstructed through inverse wavelet transform to
obtain external noise-free CCs. Reconstruction. Subse-
quently, the CCs having motion artifacts source are iden-
tified by using Pearson’s correlation coefficients as the
threshold. *e CCs having less than the threshold value are
rejected. Artifact-free EEG signal is obtained by recon-
structing the remaining CCs from the original EEG signal.

2.1.4. Optimization. *e irregularity which is introduced
due to artifacts in EEG signal is removed by using the ef-
ficient methodology and finally optimized by Harris hawks
optimization (HHO) algorithm.

3. Experiments

In this experiment, synthesized EEG signal is generated and
processed with recommended cascaded algorithm to erad-
icate the diminishing effect of the motion artifact on the EEG
data. Furthermore, the recommended algorithm results have
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been compared with the existing methodologies whose re-
sults are available in state of the art [30].*e data samples are
considered from an online open surface interface [22]. *e
MATLAB code used for EEMD is free to download from
[31], and the rest of the functions required are directly used
from the Matlab toolbox. Ground-truth EEG signal and
synthesized motion artifact simulated EEG signals are
shown in Figure 2. *is simulated EEG signal is created by
adding randomly simulated sinusoids into the original EEG
signal at different locations having different amplitudes.
Figure 2 shows the change in behaviour due to simulated
artifact.

*is synthesized EEG signal is decomposed by using
EEMD algorithm. *e intrinsic mode functions (IMFs)
generated through this EEMD algorithm are presented in
Figure 3.

*ese 14 IMFs extracted from EEMD are used to cal-
culate statistical moment-based features such as mean,
variance, kurtosis, and skewness. *ese statistical features
are applied to SVM, a machine learning algorithm for ar-
tifact detection. *e artifact detection by the neural network
is applied by authors [19, 20].

As the name suggests, SVM is a classification algorithm
based on supervised learning and used for motion artifact
detection from nonlinear EEG data. *e SVM have different
kernels, which enable the nonlinear classification [32]. *e
attributes are initially extracted from EEMD-generated IMFs
for both pure and artifactual EEG data.*ese structures were
applied as a training set for the machine learning classifier.
Furthermore, the test set is also created by using EEMD for

artifact contaminated EEG data and pure EEG data. *ese
test sets are passed through the classifier for artifact de-
tection based on the training set. *e support vector ma-
chine (SVM) and radial basis function (RBF) kernel attain
satisfactory accuracy for motion artifact detection from
contaminated EEG data. *e artifact detection accuracy is
presented in Table 1, termed as a confusion matrix.

*e confusion matrix suggests that only 6 test sets were
incorrectly classified as pure EEG data. *ese datasets are
artifact data. Moreover, pure EEG data are misclassified as
artifact data for merely 2 instances. *e SVM classifier and
radial basis function (RBF) kernel attain the accuracy of
98.3% for motion artifact detection from contaminated EEG
signals.

Once the motion artifacts are perceived in the input EEG
signal, artifact suppression is executed through a cascaded
approach. *e IMFs extracted from the EEMD approach of
artifacted EEG data are applied to BSS-CCA [13]. *e
separated components after ensemble consequence of
EEMD algorithm and CCA algorithm are presented in
Figure 4. Each CCs resembles the section of a different
source.

*e CCs generated after EEMD-CCA cascaded approach
is further processed with stationary wavelet transform
(SWT) for improved artifact mitigation. *is SWT is pre-
ferred as this algorithm will suppress the artifact while
maintaining the neural information of the EEG signal [33].

In real-time application, the occurrence of artifacts in the
recorded EEG data is not known. *e recommended al-
gorithm will be quite effective and can be implemented
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Figure 1: EEG artifacts’ removal recommended architecture.
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Figure 3: IMFs generated from EEMD algorithm.
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practically. Foremost, first, the motion artifact will be de-
tected through a classification algorithm. Once the artifact is
detected, then disturbance created due to motion artifact in
EEG signal can be best handled with the efficient and im-
proved artifact removal algorithm (CCA-SWT). As CCA is a
simple source separation approach, SWT is preferred as an
effective artifact elimination algorithm due to its shift-in-
variance property [34].

*e synthesized EEG data and the reconstructed EEG
data (post artifact elimination) comparison is shown in
Figure 5.

Figure 5 shows the comparison of the plot for artifactual
EEG signal with blue colour and motion artifact suppressed
EEG signal by red colour. It can be observed from visual
inspection that the EEG signal is dirtied with the great,
random motion artifact. *e recommended method mini-
mizes these artifacts greatly while preserving all the neural
information initially present in the pure EEG signal.

*e recommended algorithm is tested on the different
EEG datasets to check the validity of the recommended
procedure in actual time application. *e recommended
algorithm effectively detects motion artifactual EEG dataset
as shown in Figure 6 in the red box. In addition, EOG
artifacts have beenminimized significantly. Although, in this
work, the SVM classifier is trained for motion artifacts only.

*e detection ability of the classifier will be improved in
future work.

*us, the motion artifacts have been removed by the
recommended method (EEMD-CCA-SWT) as well as pre-
served by the peak amplitude variations, which carry the
required information for the signal. *us, Figure 6 shows
that the recommended method preserves the meaningful
information even after artifact removal. A statistical analysis
of the recommended method with existing methods is given
in Section 4.

4. Performance Assessment Factors

Some important performance evaluation parameters for
assessment of the recommended algorithm are as follows.

4.1. Difference in Signal-to-Noise Ratio (∆SNR). *e ∆SNR is
calculated by the change of SNR for the signal pre- and
postartifact removal [6].

4.2. Lambda. *is is a difference in correlation between
signals which shows the percentage reduction in artifacts
denoted by λ [6].

Table 1: Artifact detection accuracy confusion matrix.
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4.3. Power Spectral Density (PSD) Improvement. PSD im-
provement is calculated by finding the change between PSD
of the artifactual and artifact-free data [6].

4.4. Correlation Improvement. *e association difference
between synthesized and original signal is used as the
performance measure.

4.5. Root Mean Square Error (RMSE). *e RMSE amongst
the ground-truth data, signal along with artifacts (artifactual
EEG), and signal postartifact elimination (cleaned EEG) is
calculated [6].

4.6. Spectral Distortion (Pdis). *e spectral distortion Pdis is
deliberated as

Pdis �
∑PSDrecon(f)

2

∑PSDref(w)
2 , (1)

where PSDref(w) denotes PSD of the reference signal and
PSDrecon(f) denotes PSD of the reconstructed signal.

*e spectral distortion Pdis is given by the PSD ratio of
the reconstructed signal to the reference EEG signal [10].

4.7. Coherence Improvement (ΔCoh). ΔCoh measures the
phase consistency between noisy and ground-truth signal.
*e percentage coherence improvement is defined as

ζ � 100∗ Cohafer − Cohbefore( )
Cohbefore

. (2)

E � 100∗ (Cohafter − Cohbefore)/CohbeforeE � d
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*e variable is the coherence between mention and
artifactual signals and the coherence between mention and
recreated signals [35]. *us, the higher value of ζ shows the
superior artifact removal.

4.8. Information Transfer Rate (ITR). Brain-computer in-
terfaces use the information transfer rate (measured in bits
per trial) as an evaluation metric (BCI). One mental-cal-
culation task and two motor-imagery tasks were performed
by two subjects. *e tasks included left hand, right hand,
foot, tongue, and foot. Hidden Markov models are used to
classify the electroencephalogram (EEG) patterns. BCI
systems with two subsets have their information transfer
rates reported. *ere is a wide variation in the information
transfer rates, ranging from 0.46 bits per trial to 0.82 bits per
trial.

5. Results and Discussion

*e simulation is performed on an available online dataset
[22] for statistical evaluation. *e synthetic artifacts are
added to reference data at random locations and at a random
time (stretching from 150 µs to 1 s).

*e analysis is based on artifacts’ removal and signal
distortion. *e quantitative evaluations of some important
matrices are shown in Table 2.*ese evaluations are done for
synthesized EEG signals generated with different SNRs.
Moreover, these results are compared with all existing ar-
tifact removal methodology EEMD-CCA [6].

From Table 2, it is manifested that the recommended
method performs better than the existing method [6] with
improved DSNR, which indicates the improved quality of
signal after artifact removal. Moreover, it also indicates that
boosted Lambda, correlation, and PSD value show improved
artifact removal in assessing the existing approaches. Ad-
ditionally, the RMSE [36] values have reduced significantly
with the recommended artifact removal method. *e re-
duction in the RMSE value indicates effective artifact mit-
igation from EEG signal [37]. *e coherence values have
improved after recommended artifact removal presents the
efficacy of the approach. Figure 7 shows the plot of RMSE

concerning different artifact SNR for EEMD-CCA [6] and
EEMD-CCA-SWT artifact removal methods [38].

*e recommended artifact removal method has a
minimum RMSE value that indicates the significant motion
artifact removal. *e recommended method performs much
better with high artifact SNR. Figure 8 demonstrates the
behaviour of spectral distortion for the recommended
method and compared with EEMD-CCA. *e result shows
that restored signal PSD reaches close to the reference signal
PSD value with high artifact SNR significantly.

Figures 9 and 10 present the extent of artifact elimination
by scheming the DSNR and lambda parameters for different
SNRs. It can be concluded that both the parameters have
improved [39] with respect to other existing methods.
However, results are improved by using latest and accurate
optimization algorithm which is discussed in subsequent
section.

6. Harris Hawks Optimization (HHO)

Asghar Heidari et al. [40] introduced an innovative pop-
ulation-based, gradient-free optimization method in 2019
[41]. HHO simulates Harris hawks’ actions of predation,
surprise pounce, and attack. In addition, HHO contains two
optimization stages, namely, exploitation and exploration,
like other metaheuristic algorithms (see Figure 11) men-
tioned in the following sections.

6.1. Investigation Stage. Harris hawks have insightful eyes
that track and spot predators, but sometimes it is not easy to
locate the predators. *en, the Harris hawks will stick, wait,
and last hours, waiting patiently. In HHO, above actions are
modelled [41] on the stage of discovery as follows:

Pt+1i �
Ptrand −N1| P

t
rand − 2N2P(t), x≥ 0.5,

Prabbit − Ptm( ) −N3 LB +N4(UB − LB)( ), x< 0.5,


(3)
where Pt+1i denotes location of ith individual in (t+ 1)th
repetition,Prabbit denotes position of the rabbit (predators), x
denotes the arbitrary number in the range [0, 1], N1, N2,

Table 2: Comparison of the recommended method with the existing method for artifact removal.

Methodology Evaluation parameters
Signal-to-noise ratio (SNR)

10 20 25

EEMD-CCA [6]
DSNR

18.611 21.7920 25.4018
Recommended (EEMD-CCA-SWT) 27.2775 32.8229 31.3270

EEMD-CCA [6]
Lambda

63.009 67.5610 71.9953
Recommended (EEMD-CCA-SWT) 75.6307 88.746 87.2213

EEMD-CCA [6]
Correlation improvement

0.0047 0.0060 0.0054
Recommended (EEMD-CCA-SWT) 0.0161 0.0258 0.0140

EEMD-CCA [6]
Spectral distortion (Pdis)

0.8974 0.9697 0.9487
Recommended (EEMD-CCA-SWT) 0.9640 0.9856 0.9867

EEMD-CCA [6]
RMSE

0.1285 0.1166 0.1072
Recommended (EEMD-CCA-SWT) 0.093 0.1126 0.0974

EEMD-CCA [6]
Coherence improvement (ΔCoh) in percentage

84.86 83.10 83.29
Recommended (EEMD-CCA-SWT) 86.93 84.26 85.11
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N3, and N4 are also random numbers inside [0, 1], LB is the
lowest bound of the given optimization problem; UB is the
highest bound of the given optimization problem, and Ptm
denotes the middling position of the populace which is
calculated as follows:

Ptm �
1

s
∑M
i�1

Pts, (4)

whereM is the extent of the populace and Pts is the location
of sth specific in ith repetition.

6.2. Evolution from Exploration to Exploitation. *e evo-
lution from exploration to use is perilous to metaheuristic
approaches [41]. In HHO, rabbit evasion energy is
denoted by A and is applied to transform these dual
stages. *e assessment declines with the rise in the nu-
meral of repetitions, which can be performed arithmet-
ically as

A � A0 ∗ 1 −
t

tmax

( ), (5)

where A0 is an arbitrary number which is defined in the
interlude [−1, 1], t represents the current iteration, and tmax

characterises the extreme iterations’ number.

6.3. Exploitation Stage. Harris hawks also targeted gnaw
after they have found their prey [41]. *e real process of
predation is always very complex, the prey has an escape
opportunity, and Harris hawks responded differently
according to the prey’s behaviour. Four techniques are used
in the exploitation stage to better model the actual situation.
An arbitrary number (N) is applied to define whether the
prey has escaped effectively. Condition N< 0.5 designates a
good escape, while case N> 0.5 shows a loss. *e energy
absconding from the beast (A) affects the Harris hawks’
actions.*e soft assault happens if |A| < 0.5; if not, then hard
assault takes place [41].

When the artifact supressed signal is processed through
this Harris hawks optimization process, the irregularity due
to external and electronic noise is removed greatly. *e
mentioned improvement can also be analysed by Table 3.

Table 3 suggests that, after optimization algorithm ap-
plication, the EEG artifact removal performance is im-
proved. EEG noise is suppressed, while EEG signal quality is
preserved.

In this research paper, the recommended artifact re-
moval method performance is measured by both parametric
value and plot comparison. Moreover, both approaches
present the success of the recommended method. Moreover,
recommended methodology with HHO optimization out-
performs over other methods.
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Figure 11: Harris hawks’ optimization (HHO) at different stages.
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Table 3: Comparison of EEG artifact removal performance before and after optimization.

Methodology Evaluation parameters
Signal-to-noise ratio (SNR)

10 20 25

EEMD-CCA-SWT
DSNR

27.2775 32.8229 31.3270
EEMD-CCA-SWT+HHO 28.2345 34.2475 37.2172
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7. Conclusion

In this research work, an effective EEG motion artifact
detection and removal approach are recommended for
cultivating the precise neurological diseases analysis and
diagnosis. Primarily, the signal channel signal is decom-
posed by using EEMD algorithm. *ese decomposed EEGs
(IMFs) have been applied to SVM classifier for detection of
artifacts from input EEG signal. Once artifacts are detected,
then efficient artifact removal cascaded approach (CCA-
SWT) is applied on IMFs. *e correlation coefficients are
reconstructed after motion artifact detection and removal.
*e reconstructed signals are further optimized by HHO
algorithm and evaluated qualitatively by visual analysis and
quantitatively based on parametric evaluation. *e results
show improved performance as compared to results on [6]
for EEG artifact removal. Moreover, it is also concluded that
the neural information are preserved even after artifact
suppression.

In the future, we will try to improve the performance of
artifact removal method which is adaptive for detection of
various neural artifacts, and and improved version of op-
timization algorithm will be applied to optimize the result.
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