
OR Spectrum (2021) 43:693–732
https://doi.org/10.1007/s00291-020-00615-8

REGULAR ART ICLE

Amachine learning-based branch and price algorithm for a
sampled vehicle routing problem

Nikolaus Furian1 ·Michael O’Sullivan2 · Cameron Walker2 · Eranda Çela3

Received: 31 March 2020 / Accepted: 14 December 2020 / Published online: 30 January 2021
© The Author(s) 2021

Abstract
Planning of operations, such as routing of vehicles, is often performed repetitively in
rea-world settings, either by humans or algorithms solving mathematical problems.
While humans build experience over multiple executions of such planning tasks and
are able to recognize common patterns in different problem instances, classical opti-
mization algorithms solve every instance independently. Machine learning (ML) can
be seen as a computational counterpart to the human ability to recognize patterns
based on experience. We consider variants of the classical Vehicle Routing Problem
with TimeWindows andCapacitatedVehicle Routing Problem, which are based on the
assumption that problem instances follow specific common patterns. For this problem,
we propose a ML-based branch and price framework which explicitly utilizes those
patterns. In this context, theMLmodels are used in twoways: (a) to predict the value of
binary decision variables in the optimal solution and (b) to predict branching scores for
fractional variables based on full strong branching. The prediction of decision variables
is then integrated in a node selection policy, while a predicted branching score is used
within a variable selection policy. These ML-based approaches for node and variable
selection are integrated in a reliability-based branching algorithm that assesses their
quality and allows for replacing ML approaches by other (classical) better performing
approaches at the level of specific variables in each specific instance. Computational
results show that our algorithms outperform benchmark branching strategies. Further,
we demonstrate that our approach is robust with respect to small changes in instance
sizes.

B Nikolaus Furian
nikolaus.furian@tugraz.at

1 Department of Engineering and Business Informatics, Graz University of Technology, Graz,
Austria

2 Department of Engineering Science, University of Auckland, 70 Symonds Street, Auckland,
New Zealand

3 Department of Discrete Mathematics, Graz University of Technology, Steyrergasse 30, 8010 Graz,
Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-020-00615-8&domain=pdf
http://orcid.org/0000-0002-2137-1527

694 N. Furian et al.

Keywords Vehicle routing · Machine learning · Branch and price · Branching
strategies

1 Introduction

Vehicle routing and its variants have been extensively discussed over the last decades.
In its simplest form, it consists of a set V of vehicles, a set N of customers and
a depot D (or possibly a set of depots). The goal is to assign customers to routes of
vehicles, starting and terminating at depot D, such that each customer is visited exactly
once and a chosen objective function is minimized. Different versions of vehicle
routing problems vary in terms of (among others): the definition of vehicles (e.g., a
homogeneous or heterogeneous fleet); multiple depots or a single depot; the definition
of the objective function (e.g., minimizing the total travel distance, minimizing the
number of vehicles used, or minimizing lateness); additional constraints on routes,
vehicles and customers (e.g., capacity constraints, timewindows, pick-up and delivery
constraints and many more); or stochastic and dynamic features of instances. For a
recent and exhaustive classification and taxonomy of the vehicle routing problem and
its variants, the reader is referred to Braekers et al. (2016).

The main problem discussed in this paper is based on the Vehicle Routing Prob-
lem with Time Windows (VRPTW). However, the validity of proposed methods is
also evaluated for the more general Capacitated Vehicle Routing Problem (CVRP).
Hence, throughout the paper models and algorithms are explained with respect to the
VRPTW, but adaptions necessary to account for the CVRP are noted. The VRPTW
consists of a homogeneous fleet of identical vehicles with a given capacity and a sin-
gle depot. Further, each customer i ∈ N is assigned a specific demand value di , a
service time si and a time window [ai , bi]. In addition to constraints imposing that
each customer is visited exactly once, routes have to satisfy resource constraints: the
aggregated demand of all customers on a route must not exceed the vehicle’s capacity;
and the service of each customer i must start within the corresponding time window
[ai , bi]. Traveling times between customers are usually modeled in terms of the dis-
tance between customers. For the CVRP, constraints regarding traveling and service
times are omitted.

Generally, for the VRPTW, and also other variants of vehicle routing, it is assumed
that the set of customers is independent over instances to be solved. In other words,
optimization algorithms are designed, and evaluated, on completely randomly gener-
ated instances. While this assumption is reasonable for the design and discussion of
algorithms, either heuristic or exact, there are real-world applications where instances
to be solved follow distinct patterns. Such patterns, or structures of instances, may
enhance the use of learning techniques, i.e., Machine Learning (ML), for optimiza-
tion. The idea is to define MLmodels which make use of specific structural properties
of the instances and then integrate those models into optimization algorithms so as
to improve the efficiency and the performance of the latter. In this paper, we intro-
duce the Sampled Vehicle Routing Problem with TimeWindows (SVRPTW) (and the
Sampled Capacitated Vehicle Routing Problem (SCVRP)) and a ML-based branch
and price algorithm for this particular problem. Informally speaking, the SVRPTW

123

Amachine learning-based branch and price algorithm... 695

and the SCVRP assume that customers of a specific instance are a random subset of
a “base-set” of customers. In particular, that “base set”, or “base instance”, summa-
rizes all possible customers that could occur in an instance and is assumed to remain
constant for all instances to be solved. For the remainder of the paper, we refer to the
Sampled Vehicle Routing Problem (SVRP) as the problem class consisting of both,
the SVRPTW and the SCVRP, whenever no distinction is necessary.

Possible applications for SVRPs arisemainly in the service industry, where requests
of services are triggered randomly and the set of possible customers is limited. For
example, in Furian et al. (2018), the authors introduce a vehicle routing formulation
for the dispatching of in-house patient transits within Auckland City hospital. Patients
are transported between wards and treatment appointments by service staff (orderlies
and/or transit nurses)who canbe seen as vehicles. Such transit requests occur randomly
over time, but the locations arefixeddue to the physical layout of the hospital. Similarly,
in maintenance planning, service staffs are often assigned a set of tasks to repair faulty
equipment where the “base set” of equipment (with fixed locations, e.g., machines)
can be assumed to be constant, see for example Gutschi et al. (2019).

For such applications, it might be beneficial to gather information during calls of
optimization algorithms and make use of this information in later calls of the same or
in an adapted optimization procedure. In other words, this paper aims to equip standard
algorithms for vehicle routingwith a “computational experience” (by the use of a series
of ML models). That experience is gathered during an “off-line” training phase where
a large number of instances (derived from the same “base instance”) of the SVRP is
solved to optimality. Thereby, we build a data-base consisting of optimal solutions for
sampled instances and of features gathered during the optimization regarding its state.
This data-base is then used to train ML models for predicting: (i) features of optimal
solutions of unseen instances that are used to define a node selection heuristic; and
(ii) strong branching scores for variable selection in a branch and price framework.
The ML models which predict strong branching scores aim to mimic the behavior of
an expert, as they acquire expertize by the full evaluation of strong branching scores
in the training phase.

We also propose the use of MLmodels in a reliability-based framework. In particu-
lar, during early stages of the tree search, we not only predict strong branching scores,
but also compute their exact values and evaluate the quality of the predictions. If the
latter are not satisfactory, we switch to standard branching scores for that particular
set of variables and that particular sampled instance.

The paper is structured as follows. The next section summarizes related work and
outlines the contribution of the paper. Section 3 provides a formal definition of the
SVRPTW and the SCVRP. The branch and price framework used for solving SVRP
is presented in Sect. 4. In Sects. 5 and 6, the proposed MLmodels are introduced. The
integrated branch and price framework based on the prediction models is described in
Sect. 7. Results are presented and discussed in Sect. 8. The paper concludes with final
remarks and suggestions for further research.

123

696 N. Furian et al.

2 Related work

This section is structured as follows. First, we discuss the SVRP in the context of
existing classifications of vehicle routing problems. Second, we revisit related work
on the integration of ML methods and combinatorial optimization. Finally, we outline
the contribution of the paper.

2.1 Vehicle routing

A vast number of variants of vehicle routing have been proposed and solved either
heuristically or exactly over the last decades. For a detailed classification and review
of most variants, the reader is referred to Braekers et al. (2016). For a definition and
review on “rich” vehicle routing, i.e., routing problems that impose a significant set
of practical constraints see Campbell and Wilson (2014).

The structure of SVRPs proposed in this paper may best be classified as a vehi-
cle routing problem with stochastic customers (VRPSC). These problems consist of
a set of customers, each assigned a probability of appearance. Thereby, it can be
distinguished between two models: (a) the existence of customers is known a priori
(as assumed in this paper) or (b) customers are revealed during the planning horizon
(see for example Albareda-Sambola et al. (2014)). Note that in model (b) additional
stochastic inputs, such as demand (VRPSDC) may be considered. For reviews on
stochastic vehicle routing, including the VRPSC, the reader is referred to Pillac et al.
(2013), Ritzinger et al. (2016), or Oyola et al. (2018). Already in the early work of
Waters (1989), the two most common solution approaches for such problems are out-
lined: adapting a master solution and reoptimization. The first makes use of an a priori
computed solution for the base customer set (first state), that is then adapted (usu-
ally heuristically) in a second stage when the actual customer set is known. However,
Waters (1989) has already shown that re-optimization yields significantly better results
for the VRPSC when the set of appearing customers is small compared to the base
set. Generally, the VRPSC has been studied less than other stochastic routing prob-
lems, e.g., vehicle routing problems with stochastic demands. Most published studies
proposemethodologies that are based on adapting amaster solution. For a vehicle rout-
ing problem including stochastic demand, Gendreau et al. (1995) introduce an exact
algorithm which minimizes the original costs in the master problem and the expected
costs in the second state for the VRPSDC. Gendreau et al. (1996) follow the same
approach but use a tabu search instead of an exact solving procedure. Erera et al. (2009)
heuristically compute primary routes, i.e., a solution to a master problem including
additional real world constraints, which are then heuristically adapted to operational
routes (second stage). Zhong et al. (2007) follow a slightly different approach, by
summarizing customers to “cells” and “areas”, for which a strategic routing plan is
computed a priori and heuristically altered in the second stage. Sörensen and Sevaux
(2009) compute “flexible” routes used for the master problem that may be effectively
adapted in the second stage. The work of Sungur et al. (2010) includes stochastic
customers, demand service times for a real-world courier elivery problem. Similar to
previously outlined approaches, a master plan is adapted on a daily basis to generate
daily schedules. The optimization goal is to maximize the number of customers that

123

Amachine learning-based branch and price algorithm... 697

are served and the route similarity (with respect to the master plan), while minimizing
earliness and lateness penalties and the total travel distance.

The ML-based algorithm proposed in this paper substantially differs from existing
work, as it does not rely on the adaption of a master plan. It is based on an a priori
training phase and on trained ML models that are used to accelerate an exact branch
and price algorithm for unseen customer combinations.

Exactly solving variants of vehicle routing problems have gained much attention
over the last decades.Themost commonlyused solution techniques to compute optimal
solutions are branch price and cut algorithms.Among thefirst to propose such amethod
for the CVRP were Fukasawa et al. (2006). Advancements of the main branch price
and cut principle can be classified in: (i) sub-problem relaxation and corresponding
solving procedures and (ii) definition of cutting planes.

(i) Sub-problems within branch and price algorithms for routing problems (with or
without timewindows) can be formulated as anElementary Shortest Path Problem
with Resource Constraints (ESPPRC). Hence, the goal is to find the shortest path
from the depot back to the depot, while visiting any node at most once, except for
the depot (the generated route is cycle-free) and satisfying resource constraints
along the route (possibly including timewindows). Since the ESPPRC is NP-hard
even medium-sized instances of this problem are hard to solve in general. Hence,
the sub-problem is often relaxed such that routes are allowed to contain cycles.
As allowing cycles results in weaker lower bounds, a commonly used approach
is to prohibit cycles of certain structures. Early work includes the introduction
of k-cycle elimination, i.e., only allowing routes to contain cycles with at least k
customers, see for example Irnich and Villeneuve (2006). A main advancement
was the introduction of ng-route relaxation, see Baldacci et al. (2011), that will be
briefly explained in Sect. 4.2. Decremental state-space relaxation (DSSR) Righ-
ini and Salani (2008) is a concept that initially relaxes elementary restrictions
on customers, but dynamically increases the set of customers for which those
restrictions are imposed. The integration of DSSR and ng-route relaxation was
first proposed by Martinelli et al. (2014) and extended by Contardo and Mar-
tinelli (2014) (including 2-cycle elimination) and Bulhões et al. (2018) (dynamic
neighborhood sizes). On the other hand, bidirectional labeling Righini and Salani
(2006) does not change the structure of, but consists of generating labels from
both directions (start and end depot) while solving the sub-problem. Pecin et al.
(2017a, b) combine bidirectional labeling with completion bounds, i.e., bounds
that allow to discard unpromising labels during the execution of labeling algo-
rithms for the sub-problem. Finally, almost any branch price and cut procedure
includes heuristics to compute negative reduced cost columns, see for example
Fukasawa et al. (2006), Martinelli et al. (2014), or Pecin et al. (2017a, b).

(ii) Cuts for vehicle routing can be classified in (a) robust and (b) non-robust cuts,
where the latter change the structure of the pricing problem. A large set of robust
cuts for the CVRP is provided by the CVRPSep library Lysgaard et al. (2004), for
example rounded capacity inequalities, homogeneous multistar inequalities, gen-
eralized multistar inequalities, framed capacity inequalities, strengthened comb
inequalities, and hypotour inequalities. A family of non-robust cuts, used by a

123

698 N. Furian et al.

variety of authors, are subset row cuts (SRC) Jepsen et al. (2008). To reduce their
impact on labeling algorithms, these were refined to limited-memory SRCs by
Pecin et al. (2017a) for the VRPTW and Pecin et al. (2017b) for the CVRP. For
other examples of non-robust cuts, the reader is referred to Costa et al. (2019).

The work of Pecin et al. (2017a) for VRPTW (and, respectively, Pecin et al. (2017b)
for CVRP) denote the latest advancement of exact solving procedures, and include
route enumeration, variable fixing and strong branching elements besides above-
mentioned techniques. Further, it has to be noted that the above reported literature
on exact algorithms does not include other variants than VRPTW and CVRP. Pessoa
et al. (2020) generalize recent development on latter problem types to a generic exact
solving procedure for multiple variants of routing problems. For a recent review, the
reader is referred to Costa et al. (2019)..

2.2 ML and optimization

The idea to combine methods from classical optimization and ML has gained sig-
nificant attention over the last few years, especially for real-world settings where
optimization algorithms are used in a repetitive manner. Thereby, the idea of gather-
ing knowledge during these optimization runs, that can be utilized in future calls of
the algorithm, seems to be very intriguing.

In its pure essence, an algorithm is a sequence of decisions to be made. In a vast
number of algorithms that are used in practice, even in exact ones, a lot of these deci-
sions are made heuristically, for example the selection of neighborhood operators in
local search procedures, or the selection of variables to branch on in tree searches. ML
models could enhance those heuristic policieswithin the considered optimization algo-
rithms. Recent research on the heuristic use of ML models has already demonstrated
their potential to do so.

In general, Bengio et al. (2018) identified three abstract ways to incorporate ML
into optimization (or combine ML and optimization). First, (i) “End-to-End” learning
includes ML approaches that are able to directly construct solutions for optimization
problems. Hence, it extends classical heuristics by ML-based ones. Second, (ii) ML
is used to gather information on the problem at hand in a pre-processing step and pass
that information on to a classical optimization algorithm. Third, (iii) ML models are
utilized to make online heuristic decisions within classical optimization algorithms.

A fourth possible way, (iv) that is not within those categories, is to use ML models
to predict an objective value of a problem, but not the solution yielding that value. In
the following, examples for each category are given. For comprehensive reviews, the
reader is referred to Bengio et al. (2018); Lombardi and Milano (2018); Dilkina et al.
(2017).

(i) The (heuristic) construction of solutions for optimization problems utilizing ML
methods has probably gained the most interest in recent years. ML methods used
include, but are not limited to, Pointer Networks, e.g., Bello et al. (2016), Rein-
forcement Learning, e.g., Khalil et al. (2017a), Graph Convolutional Networks,
e.g., Joshi et al. (2019), and/or Attention mechanisms, e.g., Kool et al. (2018).
One of the most commonly tackled problem types considered is the Traveling

123

Amachine learning-based branch and price algorithm... 699

Salesman Problem Bello et al. (2016); Nazari et al. (2018a); Khalil et al. (2017a);
Kool et al. (2018); Miki et al. (2018); Joshi et al. (2019); Kaempfer and Wolf
(2018). However, variants of vehicle routing problems were also the subject of
recent studies. Nazari et al. (2018b) considered the capacitated vehicle routing
problem, Vera and Abad (2019) the capacitated vehicle routing with a heteroge-
neous fleet, and Yu et al. (2019) an online version of vehicle routing, to name a
few examples.

(ii) The use of ML as a prepossessing step for a classical optimization algorithm has
been studied less. Ding et al. (2019) use Graph Convolutional Neural Networks
to predict the value of binary variables in optimal solutions. This information
is then used to direct the branching decision in the root node of a search tree.
Hence, the approach is similar to parts of themethod proposed in this paper, where
features of the optimal solution are predicted and then used in a branch and bound
setting. In a similar fashion, Li et al. (2018) also utilize Graph Convolutional
Neural Networks to decide whether a vertex in a graph-based problem is in the
optimal solution. If not, the vertex is removed from the graph, and a standard
heuristic is applied to solve the remaining instance. Support Vector Machines
and k-Nearest-Neighbor methods are used by Xavier et al. (2019) to compute,
what they refer to as, “hints” for a mixed integer program (MIP) solver. Those
hints include warm start information, additional constraints to the problem and
identified admissible regions that may contain the optimal solution. A similar
principle based on Support Vector Machines is also applied by Sun et al. (2019).
A very interesting approach has been proposed by the authors of Lodi et al.
(2019). They assume that instances to be solved result from a perturbation of
a reference instance of the facility location problem. Based on that assumption,
they use a selection ofMLmethods to predict the number of facilities that were in
the optimal reference solution and still are in the optimal solution of the perturbed
instance. This information is then added to the problem formulation of the new
instance in the form of an additional constraint. Results show that the solving
time for a new problem can be significantly reduced, and the risk to “cut-off” the
optimal solution by the additional constraint is low.
A different line of research has been followed by Kruber et al. (2017), who use
ML models to decide if a decomposition reformulation should be applied and, if
so, which one to apply if several are available.

(iii) The third category of research aims to utilize ML models online and alongside
traditional optimization algorithms. Examples of inclusions of ML models in
heuristics algorithms can be found in Shylo and Shams (2018) and Hottung and
Tierney (2019). In Shylo and Shams (2018), a Logistic Regression model is used
to predict components of good solutions and this information is used to guide a
Tabu Search. Hottung and Tierney (2019) use Neural Networks with an atten-
tion mechanism as a repair operator in a Large Neighborhood Search framework.
Hottung et al. (2020) use a Deep Neural Network structure to make branching
decisions in a heuristic tree search for the container pre-marshalling problem.
Exact solving procedures for NP-hard optimization problems, especially prob-
lems that can be formulated as MIPs, are often based on tree search strategies,
such as pure branch and bound, branch and price, or branch and price and cut.

123

700 N. Furian et al.

Heuristic decisions within those exact methods usually include variable and node
selection policies, i.e., which variables to branch on and the order in which unpro-
cessed nodes are processed. Recently, somemethods to design such policies based
on ML models have been published. For a comprehensive review, the reader is
referred to Lodi and Zarpellon (2017).
The majority of approaches to include ML models in branching decisions has
been proposed for variable selection, either in an “online” or “off-line” fash-
ion. In particular, online methods learn the ML models during the execution of
the algorithm, whereas offline algorithms use a set of training instances to train
ML models that are then used (unchanged) during the solving procedure of new
(unseen) instances. Solving those training instances is usually performed with a
costly branching strategy that is expected to lead to small trees, but is not practical
due to high running times. The aim of MLs is to imitate this costly strategy, e.g.,
strong branching (see Sect. 4.4.2) at a lower computational cost.
Examples for online learning can be found in Khalil et al. (2016) and Mar-
cos Alvarez et al. (2016). Khalil et al. (2016) use a Support Vector Machine
based ranking model and test it on MIPLIB 2010 instances Koch et al. (2011).
Marcos Alvarez et al. (2016) propose a Linear Regression model that is tested on
MIPLIB 3.0+2003 instances.
For offline learning, Alvarez et al. (2017) used Extra Trees as a regression model
to predict strong branching scores for random and MIPLIB 3.0 instances Achter-
berg et al. (2006). Gasse et al. (2019) imitate a strong branching expert with
Graph Convolutional Neural Networks and test their approach on instances of set
covering, combinatorial auction and facility location problems. Important to note
is that their work is the first that uses a solver including cuts, primal heuristics and
pre-solving. Hansknecht et al. (2018) propose a ranking-based learning method
for the time-dependent traveling salesman problem, while Liberto et al. (2016)
use a clusteringmechanism to select the most promising branching heuristic from
a set of standard heuristics at each node. The approach is tested on MIPLIB 2010
instances Koch et al. (2011). In a similar fashion, Balcan et al. (2018) propose a
learning method that assigns weights to existing variable selection heuristics.
Significantly less work has been published on node selection policies. He et al.
(2014) propose a learning method that aims to imitate an oracle procedure which
expands nodes containing the optimal solution, while Sabharwal et al. (2012) use
Reinforcement Learning to balance exploration and exploitation in search trees.
Applications of ML models in branch and bound trees, other than node and vari-
able selection, have been proposed by Tang et al. (2019) who aim to detect cuts,
or Khalil et al. (2017b) who are using a Logistic Regression model to decide
whether primal heuristics should be run at a given node in the search tree.

(iv) Predicting the optimal objective value, not considering the actual solution repre-
senting it, has been proposed by Matsuoka et al. (2019) for a machine scheduling
problem, and by Fischetti and Fraccaro (2019) for the optimal production of off-
shore wind parks. Further, a metric to evaluate ML models has been proposed by
François et al. (2019) and tested on the Traveling Salesman Problem.

123

Amachine learning-based branch and price algorithm... 701

However, it is interesting to observe that little research has been done on prob-
lem definitions that incorporate pre-defined patterns for instance generation. Only a
few exceptions have to be mentioned. Lodi et al. (2019) assume that instances being
solved for the facility location problem are random perturbations of a single reference
instance, which is similar to the idea of a base instance introduced in this paper. Xavier
et al. (2019) assume a fixed topology of the problem structure and generate instances
by altering parameters with respect to historic data. Thereby, parameters are either
sampled from past observations, or a distribution is fitted on historic data which is
used to generate parameters. Fischetti and Fraccaro (2019) mention that part of their
data that defines instances is based on historic data.

It is the opinion of the authors that patterns in instance generation could be an inter-
esting direction for research on the combination of ML and traditional optimization.
First, from a practical point of view, when optimization is used in a setting where
certain elements remain fixed over time, e.g., a fixed number of machines, a fixed set
of possible customers, structures in item definitions for bin packing, and many more.
Second, assuming structures in the instances being solved could lead to an enhanced
use of ML models for optimization, as it enables to engineer features and models that
are explicitly making use of the those structures.

Summarizing, to the best knowledge of the authors, the contribution of this paper
is threefold:

– We introduce an exact solving procedure for two variants of vehicle routing prob-
lems with stochastic customers, that does not rely on adapting a master solution,
but utilizes ML models for re-optimization of unseen instances.

– Themethod proposed in this paper is the first attempt to apply aML-based strategy
to exactly solve a variant of the vehicle routingproblem. It includes policies for both
variable and node selection and also includes a detailed discussion on the potential
to predict elements in the optimal solution for instances of the SVRPTW.

– The proposed approach is the first to include an online-evaluation of prediction
modelswithin a reliability framework. This enables to dynamically switch between
standard variable selection and ML-based variable selection.

3 Problem formulation

The mathematical formulation of the SVRPTW is based on the definition of the
VRPTW, see for example Desaulniers et al. (2006). Let NB be the set of customers in
the “base instance”, V be the set of identical vehicles, each with a capacity of Q, D
be the depot, and let di , hi , [ai , bi] for i in NB be the demand, service time and time
window for each customer. Further, let ci, j for i, j ∈ NB ∪ {D} be the distance and
ti, j = ci, j + hi the travel time including the service time. Note that we assume a time
window [aD, bD] for the depot node that represents the planning horizon and that the
demand of the depot is equal to zero, i.e., dD = 0.

For a given instance I , associated with a customer set NI ⊆NB let N̂I =NI∪{D} be
the set of all nodes (customers and depot) in the network. The model contains two sets
of decision variables. For each edge (i, j), where i �= j and each vehicle k ∈ V , let

123

702 N. Furian et al.

xi, j,k =
{
1 if vehicle k visits j directly after i,

0 else.

Note that for each vehicle k ∈ V we allow for an extra variable XD,D,k that is 1 if
the vehicle is assigned an empty route and 0 otherwise.

Variables si,k denote the time service is started by vehicle k ∈ V at node i ∈ N̂I

. If vehicle k does not visit i the value of the variable is irrelevant. Furthermore, we
assume aD = 0 and hence sD,k = 0, for all k ∈ V .

Timewindows [ai , bi] force vehicles to arrive at customer i ∈ NI before bi .When a
vehicle arrives before ai it is assumed that the vehicle waits before starting the service.

The problem can then be formally stated by (1)–(9):

min
∑
i∈N̂I

∑
j∈N̂I

∑
k∈V

ci, j xi, j,k (1)

s.t .
∑
k∈V

∑
j∈N̂I

xi, j,k = 1 ∀i ∈ NI (2)

∑
i∈NI

∑
j∈N̂I

di xi, j,k ≤ Q ∀k ∈ V (3)

∑
j∈N̂I

xD, j,k = 1 ∀k ∈ V (4)

∑
i∈N̂I

xi,D,k = 1 ∀k ∈ V (5)

∑
i∈N̂I

xi,h,k −
∑
j∈N̂I

xh, j,k = 0 ∀h ∈ NI ,∀k ∈ V (6)

xi, j,k(si,k + ti, j − s j,k) ≤ 0 ∀i, j ∈ N̂I ,∀k ∈ V (7)

ai ≤ si,k ≤ bi ∀i ∈ N̂I ,∀k ∈ V (8)

xi, j,k ∈ {0, 1} ∀i, j ∈ N̂I ,∀k ∈ V (9)

The objective function minimizes the total travel distance. Note that we do not
consider the lexicographic objective function that aims to minimize the number of
used vehicles and subsequently the travel distance. Constraints (2) ensure that every
customer is visited exactly once and (3) force that each vehicle is loaded not more
than its capacity. Constraints (4) and (5) ensure that vehicle start and end their routes
at the depot D. Constraints (6) denote the flow balancing constraints. Constraints
(7) describe the relationship between a vehicle’s departure from a customer and the
earliest possible start for the next possible customer with respect to travel and service
times. Note that the constraints (7) are not linear. However, their nonlinearity has
no effect on our solution procedure. Indeed these constraints are part of the sub-
problems of the column generation approach introduced in the following section, and
those sub-problems are solved by a labeling algorithm. Constraints (8) impose the time
windows for the start of the service at a customer and constraints (9) define x variables

123

Amachine learning-based branch and price algorithm... 703

as binaries. Note that start time (7) and time window constraints (8) can be dropped
for the SCVRP. However, the remaining formulation would not prevent vehicles from
cycling. To prevent cycles, one could either introduce sub-tour elimination constraints
or maintain constraints (7) and replace ti, j by ci, j .

4 Branch and price for the VRPTW

In this section, the branch and price framework for solving instances of the SVRP and,
respectively, the VRPTW and the CVRP is presented. The framework is comprised of
standard algorithms and is later extended by novel aspects, see Sect. 7. In general, the
integrality constraints in themixed integer formulation given by (1)–(9) are relaxed and
the resulting linear program is solved using a standard column generation approach, as
outlined for example byDesaulniers et al. (2006).As the resulting solutionmay contain
fractional variables, the column generation procedure is embedded in a branch and
price algorithm to obtain the optimal non-fractional solution of the original problem.
This procedure and its components form the basis for the adapted algorithm presented
in Sect. 7. Therefore, they are briefly outlined in the remainder of the section, although
they are just classical approaches and do not exhibit any novelty.

4.1 A set covering formulation for themaster problem

Column generation procedures have been extensively applied to solve NP-hard opti-
mization problems, including many variants of the vehicle routing problem. The
general idea is to split problems of the form similar to (1)–(9) into a master prob-
lem (constraints (2)) and (often identical) sub-problems (constraints (3)–(9) define
one sub-problem per vehicle). This approach is based on the block structure of the
problem and on the observation that routes of the vehicles can be independently con-
structed in the sub-problems and linked together in the master problem. Assuming
that the set of all possible routes is known, and denoted by P , the master problem can
be formulated as a set-covering problem of the following form:

min
∑
p∈P

cp yp (10)

s.t.
∑
p∈P

ni,p yp ≥ 1 ∀i ∈ NI (11)

yp ≥ 0 ∀p ∈ P (12)

Note that cp denotes the total distance of a route and ni,p denotes the number of
times a customer i is visited on a route p and yp counts the number of times a route is
used. However, set P is extremely large and cannot be enumerated even for medium
sized instances. Therefore, set P is replaced by a smaller set of known paths P̃ ⊂ P in
formulation (10)–(12) Let us denote by πi the dual multiplier related to constraint (11)
for some node i ∈ NI for a given set P̃ . The values πi are used to compute the reduced
costs ĉi, j of the edge {i, j} in the original network, in particular ĉi, j = ci, j − πi .

123

704 N. Furian et al.

Based on this reduced cost structure, a sub-problem solver is used to compute
routes with total negative reduced costs. If it fails, i.e., no routes with negative reduced
cost can be identified, an optimal solution to the problem (10)–(12) is found and the
corresponding node in the branch and price algorithm is considered as processed.
Otherwise, set P̃ is updated by routes with negative reduced costs.

4.2 Solving the relaxed sub-problem

The sub-problem imposed by constraints (3)–(9) and a modified objective function
(replacing costs ci, j by ĉi, j and summing just over i and j but not over k, since there
is a subproblem for every k) is essentially an ESPPRC. Note that ĉ may not satisfy
the triangular inequality and also may take negative values. Therefore, negative cycles
may exist in the network. Since the ESPPRC is NP-hard, the sub-problem is relaxed
such that specific cycles are allowed. The objective function (10) ensures however that
in an optimal solution the routes will be cycle-free. Further time window and resource
constraints prevent infinite cycling if negative cycles are present in the network.

In this paper, we have used a 2-cycle elimination Irnich and Villeneuve (2006)
procedure for the SVRPTW, the routes are not allowed to contain cycles of the form
(i, j, i), and ng-route relaxation for the SCVRP.

Informally speaking, ng-route relaxation works as follows. Each customer i is
assigned a set of customers, i.e., Ni . Further, for each route p a “memory” Π(p) is
kept. Route p is only allowed to be extended to customer i if i /∈ Π(p). On the other
hand, if the extension is feasible, the memory of the resulting path p′ is computed by
Π(p′) = Π(p) ∩ Ni ∪ {i}. Sets Ni are usually composed of the δ nearest customers,
where δ is a chosen parameter. For a more formal definition, the reader is referred to
Baldacci et al. (2011) or Martinelli et al. (2014).

4.3 Embedding column generation in branch and price

In case that solving (10)–(12) using column generation does not yield an integer
solution, we define branching decisions on the accumulated flow over edges (see for
example (see Desaulniers et al. (2006)), i.e.,

∑
k∈V xi, j,k for a given edge (i, j). In

particular, all edges with a fractional flow are eligible for branching. The child nodes
arise by introducing additional restrictions: either, edge (i, j) is simply removed from
the network, or all edges entering j (except (i, j)) and all edges leaving i (except
(i, j)) are removed from the network. A node is discarded if the resulting instance
is infeasible, the solution is integer, or the resulting lower bound is higher than the
objective function value corresponding to the best integer solution known so far.

As the CVRP is a symmetric problem, branching decisions are made on the flow
x̃i, j,k = xi, j,k+x j,i,k . For

∑
k∈V x̃i, j,k = 0, both edges are removed from the network,

otherwise constraints of the from
∑

k∈V x̃i, j,k = 1 are added to the master problem.
To further improve the quality of obtained bounds for the SCVRP, we extend the

branch and price framework to a branch price and cut framework. Cutting planes are
computed at the root node of the tree, using the CVRPSEP library, see Lysgaard et al.
(2004), and maintained for all nodes in the tree.

123

Amachine learning-based branch and price algorithm... 705

4.4 Variable selection strategies

In case ofmore than one edgewith an accumulated fractional flow, the branch and price
algorithm must choose an edge to branch on. The general principle behind variable
selection algorithms is to assign a score to each candidate variable, in our case to each
edge, and choose the variable with the highest score. Multiple strategies have been
proposed to compute such scores. For an overview, the reader is referred to Achterberg
et al. (2005). The most commonly used score computing approaches and the ones used
as benchmarks in this paper are outlined in the remainder of this section.

4.4.1 Most fractional score

The simplest approach is the Most Fractional Branching (MFB) strategy, which com-
putes scores with respect to the fractional part of the value that is assigned to an edge
in the given solution, see (13). However, it has been experimentally shown that this
method does not perform better than a random selection among fractional variables,
see Achterberg et al. (2005).

sMF = 0.5 −
∣∣∣∣∣
∑
k∈V

xi, j,k −
⌊∑
k∈V

xi, j,k

⌋
− 0.5

∣∣∣∣∣ (13)

4.4.2 Full strong branching

The method that is considered to yield the smallest trees is Strong Branching, or in
its naive version Full Strong Branching (FSB). For every candidate edge, Full Strong
Branching computes the resulting bound increase in both child nodes, denoted by Δ1
and Δ2, respectively. The score of an edge is then computed with respect to Δ1 and
Δ2. While other variants exist in the literature, the score function used in this paper is
given by

sSB = αmin (Δ1,Δ2) + (1 − α)max (Δ1,Δ2) , (14)

where α is a parameter usually chosen in the range [0.7, 1].
Obviously, in its naive version FSB results in a very large number of LPs that need

to be solved. Hence, to make it practicable, the number of candidate variables and
the number of simplex iterations performed to compute Δ1 and Δ2 is limited in the
general case. We will refer to this procedures as Strong Branching.

However, as we use strong branching in this paper to generate input features for the
MLmodel presented in Sect. 6, we refrain from using any heuristic adoption whenever
FSB is used.

4.4.3 Pseudo cost branching

Pseudo Cost Branching (PCB) is a history-based approximation of the score formula
given by (14), and hence maybe seen as a (very simple) learning method. Whenever

123

706 N. Furian et al.

an edge (or variable in the general case) has been chosen to branch on and one of
the resulting child nodes has been processed and resulted in a feasible solution, the
observed bound increase per unit change is stored in a list associated with that edge,
as well as whether the edge is included or excluded. Instead of computing Δ1 and
Δ2 by solving the corresponding LPs, their values are estimated by the average value
of elements in the associated lists. In case that no historic values have been collected
yet for a given edge, the average of all variables included (or respectively excluded)
are used to approximate the score. If none such exist, they are assumed to be 1. For
tie-breaking, we use the most fractional score SMF given by (13).

4.4.4 Hybrid branching

Hybrid Branching is a mix of FSB or Strong Branching, and PCB Hybrid branching
aims to exploit the intuition that branching decisions at nodes with lower depth in
the search tree may have a larger affect on the resulting size of the tree. Therefore,
hybridizes FSB and PCB by using FSB to select the branching variable at nodes with
a depth up to a chosen limit, whereas PCB is applied at nodes with larger depths.

Reliability Branching (RB) generalizes the idea of Hybrid Branching by keeping a
reliability parameter ηrel. If the minimum number of the elements in the PCB lists of
an edge (including or excluding that edge) is less than or equal to ηrel, the associated
score is computed using Strong Branching (either FSB or an heuristic adaption),
otherwise the average values of those lists are used to approximate (14). Hence, PCB
is only applied when the corresponding edge is classified as reliable, i.e., sufficient
full evaluations have already been performed.

The value of the parameter ηrel determines the degree to which RB performs PCB
or Strong Branching, respectively. In the extreme settings ηrel = 0 and ηrel = ∞, RB
would coincide with PCB and Strong Branching, respectively.

4.5 Node selection

Besides choosing an edge to branch on, the node to process next has to be chosen
from a set of unprocessed nodes in each branch and price iteration. Most common
strategies to select nodes include: “depth first”, i.e., selecting nodes that are situated
at lower levels of the tree or equivalently nodes with large depth in the tree, “breadth
first”, i.e., nodes with lower depth in the tree, “best first”, i.e., selecting nodes with the
best lower bound, or combinations of the latter. In this paper, the “best first” approach
is used as a standard node selection strategy.

5 Predicting solution structures of the SVRPTW

In this section, a family of “edge-based” models is introduced, followed by a family
of “node-based” models and then an algorithm that combines both and performs post-
processing on results in order to learn and predict the value of variable in the optimal
solution for a given instance of SVRPTW.

123

Amachine learning-based branch and price algorithm... 707

Fig. 1 Structure of features and
responses for an edge (i, j) with
i, j ∈ NB . Each row in the
matrix represents the
characteristic vector of the
vertex set of the instance

i j

I
(i,j)
Train

⎡
⎢⎢⎢⎣

0 · · ·1 · · ·1 · · ·0
1 · · ·1 · · ·1 · · ·0
...

...
...

...
...

...
...

1 · · ·1 · · ·1 · · ·1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
features – VI , I ∈ I

(i,j)
Train

⎡
⎢⎢⎢⎣

1
0
...
1

⎤
⎥⎥⎥⎦

︸︷︷︸
responses

5.1 An edge-basedmodel

Given an instance I of SVRPTW with corresponding customer set NI for a chosen
“base customer” set NB , themost simple classification task onemay think of iswhether
an edge (i, j) with i, j ∈ NI will be part of a route in the optimal solution. Let
VI = (vi)i∈NB be a binary vector of size |NB |, whose i-th element indicates whether
customer i is in NI or not. Although, the “base-instance” contains information on the
location of customers and corresponding time windows, this information is abstracted
for a specific instance I via VI .

Let ITrain be a set of instances with known optimal solutions, i.e., computed “off-
line” by some exact algorithm as described in Sect. 4, and ITest be a set of instances
with unknown optimal solutions derived from the same “base instance”. Further, for a
given edge (i, j)with i, j ∈ NB let I (i, j)

Train = {I ∈ ITrain|i ∈ NI ∧ j ∈ NI } be the set of
instances that contain both nodes. The resulting feature and response set is illustrated
by Fig. 1, where responses are 1 if the optimal solution contains edge (i, j) and 0
otherwise.

Based on the structure of features and responses described by Fig. 1, we train a
family of edge-models M (i, j)

E for every edge (i, j) with i, j ∈ NB . In the following,

we usemodelsM (i, j)
E as functions M (i, j)

E (V) that map binary vectors V of size |NB | to
{0, 1}, i.e., predicted to be in the optimal solution or not. In this paper, we use random
forest classifiers for models M (i, j)

E (V) Murphy (2012), but compare results to other
ML models. Note that the resulting feature and response data are strongly unbalanced
in many cases, which is addressed by performing bootstrapping on the training data.

Note that for the SCVRP we treat (i, j) and (j, i) as one edge. Hence, models are
only constructed once and features are set to 1 if either edge is in the optimal solution.

Experiments have shown that models ME have a relatively high precision, but a
medium to low hit-rate. In other words, when predicting an edge to be in the optimal
solution, the probability that the edge is actually in the optimal solution is relatively
high, but models seem to quite often predict optimal edges not to be in the optimal
solution. Therefore, a second family of models is proposed in the following section.

5.2 A node-basedmodel

The second fundamental prediction task one may think of when predicting solution
structures of vehicle routing problems is to predict the successor of a given node in
the optimal solution.

123

708 N. Furian et al.

Fig. 2 Structure of features and
responses for an node i ∈ NB ,
where responses denote node
identifiers. Each row in the
matrix represents the
characteristic vector of the
vertex set of the instance

i

IiTrain

⎡
⎢⎢⎢⎣

0 · · ·1 · · ·0
1 · · ·1 · · ·0
...

...
...

...
...

1 · · ·1 · · ·1

⎤
⎥⎥⎥⎦

features

⎡
⎢⎢⎢⎣

10
3
...
25

⎤
⎥⎥⎥⎦

responses

Therefore, we use a similar feature set as illustrated by Fig. 1, but I iTrain is the set
of instances that contain i and we replace the binary responses by customer indices of
the successor of i , as shown by Fig. 2.

Using features and responses described above, we train ranking models Mn
N for all

nodes n ∈ NB . Analogously to Sect. 5.1,modelsMn
N maybe seen as a functionMn

N (V)

mapping any binary vector V of size |NB | to the set of nodes NB . In principle, any
ranking model may be used, in this paper we use a probability-based model resulting
from random forest classifications Murphy (2012). Note that this may also result in
predictions that violate constraints (6). Note that models are not used for the SCVRP.

Computational experiments have shown that the precision of models MN is sig-
nificantly lower than the precision of models ME . However, a closer investigation of
the results identified that ME models often failed to classify “obvious” optimal edges,
which were correctly classified by MN . Hence, we propose a combined use of models
ME and MN , as described in the following section.

5.3 Combinedmodels and post-processing

To combine strengths of models ME and MN and reduce their weaknesses, we pro-
pose the following combined approach. Given an instance I ∈ IT est , we first apply
models M (i, j)

E (VI) for every edge (i, j) with i, j ∈ NI . Let PE be the resulting set
of edges that were predicted to be in the optimal solution and Ps

E the set of start
nodes of edges in PE and respectively Pe

E the set of end nodes . Second, we apply a
first post-processing procedure to correct for violations of constraints (6). This first
post-processing procedure prioritizes the removal of edges that contribute most to in-
degrees (or out-degrees) of nodes bigger than one and breaks ties by edge lengths, a
detailed description is provided in the appendix (Algorithm 3). This is motivated by
the observation that the edge-based ML models show a higher precision in predicting
the presence of an edge in the optimal solution. Moreover, computational experiments
have shown that removing a smaller number of edges is beneficial.

Third, we apply models Mn
N (VI) for nodes n ∈ NI to obtain newly predicted

edges P̃E . However, we only keep those predictions if they are not conflicting with
the predictions of models ME . Hence, if the start (or end) node of a predicted edge
(i, j) ∈ P̃E is in the set of start nodes Ps

E (or end nodes Pe
E), then e is discarded.

This is motivated by the fact that in the case of conflicting predictions, only one is
potentially a true positive. Experimentation has shown that models ME yield a higher
precision than models MN , i.e., the probability of a true positive prediction is higher

123

Amachine learning-based branch and price algorithm... 709

for ME models, but MN models are capable of “adding” optimal edges that have been
missed by edge-based models.

Finally, we apply a second post-processing procedure that corrects for violations
of time window constraints (8) and capacity constraints (3). See Algorithm 4 in the
appendix. The resulting predicting solution procedure is illustrated by Algorithm 1.

For the SCVRP, the correction procedure does not distinguish between in- and out-
degrees and removes edges as long as there are customer nodes with degree strictly
larger than 2.

Note that as prediction results are used for node selection policies, rather than
constructing feasible solutions, the application of post-processing methods to resolve
feasibility violations would not be necessary. However, the existence of violations
implies false positives, i.e., “wrongly” predicted edges in the solution.Experimentation
has shown that: the proposed post-processing methods on average remove more false
positive than true positive predicted edges; and that the negative affect of false positives
on the performance of the proposed node selection method (that will be introduced in
Sect. 7) is larger than the negative affect of false negatives.

Algorithm 1 Predicting Solution Structures
1: Input: Instance I
2: Output: Set of Predicted Edges PE
3: Set PE = ∅ and outDegree(n) = 0, inDegree(n) = 0 for all n ∈ NI
4: for all (i, j) with i, j ∈ NI do

5: if M(i, j)
E (VI) == 1 then

6: PE = PE ∪ {(i, j)}
7: outDegree(i) += 1, inDegree(j) += 1
8: end if
9: end for
10: call Correct ByDegree(PE)

11: Apply MN models to all nodes in I

12: P̃E = ⋃
i∈NI

{
(i, Mi

N (VI))
}

13: Check if newly predicted edges conflict with edges in PE
14: for all (i, j) ∈ P̃E\PE do
15: if i /∈ Ps

E ∧ j /∈ Pe
E then

16: PE = PE ∪ {(i, j)}
17: outDegree(i) += 1, inDegree(j) += 1
18: end if
19: end for
20: call CheckFeasibili t y(PE)

21: return PE

The quality of prediction results obtained by Algorithm 1 is significantly lower
for edges incident to the depot than for edges connecting two customers. Further, for
single depot variants of routing problems, optimal solutions are uniquely defined by
edges (i, j) with i, j ∈ NI . Therefore, Algorithm 1 is only applied for edges between
customers.

123

710 N. Furian et al.

6 Prediction of strong branching scores

As the task of variable selection problems is to choose one edge out of a set of
candidate edges, prediction models may contribute in different ways. The outcome of
such models may be either (i) an ordering (or ranking) of candidate edges, or a (ii)
score that is then used to select the most promising edge.

The methodology proposed in this paper is based on the second strategy (ii) and
aims to predict FSB scores as given by (14). However, due to the special structure
of the SVRPTW, we train individual models for each edge in a given base instance.
During training FSB is used as a variable selection policy and data representing the
state of the search tree for each candidate edge and the resulting FSB score is collected
and stored.

In the following, we formally describe the feature set for a candidate edge at a given
node bn in a branch and price tree. Let Pbn be the columns used at node bn to compute
the optimal relaxed solution of the problem (10)–(12). Let ŷp be the value of the
corresponding variable in the optimal relaxed solution, for p ∈ Pbn . Let BE be the set
of edges that have been used for branching on the path from the root node of the tree to
bn . Let inDegree(i) (outDegree(i)) be the in-degree (out-degree) of a node i ∈ NI

in the instance to solve at node bn . This instance is basically the sampled instance
to solve, but due to branching decisions made further up the tree, and, respectively,
the removal of edges from the instance, degrees of nodes may get reduced during the
search. For the SCVRP, we only keep a single degree per node for symmetry reasons.
Further, let Pu

(i, j) = {
p ∈ Pbn |ŷp > 0 ∧ (i, j) ∈ p

}
be the set of used paths in the

optimal relaxed solution that contain edge (i, j), P f = {
p ∈ Pbn |ŷp > 0 ∧ ŷp < 1

}
be the set of fractional used paths, POSp((i, j)) be the position of edge (i, j) in path
p and N (p) the set of nodes in path p. The used feature set is summarized by Table 1.

The last feature listed in Table 1 corresponds to integer valued features for each
node i ∈ NB . The feature for node i is equal to zero if i is not in the sampled instance
to solve, and a strictly positive value otherwise. This value is the sum of 1 and the
number of fractional paths in the current relaxed optimal solution containing node
i . Thereby, it contains information on which nodes are in the sampled instance, and
which nodes occur (possibly multiple times) in fractional used paths. Hence, it makes
use of the special structure of SVRP and the combinatorial information provided by
the instance vector vi .

Based on the feature set described by Table 1, we train a regression forest to predict
the score of candidate edges, i.e., fractional edges.

Note that due to branching decisions, and the corresponding removal of edges in the
resulting instance, the relaxed problems of the form (10)–(12) may become infeasible.
In practice, the paths containing removed edges are not removed from the initial path
set, but are assigned an artificially high cost (i.e., length) in order to improve the column
generation procedure. Hence, in case of infeasibility the relaxed objective value and
consequently also the resulting FSB score becomes artificially high. This means that
the responses for the ML models contain “infinite” and “finite” scores. However, as
regression trees split samples with respect to the observed variance, it is unlikely that a
leaf node in a regression tree contains samples with both “infinite” and “finite” scores.

123

Amachine learning-based branch and price algorithm... 711

Table 1 Feature set for FSB score prediction of edge (i, j)

Feature Description∑
p∈Pbn

ŷpcp The optimal relaxed objective value at node bn∑
p∈Pu

(i, j)
ŷp The total usage of edge (i, j)

li, j The length of edge (i, j)

inDegree(i) The in-degree of the start node

outDegree(i) The out-degree of the start node

inDegree(j) The in-degree of the end node

outDegree(j) The out-degree of the end node

| {(x, y) ∈ BE |x = i ∨ y = i} | The number of branches on the start node of edge (i, j)

| {(x, y) ∈ BE |x = j ∨ y = j} | The number of branches on the end node of edge (i, j)

|P f | The number of fractional paths in the optimal relaxed
solution

|Pu
(i, j)| The number of fractional used paths containing edge

(i, j)∑
p∈Pu

(i, j)
cp The sum of length of paths used and containing edge

(i, j)∑
p∈Pu

(i, j)
cp ŷp The sum of objective values of paths used and

containing edge (i, j)

minp∈Pu
(i, j)

cp The minimum of length of paths used and containing
edge (i, j)

minp∈Pu
(i, j)

cp ŷp The minimum objective function contribution of paths
used and containing edge (i, j)

maxp∈Pu
(i, j)

cp The maximum of length of paths used and containing
edge (i, j)

maxp∈Pu
(i, j)

cp ŷp The maximum objective function contribution of paths
used and containing edge (i, j)∑

p∈Pu
(i, j)

POSp((i, j))/|Pu
(i, j)| The average position of edge (i, j) in used paths

minp∈Pu
(i, j)

POSp((i, j)) The minimum position of edge (i, j) in used paths

maxp∈Pu
(i, j)

POSp((i, j)) The maximum position of edge (i, j) in used paths∑
p∈Pu

(i, j)
POSp((i, j))ŷp/|Pu

(i, j)| The average weighted position of edge (i, j) in used
paths

minp∈Pu
(i, j)

POSp((i, j))ŷp The minimum weighted position of edge (i, j) in used
paths

maxp∈Pu
(i, j)

POSp((i, j))ŷp The maximum weighted position of edge (i, j) in used
paths(

vi + ∑
p∈P f IN (p)(i)

)
i∈NB

The sum of the instance vector vI and another vector of
dimension NB the i-th element of which specifies the
number of fractional paths the corresponding node i is
part of

123

712 N. Furian et al.

Consequently, prediction results either contain a ‘’finite’ FSB score, or an artificially
large value indicating infeasibility.

As shown in Sect. 5, for the SCVRP we only maintain one model for edges (i, j)
and (j, i). In case both edges are in a relaxed fractional solution, features with respect
to the position of the edge (minimum, maximum, average) are computed such that
positions of both, (i, j) and (j, i), are used.

7 Amachine learning-based branching scheme

In this section, we present learning-based strategies for variable and node selection.
In particular, for variable selection, we present an approach based on score prediction,
and an approach combining the strengths of reliability branchingwith prediction-based
branching.

7.1 Node selection

Given a branch and bound tree and the associated set O of unprocessed nodes in the
tree, the task of any node selection procedure H(O) is to select a node for processing.
However, for each node o ∈ O there is a unique edge (i, j) that was chosen for
branching in the predecessor node of o that led to the creation of o. In other words,
node o is a result of adding either constraint

∑
k∈V xi, j,k = 0 or

∑
k∈V xi, j,k = 1 (or

removing corresponding edges from the network) to the problem formulation, i.e., in
the optimal solution edge (i, j) is either used, or not.

Hence, knowing the optimal solution, one could partition set O into Oopt and
Onopt with O = Oopt ∪ Onopt , Oopt ∩ Onopt = ∅, where Oopt denotes the set of
nodes resulting from decisions that lead to an optimal solution and Onopt the set of
nodes resulting from decisions which do not lead to an optimal solution. Although,
usually the optimal solution is not known during the search, we use the predictions of
Algorithm 1 to classify a node o ∈ O as belonging to either Oopt or Onopt .

The procedure works as follows. In a pre-processing step, we compute a set of
predicted edges PE using Algorithm 1. Whenever node o1 and o2 are created in the
branch and bound tree using an edge (i, j), by inclusion and exclusion of edge (i, j),
the indicator function 1PE ((i, j)) is evaluated. If 1PE ((i, j)) = 1, then o1 is added to
Oopt and o2 is added to Onopt . Analogously, if 1PE ((i, j)) = 0, then o2 is added to
Oopt and o1 is added to Onopt .

Given a standardnode selectionprocedure H ,wedefine the correspondingpredicted
node selection H p as follows:

H p(O) =
{
H(Oopt) if Oopt �= ∅
H(Onopt) otherwise.

(15)

To select nodes within subsets Oopt and Onopt, i.e., the standard procedure H we
use best-first heuristic in this paper (selecting the node with the best lower bound).

123

Amachine learning-based branch and price algorithm... 713

Assuming a perfect prediction PE , H p would lead to a shorter search trajectory to
the optimal solution, and hence a smaller tree. During experimentation, we observed
that imperfect predictions PE also lead to a reduction in the resulting tree size by
narrowing down the search to regions that contain decisions with a higher likelihood
to be optimal.

7.2 Variable selection

In the following, we define two variable selection methods that make use of the pre-
diction models introduced in Sect. 6. Denote by Θ(i, j)(bn) the predicted FSB score
for edge (i, j) for a given instance I and a node bn in the branch and price tree (and
associated features).

The first presented method, referred to as Prediction Branching (PB), simply ranks
candidate edges according to their predicted scoresΘ(i, j)(bn). In case no model exists
for edge (i, j), the score is set to −1. This may happen if edge (i, j) has never been
considered for branching, i.e., never had a fractional value in the solution of some
relaxed problem in any training instances. For such an edge, no branching information
has been collected during training and consequently, no model has been generated.

For the second method, referred to as Reliability Prediction Branching (RPB), we
keep lists Υ +

(i, j) and Υ −
(i, j) for each edge in I to store observed bound increases that

result from including (Υ +
(i, j)) or excluding (Υ −

(i, j)) edge (i, j)) and processing the
associated node. Further, let Φ(i, j) be a quality indicator for each edge (i, j) that is
initially set to zero for all edges. Algorithm 2 outlines the proposed procedure.

Note that except for the lines 13 to 25 Algorithm 2 behave similarly as RB. In line
6, it is checked whether “enough” node evaluations on the corresponding edge have
been performed previously. This is analogous to the decision whether to use PCB or
FSB in RB. The required number of node evaluations is controlled by the reliability
parameter ηrel. However, even in the early phase of the search where FSB is used to
compute edge scores, the corresponding edge models Θ(i, j) are applied to assess the
quality of the predictions. To this end the resulting predicted score is compared to the
actual computed score. If the deviation is within a chosen limit δ (or δ̃ if the actual
computed score is zero) the quality indicator Φ(i, j) is increased by one, otherwise
it is decreased by one, see lines 12-15. Models with a negative quality indicator are
discarded after the reliability phase and the PCB score is used for the corresponding
edges instead.

8 Results

In this section, computational results are presented and the proposed methods are
evaluated. First, in Sect. 8.1 we outline how the evaluation instances of the SVRPTW
were generated. In Sect. 8.2, we present results for the prediction of solution structures
followed by an overview of the ML training. In Sect. 8.3, approaches which incorpo-
rate machine learning techniques in the branching scheme are tested on benchmark
instances and the results are compared to benchmark algorithms.

123

714 N. Furian et al.

Algorithm 2 Reliability-Based Score Prediction (RPB)

1: Input: Instance I , Node bn , ListsΥ +
(i, j) andΥ −

(i, j), Quality IndicatorsΦ(i, j), ModelsΘ(i, j), Candidate
Edges CE

2: Output: Edge (i, j) ∈ CE to branch
3: Set score(i, j) = 0 for (i, j) ∈ CE
4: for all (i, j) ∈ CE do
5: Check if enough branching information has been collected for edge (i, j)

6: if min
(
Len(Υ +

(i, j)), Len(Υ −
(i, j))

)
< ηrel then

7: Compute Δ1 and Δ2 by processing child nodes of bn based on edge (i, j)
8: Υ +

(i, j).Add(Δ1), Υ
−
(i, j).Add(Δ2)

9: score(i, j) = αmin (Δ1, Δ2) + (1 − α)max (Δ1,Δ2)
10: Check if model exists for edge (i, j)
11: if Θ(i, j)(bn) ≥ 0 then
12: Check the quality of the prediction

13: if
(
score(i, j) > 0 ∧ |Θ(i, j)(bn)/score(i, j) − 1| < δ

)∨
(
score(i, j) = 0 ∧ Θ(i, j)(bn) < δ̃

)
then

14: Φ(i, j) += 1
15: else
16: Φ(i, j) −= 1
17: end if
18: else
19: Φ(i, j) −= 1
20: end if
21: else
22: Post reliability phase, check quality indicator of edge (i, j)
23: if Φ(i, j) ≥ 0 then
24: Quality of model Θ(i, j) is satisfying, compute score by model
25: score(i, j) = Θ(i, j)(bn)

26: else
27: Quality of model Θ(i, j) is not satisfying, compute score by PCB

28: score(i, j) = αmin
(
Avg(Υ +

(i, j)), Avg(Υ −
(i, j))

)
+ (1− α)max

(
Avg(Υ +

(i, j)), Avg(Υ −
(i, j))

)
29: end if
30: end if
31: end for
32: return argmax(i, j)∈CE scorei, j

All results were obtained by using a desktop computer with an Intel i7 8th Gen
processor with 16GB RAM and 6 cores. Algorithms were coded in C#, in particular
using the .Net framework 4.5.2. Machine learning models were created in Python,
using the scikit-learn library version 22.1. The ML models were then exported from
Python to C# and serialized as binaries for multiple usage. This enables the loading of
models into the RAM prior to the actual algorithm execution and the computational
time for de-serializing is saved. LPs were solved using Gurobi Solver 9.0.

8.1 Benchmark instance generation and training phase

The definition of a benchmark instance for the SVRPTW (and respectively SCVRP)
involves a base instance and a sampled instance for this base instance. Base instances
for the SVRPTW were obtained either from the Solomon 100 customer instances

123

Amachine learning-based branch and price algorithm... 715

Solomon (1987), or from the Gehring & Homberger instances with 200 customers
Gehring and Homberger (2005). Those instances are divided into three categories,
r class instances (randomly distributed customers), c class instances (clustered cus-
tomers) and rc class instances (amix of randomly distributed and clustered customers).

For each base instance, we created 1000 randomly sampled instances consisting
of exactly n customers. Those instances were used for training ML models. Further,
for each base instance, we randomly sampled 200 evaluation instances of exactly n
customers as an evaluation set. In the following, we use the Solomon and Gehring
& Homberger instance nomenclature to refer to results corresponding to one base
instance, e.g., when referring to instance r101.n, we consider all evaluation instances
of size n for the base instance r101.

In addition to evaluation instances of fixed size, we created evaluation instances
with a randomly chosen number of customers from the interval [40, 60] for a selected
set of base instances. Those instances are referred to by their Solomon identifier,
followed by “RS”, e.g., c109.RS.

For the SCVRP, the same principle is applied to derive benchmark instances based
on the classical instance datasets A, B, E , and M .

During the training phase, all sampled training instances of one base instance are
solved to optimality using FSB. Thereby, the following data sets are generated. First,
a collection of binary instance vectors and corresponding optimal solutions is created.
Second, we record all feature sets, as described by Table 1, and the resulting FSB
scores of all nodes in the corresponding branch and price trees. A time limit of 4 hours
was applied for each solving procedure. Further, we terminate the search if the number
of unprocessed nodes exceeds 25000. We will refer to these settings as time limit and
node limit through the rest of the paper, respectively.

The regression forest estimator of the scikit-learn library was used to fit the models
presented in Sect. 6 (FSB score prediction) and the regression classifier estimator for
the models presented in Sect. 5 (solution structure prediction). In both cases, we used
100 trees to build a single forest.

Further, in cases when FSB failed to compute a sufficiently large number of optimal
solutions on the training set to fit models ME and MN within the time limit, RB was
applied to compute optimal solutions for sampled instances where FSB failed.

8.2 Evaluation of predicted solution structures

In this section, the performance of Algorithm 1 for the prediction of solution structure
is evaluated. To this endAlgorithm, 1 is applied to all 200 sampled evaluation instances
for each base instance. This yields a set of predicted edges for each instance.

To evaluate the performance of random forest classifiers used within Algorithm 1,
prediction results are also computed using neural networks classifiers for both ME

and MN models (referred to as NN) and logistic regression classifiers for ME models
(referred to as LR).

However, all above outlined versions of Algorithm 1 require an expensive training
phase. To compare the performance of Algorithm 1 to an approach that is not based on
a training set of optimal solutions, we adopt a method to compute so-called generator

123

716 N. Furian et al.

arcs in granular heuristics for vehicle routing problems. Informally speaking, granular
heuristics (e.g., granular tabu search) function similarly to standard neighborhood
heuristics, but drastically reduce the size of considered neighborhoods to achieve a
beneficial trade-off between solution quality and computational effort. Thereby, a
common practice for vehicle routing problems is to compute a set of generator arcs,
i.e., arcs with a high probability of being in an optimal or at least good solution, and
allow only neighborhood moves that result in a generator arc being in the solution.
The generator arcs are usually selected by sorting the arcs with respect to some cost
measure, i.e., original costs or reduced costs from the relaxed problem formulation.
Then the arcs the costs ofwhich lie belowa certain threshold are selected.Alternatively,
a predefined number of arcs with smallest costs are chosen. For a detailed definition
and description, the reader is referred to Schneider et al. (2017). We follow a similar
approach and sort arcs with respect to network relaxation with time-adjusted cost for
the SVRPTW and network relaxation with original cost for the SCVRP (for a precise
definition see Schneider et al. (2017)). Further, we iterate through sorted arcs and add
arcs to a set of predicted edges if the insertion does not yield a degree violation among
predicted edges. The proposedmethod is referred to as granular generator arcs (GGA).

Further, during the execution of the algorithms Most Fractional Branching (MFB),
PseudoCostBranching (PCB),ReliabilityBranching (RB), PredictionBranching (PB)
andReliability PredictionBranching (RPB), optimal solutions for those instanceswere
computed and collected. Note that sampled instances for which none of the aforemen-
tioned algorithms was able to compute an optimal solution within the proposed time
and node limits were excluded from the analysis. Hence, it is possible that the results
reported for a given base instance are based on less than 200 test cases.

In order to assess the quality of the prediction of optimal edges in comparison with
the computed optimal edges, the following terms need to be defined. True Positives
(TP) refer to edges that have been predicted to be in the optimal solution and actually
are. False Positives (FP) denote edges that were predicted to be optimal, but are not
part of any route in the optimal solution. True Negatives (TN) and False Negatives
(FN) can be defined accordingly for edges that were predicted not to be in the optimal
solution. Note that we compute TP, FP, TN and FN for each sampled instance of a
specific base instance and, in the following, report the average of those values (per
base instance). Further, we define the precision as Precision = TP

TP+FP . Analogously
to the above, we compute the precision per sampled instance and report the average
of all sampled instances as the precision of a specific base instance. In general, the
classification over edges is strongly unbalanced, i.e., the majority of edges are not in
the optimal solution. To assess the prediction quality of such unbalanced classifiers,
the Matthews Correlation Coeffecient (MCC) is often used. It is computed by

MCC = TP · TN − FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN),

(16)

and returns values between−1 and 1, where 1 denotes a perfect prediction, 0 a random
prediction and −1 a prediction doing exactly the opposite to real world observations.
Values above 0.4 are considered to indicate a strong positive correlation between
predictions and real world observations, and values above 0.7 a very strong correlation.

123

Amachine learning-based branch and price algorithm... 717

Results regarding the MCC are also reported as the average over MCC values per
sampled instances. The results are summarized in Table 2.

It can be observed that instances with a clustered set of customers of size n = 50,
i.e., the c1 class, leads to better results in terms of both precision andMCC, with a few
exceptions. The precision exceeds 85% for most of those instances. Hence, a large
percentage of edges of an optimal solution can be predicted by Algorithm 1. For some
of these instances the branch and price trees are very small and the optimal solutions
are relatively easy to predict (see next section). For other instances, as for example
c109, the branch and price trees are significantly larger, but the optimal solutions are
still predicted well by Algorithm 1. In general, it can be observed that the precision
is above 70% for a majority of instances. Further, the MCC is above 0.5 for almost
all instances, indicating a strong correlation between prediction and observations. For
most c1 class instances, the MCC is above 0.7, indicating a very strong correlation.

The observed precision and MCC for n = 100 customers and SCVRP instances
clearly demonstrate that the prediction quality yield by Algorithm 1 is independent of
instance sizes and the consideration of time windows.

Comparing results of different ML models, one may observe that random forest
classifiers outperform neural networks and logistic regression models for all instances
regardless of the size and the inclusion of time windows. Further, the prediction qual-
ity of the GGA approach is inferior compared to models based on a training phase.
Interestingly, GGA achieves significantly better precision values for SCVRP instances
than for instances including time windows. This may lead to the conclusion that the
importance of edge costs, i.e., lengths, is significantly higher for instances without
time windows and that the time adjusted reduced arc costs only have limited potential
to abstract the complexity that is inherit to the decision if an edge is part of the optimal
solutions.

8.3 Evaluation of learning-based branching

In this section, we evaluate branching strategies PB and RPB compared to the com-
monly known variable selection strategies outlined in Sect. 4.4. For all evaluation
instances, the reliability parameter used by RB and RPB was set to ηrel = 2. The
quality limits for RPB were set to δ = 0.4 and δ̃ = 0.05. Further, the same time limit
and node limit as in the training phase, i.e., 4 hours or 25000 unprocessed nodes, were
applied for every instance and algorithm. In the following section, we evaluate the
performance of PB and RPB on instances of fixed size. Then we demonstrate that PB
and RPB are robust with respect to small changes in instance sizes by evaluating the
two approaches on instances r110.RS, r111.RS, c109.RS and rc106.RS in Sect. 8.3.2.

8.3.1 Fixed size instances

In order to compare the performance of PB and RPB with standard methods, we
compute average values of several measures over all 200 evaluation instances (per
base instance). Note that the only evaluation instances considered are those for which

123

718 N. Furian et al.

Ta
bl
e
2

Pr
ed
ic
tio

n
re
su
lts

of
A
lg
or
ith

m
1
ba
se
d
on

di
ff
er
en
tM

L
m
od
el
s
an
d
re
su
lts

of
G
G
A

In
st
an
ce

R
F

N
N

L
R
+
R
F

G
G
A

Pr
ec
is
io
n

M
C
C

Pr
ec
is
io
n

M
C
C

Pr
ec
is
io
n

M
C
C

Pr
ec
is
io
n

M
C
C

SV
R
PT

W

r1
01

.5
0

0.
81

0.
72

0.
75

0.
69

0.
76

0.
71

0.
14

0.
14

r1
02

.5
0

0.
76

0.
66

0.
69

0.
61

0.
71

0.
64

0.
13

0.
14

r1
03

.5
0

0.
65

0.
55

0.
58

0.
51

0.
57

0.
51

0.
18

0.
18

r1
04

.5
0

0.
70

0.
61

0.
65

0.
58

0.
64

0.
57

0.
15

0.
15

r1
05

.5
0

0.
66

0.
56

0.
58

0.
51

0.
57

0.
51

0.
16

0.
16

r1
06

.5
0

0.
59

0.
48

0.
51

0.
44

0.
50

0.
43

0.
19

0.
19

r1
07

.5
0

0.
64

0.
53

0.
56

0.
49

0.
55

0.
48

0.
18

0.
18

r1
09

.5
0

0.
59

0.
49

0.
51

0.
45

0.
51

0.
44

0.
19

0.
19

r1
10

.5
0

0.
60

0.
49

0.
52

0.
45

0.
51

0.
44

0.
19

0.
19

r1
11

.5
0

0.
96

0.
94

0.
96

0.
94

0.
96

0.
95

0.
24

0.
25

c1
01

.5
0

0.
88

0.
82

0.
85

0.
81

0.
85

0.
81

0.
24

0.
25

c1
02

.5
0

0.
75

0.
66

0.
69

0.
62

0.
68

0.
63

0.
24

0.
24

c1
03

.5
0

0.
59

0.
49

0.
53

0.
46

0.
53

0.
47

0.
26

0.
26

c1
04

.5
0

0.
93

0.
90

0.
93

0.
90

0.
92

0.
90

0.
22

0.
23

c1
05

.5
0

0.
92

0.
88

0.
90

0.
86

0.
90

0.
87

0.
22

0.
22

c1
06

.5
0

0.
92

0.
88

0.
91

0.
87

0.
91

0.
87

0.
22

0.
22

c1
07

.5
0

0.
85

0.
80

0.
83

0.
78

0.
83

0.
78

0.
22

0.
22

c1
08

.5
0

0.
85

0.
79

0.
82

0.
77

0.
82

0.
76

0.
22

0.
22

c1
09

.5
0

0.
76

0.
68

0.
71

0.
64

0.
68

0.
66

0.
20

0.
21

123

Amachine learning-based branch and price algorithm... 719

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce

R
F

N
N

L
R
+
R
F

G
G
A

Pr
ec
is
io
n

M
C
C

Pr
ec
is
io
n

M
C
C

Pr
ec
is
io
n

M
C
C

Pr
ec
is
io
n

M
C
C

rc
10

1.
50

0.
70

0.
60

0.
63

0.
56

0.
63

0.
57

0.
18

0.
18

rc
10

2.
50

0.
66

0.
55

0.
60

0.
54

0.
61

0.
52

0.
18

0.
17

rc
10

3.
50

0.
69

0.
59

0.
64

0.
56

0.
63

0.
57

0.
19

0.
19

rc
10

5.
50

0.
65

0.
54

0.
58

0.
50

0.
57

0.
50

0.
18

0.
18

rc
10

6.
50

0.
69

0.
59

0.
64

0.
55

0.
64

0.
56

0.
19

0.
18

rc
10

7.
50

0.
65

0.
54

0.
59

0.
51

0.
61

0.
53

0.
17

0.
17

R
1-
2-
2.
10

0
0.
70

0.
56

0.
60

0.
51

0.
63

0.
54

0.
14

0.
15

R
1-
2-
3.
10

0
0.
60

0.
49

0.
53

0.
44

0.
56

0.
47

0.
18

0.
19

R
1-
2-
5.
10

0
0.
75

0.
67

0.
68

0.
61

0.
70

0.
64

0.
13

0.
13

C
1-
2-
2.
10

0
0.
79

0.
68

0.
73

0.
65

0.
75

0.
67

0.
21

0.
22

C
1-
2-
6.
10

0
0.
82

0.
75

0.
79

0.
72

0.
80

0.
74

0.
23

0.
24

C
1-
2-
8.
10

0
0.
76

0.
70

0.
74

0.
68

0.
76

0.
69

0.
21

0.
22

R
C
-1
-1
.1
00

0.
78

0.
71

0.
73

0.
66

0.
74

0.
68

0.
18

0.
18

SC
V
R
P

A
-n
80

-k
10

.5
0

0.
80

0.
64

0.
66

0.
59

0.
65

0.
60

0.
47

0.
48

B
-n
78

-k
10

.5
0

0.
79

0.
68

0.
67

0.
59

0.
67

0.
63

0.
48

0.
49

E
-n
10

1-
k8

.6
0

0.
82

0.
70

0.
76

0.
66

0.
75

0.
68

0.
54

0.
55

M
-n
12

1-
k7

.6
0

0.
77

0.
59

0.
77

0.
59

0.
64

0.
56

0.
47

0.
49

M
-n
15

1-
k1

2.
75

0.
71

0.
54

0.
61

0.
50

0.
68

0.
52

0.
43

0.
46

123

720 N. Furian et al.

all approaches were able to compute the optimal solution within the specified time
limit and node limit (if not stated otherwise).

Besides average measures on the number of nodes, run-time, and additional LPs
that were solved during the branching (for RB and RPB), we report the number of
evaluation instances that have been solved to optimality and the number of “wins.”
“Wins” are computed separately for the number of processed nodes and run-time. An
algorithm “wins” a sampled instance in terms of processed nodes if it processes the
smallest number of nodes among all algorithms which solve that particular instance
to optimality. “Wins” in terms of run-time are computed accordingly. In case of ties,
all algorithms with the best results are counted as “winners” for a specific sampled
instance. Hence, the sum of all algorithm “wins” for one base instance may not sum
up to 200.

Table 3 reports the average number of nodes processed in the branch and price
tree (N), the number of instances that have been solved to optimality (OPT), and the
average run-times (RT). Best results per category are displayed in bold numbers for
each base instance.

One may observe that RPB yields the lowest average number of processed nodes
for a majority of instances of size n = 50 for the SVRPTW. RB beats RPB only for
instance r106 (which is a fairly “easy” instance) and r107, although not by a significant
margin. Further, it has to be noted that for many non-trivial instances the reduction
in the resulting tree sizes of RPB compared to RB is significant, e.g., in the range
between 35% and 43% for instances r104, r109, r110, r111. For instance c104 the
reduction in terms of the average number of nodes is smaller, but RPB outperforms
RB and PCB significantly in terms of the number of instances solved to optimality.
In general, PB leads to superior results compared to methods that do not require the
solution of additional LPs for branching decisions (i.e., MFB and PCB), but performs
worse than RB and RPB in terms of the average number of processed nodes.

Results regarding instances of size n = 100 for the SVRPTW demonstrate that the
proposed methods are able to reduce the size of search trees also for larger instances.
Interestingly, the reduction in searched nodes by RPB compared to RB is less than
for smaller instances. This may be explained by the selection of base instances that
lead to trees with less nodes explored. However, the number of instances solved to
optimality by PB within chosen time and node limits is significantly higher than for
other methods. This clearly demonstrates the benefit of using predicted branching
scores, but the integration with state-of-the-art branch-price-and-cut methods for the
VRPTW is left for further research.

In terms of average run-times, results clearly indicate that PB is the fastest approach.
While the improvement in PB compared to RB is significant, savings compared to RPB
are relatively small for n = 50. Comparing the number of nodes processed by PB to
the number of additional LPs solved (column LP in Table 4) plus the number of
nodes processed by RPB explains this behavior. Hence, increasing ηrel may reduce the
number of nodes to be processed, but probably has little affect on resulting run-times.
A similar behavior is observed for instances of size n = 100: PB clearly outperforms
RPB in terms of run-times and the number of instances solved to optimality. This may
be explained by the observation that the exact evaluation of branching score in the

123

Amachine learning-based branch and price algorithm... 721

reliability phase of RPB (and also RB) becomes more costly for larger instances, as
the average processing time of nodes increases significantly.

In general, results for the SCVRP indicate a similar behavior of the proposed algo-
rithms as for the SVRPTW instance of size n = 100. Resulting search trees computed
by PB are significantly smaller than by MFB and PCB, but larger compared to RB
and RPB. Interestingly, the latter two algorithms process almost the same number of
nodes for the SCVRP. One may recall that for the SCVRP cuts were added to the
master-problem in the root node, which drastically reduces the size of the search tree.
Combined with the reduction gained by the exactly evaluated scores in the reliability
phase of RB andRPB, the influence of using predicted scores over pseudo-costs dimin-
ishes for most instances. However, analogously to SVRPTW, PB clearly outperforms
all other methods in terms of run-times for the problem variant without time-windows.

Table 4 shows the number of “wins” with respect to searched nodes and run-times .
Note thatwe did not include “win” statistics for instanceswhereMFByields an average
run-time less than 5 s. For those trivial instances “wins” in terms of run-time often
seem to be arbitrary. Besides instances with a very low number of processed nodes,
RPB has the most “wins” in terms of processed nodes for all evaluation instances for
the SVRPTW, while for the SCVRP RB leads to the most “wins” in terms of searched
nodes. In terms of run-time “wins,” PB dominates all other methods regardless of the
problem size and the considered variant (with or without time-windows).

Table 4 also provides the average proportion of usage of prediction models Θ

(APP), compared to PCB after the reliability phase of Algorithm 2. Observed values
are in the range between 0.46 and 0.85. A detailed analysis of the data reveals that
the correlation coefficient of the number of searched nodes and APP is significantly
positive, i.e., 0.47 for SVRPTW instances. This may be explained by the size of the
data base generated during the training phase: in the case of instances with larger
search trees this data base is much larger than in the case of instances with smaller
search trees.

The correlation coefficient between the APP and the relative reduction of searched
nodes of RPBwith respect to RB is 0.3. In a similar fashion, the correlation coefficient
between observed precision values of Table (2) and the relative reduction in searched
nodes of RPB with respect to RB is 0.28. Hence it can be concluded that both, models
Θ and Algorithm 1, positively influence the performance of RPB

8.3.2 Random size instances

Results presented in Sect. 8.3.1 demonstrate the strengths of algorithms PB and RPB
for cases in which the training and evaluation instances consist of the same number of
customers. However, in real world applications of SVRPTW the size of instances may
not be constant. In this section, we evaluate the performance of PB and RPB compared
to standard algorithms for instances with a random number of customers in the range
between 40 and 60, i.e. instances RSr110, RSr111, RSc109 and RSrc106.

Aggregating results of instances with different numbers of customers to average
values (in terms of the average number nodes and average run-times) may be mislead-
ing (due to an increasing variance of those measures compared to instances of fixed

123

722 N. Furian et al.

Ta
bl
e
3

A
ve
ra
ge

N
um

be
r
of

N
od
es

(N
)
Se
ar
ch
ed
,N

um
be
r
of

In
st
an
ce
s
So

lv
ed

to
O
pt
im

al
ity

(O
pt
)
an
d
A
ve
ra
ge

R
un
-T
im

e
(R
T
),
be
st
re
su
lts

pe
r
ca
te
go
ry

ar
e
di
sp
la
ye
d
in

bo
ld

nu
m
be
rs
fo
r
ea
ch

ba
se

in
st
an
ce

In
st

M
FB

PC
B

R
B

PB
R
PB

N
O
pt

R
T

N
O
pt

R
T

N
O
pt

R
T

N
O
pt

R
T

N
O
pt

R
T

SV
R
PT

W

r1
01

.5
0

3
20

0
0.
6

5
20

0
0.
5

2
20

0
0.
9

2
20

0
0.
3

2
20

0
0.
5

r1
02

.5
0

5
20

0
0.
9

7
20

0
1.
2

3
20

0
3.
4

4
20

0
0.
6

3
20

0
2.
3

r1
03

.5
0

23
3

20
0

39
.5

10
8

20
0

21
.8

36
20

0
43

.3
10

3
20

0
16

.2
32

20
0

32
.4

r1
04

.5
0

40
60

19
2

64
5.
3

29
67

19
3

75
1.
4

22
43

19
5

78
2.
1

21
79

19
5

35
0.
6

13
99

19
7

39
7.
0

r1
05

.5
0

97
20

0
4.
8

13
3

20
0

6.
7

33
20

0
14

.2
55

20
0

3.
9

28
20

0
15

r1
06

.5
0

42
2

20
0

63
.2

24
2

20
0

35
.8

48
20

0
61

.2
91

20
0

11
.5

51
20

0
41

.3

r1
07

.5
0

14
65

19
9

35
7.
0

78
7

20
0

23
7.
7

28
4

20
0

25
7.
7

12
26

20
0

21
9.
5

31
9

20
0

22
8.
0

r1
09

.5
0

19
48

20
0

30
8.
5

14
71

20
0

23
0.
4

59
5

20
0

17
4.
9

72
6

20
0

80
.9

34
1

20
0

10
0.
0

r1
10

.5
0

32
72

19
3

92
0.
1

35
00

19
8

91
1.
1

17
71

19
8

66
7.
3

21
56

19
9

50
6.
3

11
25

19
8

46
8.
8

r1
11

.5
0

31
10

19
6

85
0.
9

19
54

20
0

55
0.
5

74
4

20
0

42
7.
7

10
08

20
0

21
5.
0

49
0

20
0

26
2.
6

c1
01

.5
0

1
20

0
0.
6

1
20

0
0.
6

1
20

0
0.
6

1
20

0
0.
6

1
20

0
0.
6

c1
02

.5
0

11
20

0
2.
5

9
20

0
3.
1

5
20

0
8.
8

5
20

0
2.
0

5
20

0
6.
0

c1
03

.5
0

16
08

19
7

51
3.
4

64
8

20
0

20
8.
1

22
3

20
0

20
3.
7

28
4

20
0

71
.8

12
6

20
0

11
0.
1

c1
04

.5
0

93
02

88
25

01
50

63
12

2
16

73
.6

11
81

12
8

74
6.
9

20
21

14
0

59
3.
1

10
36

14
4

58
8.
5

c1
05

.5
0

4
20

0
0.
9

5
20

0
1.
3

3
20

0
2.
8

3
20

0
0.
8

3
20

0
1.
9

c1
06

.5
0

10
20

0
2.
3

14
20

0
2.
7

6
20

0
7.
1

6
20

0
1.
1

5
20

0
4.
5

c1
07

.5
0

5
20

0
1.
3

4
20

0
1.
2

3
20

0
2.
9

3
20

0
1.
1

3
20

0
2.
9

c1
08

.5
0

57
20

0
10

.2
50

20
0

10
.3

16
20

0
26

.8
26

20
0

6.
2

16
20

0
25

.9

c1
09

.5
0

47
80

19
9

86
9.
8

38
83

19
8

76
3.
5

22
50

19
9

71
8.
7

10
32

20
0

15
2.
3

63
3

20
0

19
2.
4

123

Amachine learning-based branch and price algorithm... 723

Ta
bl
e
3

co
nt
in
ue
d

In
st

M
FB

PC
B

R
B

PB
R
PB

N
O
pt

R
T

N
O
pt

R
T

N
O
pt

R
T

N
O
pt

R
T

N
O
pt

R
T

rc
10

1.
50

64
1

20
0

34
.5

13
6

20
0

6.
7

42
20

0
8.
8

58
20

0
3.
8

34
20

0
8.
2

rc
10

2.
50

15
72

19
9

15
7.
8

35
9

20
0

33
.4

66
20

0
30

.9
70

20
0

8.
1

48
20

0
28

.3

rc
10

3.
50

28
60

19
1

39
1.
5

12
49

20
0

17
4.
5

37
1

20
0

12
7.
9

60
0

20
0

90
.2

29
1

20
0

11
7.
8

rc
10

5.
50

92
6

20
0

68
.2

21
2

20
0

17
.4

72
20

0
23

.6
85

20
0

8.
5

53
20

0
21

.1

rc
10

6.
50

48
51

19
8

42
0.
9

30
46

20
0

29
1.
3

14
35

20
0

17
1.
7

96
3

20
0

62
.3

60
7

20
0

79
.1

rc
10

7.
50

23
15

0
13

8
28

72
.9

13
26

1
16

2
23

53
.9

67
36

18
0

14
22

.3
76

93
18

6
81

9.
9

32
09

19
3

48
6.
5

R
1-
2-
2.
10

0
58

20
0

77
.5

13
5

20
0

18
4.
3

19
20

0
28

1.
2

35
20

0
50

.8
19

20
0

26
0.
5

R
1-
2-
3.
10

0
11

36
80

32
06

.5
11

98
84

35
73

39
7

82
56

66
61

2
10

6
16

96
.8

32
6

94
46

04
.1

R
1-
2-
5.
10

0
65

6
19

8
58

4.
8

36
7

20
0

31
7.
8

35
20

0
47

5.
3

13
2

20
0

92
.1

48
20

0
40

4.
1

C
1-
2-
2.
10

0
36

2
19

0
39

4.
4

31
7

19
2

32
5.
2

47
19

7
27

7.
2

61
19

7
56

.8
44

19
7

20
4.
0

C
1-
2-
6.
10

0
18

49
18

2
94

2.
9

10
93

19
9

55
5.
2

31
9

19
9

42
7.
5

41
4

20
0

22
6.
8

32
8

19
9

46
6.
5

C
1-
2-
8.
10

0
29

21
46

31
44

.9
22

93
64

25
71

.9
17

09
88

32
50

.1
15

11
12

0
14

66
.3

15
18

90
27

72
.3

R
C
-1
-1
.1
00

18
07

15
8

13
99

.2
97

8
19

5
69

6.
3

15
2

20
0

45
4.
6

17
1

20
0

12
2.
6

14
4

20
0

43
3.
9

SC
V
R
P

A
-n
80

-k
10

.5
0

18
4

17
1

76
2.
5

20
6

17
2

92
5.
9

51
19

6
14

48
.3

72
19

3
31

5.
2

52
19

6
12

74
.1

B
-n
78

-k
10

.5
0

15
9

17
8

42
2.
1

16
6

16
8

52
1.
4

19
19

7
54

4.
9

62
19

7
20

4.
4

18
19

7
53

2

E
-n
10

1-
k8

.6
0

36
18

6
64

3.
8

53
18

7
92

7
11

18
4

25
17

.5
20

19
2

39
3.
6

12
18

3
24

70
.7

M
-n
12

1-
k7

.6
0

72
15

8
49

7
88

15
1

69
0.
8

20
17

2
13

47
.2

48
17

6
41

9.
1

21
17

2
13

21
.8

M
-n
15

1-
k1

2.
75

27
2

74
11

15
.1

27
8

63
11

43
.4

54
11

4
26

26
.8

14
3

97
60

0.
1

50
11

5
20

26
.1

123

724 N. Furian et al.

Ta
bl
e
4

A
ve
ra
ge

W
in
s
in

Te
rm

s
of

N
od

es
(W

in
N
)
an
d
R
un

-T
im

e
(W

in
-R
T
),
A
ve
ra
ge

N
um

be
r
of

A
dd

iti
on

al
L
Ps

so
lv
ed

(L
P)

in
th
e
ca
se

of
R
PB

an
d
R
B
,P

ro
po

rt
io
n
of

U
se

of
Pr
ed
ic
tio

n
M
od

el
s
Θ

C
om

pa
re
d
to

PC
B
A
ft
er

th
e
R
el
ia
bi
lit
y
Ph

as
e
of

R
PB

(A
PP

),
be
st
re
su
lts

pe
r
ca
te
go
ry

ar
e
di
sp
la
ye
d
in

bo
ld

nu
m
be
rs
fo
r
ea
ch

ba
se

in
st
an
ce

In
st
an
ce

M
F

PC
B

R
B

PB
R
PB

W
in

N
W
in

R
T

W
in

N
W
in

R
T

W
in

N
W
in

R
T

#L
P

W
in

N
W
in

R
T

W
in

N
W
in

R
T

#L
P

A
vg

SC
U

SV
R
PT

W

r1
01

.5
0

17
4

16
3

19
6

5
18

7
19

7
4

0.
49

r1
02

.5
0

14
9

14
5

18
6

10
16

0
18

1
10

0.
58

r1
03

.5
0

82
21

66
27

15
0

1
78

76
14

4
14

1
7

79
0.
63

r1
04

.5
0

29
61

17
13

64
2

46
2

32
10

0
91

22
44

6
0.
65

r1
05

.5
0

44
11

8
28

37
12

1
5

12
1

59
40

12
9

0
11

1
0.
59

r1
06

.5
0

29
27

25
9

11
4

0
14

8
42

15
8

12
6

6
14

5
0.
55

r1
07

.5
0

27
57

13
19

98
3

31
2

20
11

1
11

3
10

29
7

0.
72

r1
09

.5
0

26
46

12
36

56
0

39
1

15
99

11
7

19
35

2
0.
68

r1
10

.5
0

41
64

7
29

49
10

58
8

14
67

97
29

55
2

0.
68

r1
11

.5
0

20
39

5
17

66
5

46
2

22
11

9
11

3
20

43
0

0.
72

c1
01

.5
0

19
8

19
9

20
0

0
19

9
20

0
0

c1
02

.5
0

14
6

13
6

17
7

13
15

0
18

0
13

0.
52

c1
03

.5
0

41
23

36
15

10
5

2
16

2
43

15
1

11
9

9
15

3
0.
56

c1
04

.5
0

7
16

5
6

44
19

60
0

27
79

77
33

60
8

0.
65

c1
05

.5
0

16
6

25
15

6
7

19
3

7
1

16
7

83
19

2
84

7
0.
61

c1
06

.5
0

13
7

7
12

3
9

17
4

0
17

14
2

14
8

17
6

36
17

0.
61

c1
07

.5
0

15
7

31
15

4
54

18
5

34
7

17
2

45
18

7
39

7
0.
51

c1
08

.5
0

86
65

75
37

14
7

24
55

95
72

15
4

2
54

0.
60

c1
09

.5
0

8
17

2
5

17
0

53
2

44
15

7
13

3
21

40
4

0.
64

123

Amachine learning-based branch and price algorithm... 725

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

M
F

PC
B

R
B

PB
R
PB

W
in

N
W
in

R
T

W
in

N
W
in

R
T

W
in

N
W
in

R
T

#L
P

W
in

N
W
in

R
T

W
in

N
W
in

R
T

#L
P

A
vg

SC
U

rc
10

1.
50

69
43

58
35

13
8

15
68

88
10

0
15

3
7

65
0.
46

rc
10

2.
50

56
45

38
31

11
0

7
11

2
75

11
3

12
4

4
10

9
0.
57

rc
10

3.
50

27
19

19
19

85
13

27
2

45
14

2
11

5
7

24
6

0.
64

rc
10

5.
50

50
38

42
33

12
7

9
10

6
71

11
6

15
2

4
10

0
0.
61

rc
10

6.
50

5
22

5
11

35
1

46
0

33
14

1
13

3
25

38
2

0.
63

rc
10

7.
50

9
14

7
3

21
4

74
3

21
56

13
8

11
6

65
5

0.
66

R
1-
2-
2.
10

0
78

53
54

16
16

1
4

10
2

99
11

2
15

3
15

10
2

0.
36

R
1-
2-
3.
10

0
11

14
9

16
25

5
67

5
30

78
55

4
65

7
0.
71

R
1-
2-
5.
10

0
24

21
17

15
95

2
21

2
43

16
0

13
1

2
19

7
0.
63

C
1-
2-
2.
10

0
47

18
36

13
12

5
3

10
6

92
13

9
13

2
24

10
4

0.
45

C
1-
2-
6.
10

0
16

21
17

29
98

6
32

8
80

14
0

92
4

33
0

0.
5

C
1-
2-
8.
10

0
2

3
6

6
18

9
80

5
59

94
79

52
81

2
0.
68

R
C
-1
-1
.1
00

9
4

8
12

96
5

27
1

84
17

5
97

4
26

8
0.
70

SC
V
R
P

A
-n
80

-k
10

.5
0

10
26

10
2

14
2

5
27

1
30

16
0

10
4

5
27

3
0.
85

B
-n
78

-k
10

.5
0

57
44

49
13

17
1

5
11

3
66

12
5

15
1

11
11

6
0.
41

E
-n
10

1-
k8

.6
0

51
45

48
17

17
0

7
12

6
56

11
6

14
4

9
12

9
0.
82

M
-n
12

1-
k7

.6
0

57
72

37
24

13
2

2
17

4
53

81
12

9
4

17
8

0.
52

M
-n
15

1-
k1

2.
75

5
25

1
5

78
19

44
9

14
77

49
10

44
4

0.
81

123

726 N. Furian et al.

Table 5 Average Number of Nodes, Average Run-Times and Win Matrices for Random Sized Instances

RS_r110 Nodes RT

Avg. 5350 4436 2590 2365 1308 1058,9 985,4 817,6 564,3 566,4

MFB PCB RB PB RPB MFB PCB RB PB RPB Opt

MFB 22 119 66 83 34 72 120 142 99 131 192

PCB 79 7 48 56 17 77 28 119 74 104 197

RB 133 152 43 114 57 56 80 15 48 64 197

PB 117 144 85 16 27 100 125 150 56 138 198

RPB 167 184 146 174 117 69 96 136 62 29 199

RS_r111

Avg. 3173 1917 729 859 454 679,1 488,3 391,5 183,1 243,2

MFB PCB RB PB RPB MFB PCB RB PB RPB Opt

MFB 20 109 43 64 29 44 121 144 53 130 196

PCB 90 4 25 41 12 76 18 136 34 112 195

RB 158 178 64 134 75 56 64 2 10 14 200

PB 138 161 70 16 27 147 166 190 117 171 200

RPB 172 189 145 175 114 70 88 186 29 19 200

RS_c109

Avg. 5235 3475 1861 1099 603 1075,5 838,9 574,2 223,0 225,5

MFB PCB RB PB RPB MFB PCB RB PB RPB Opt

MFB 17 119 43 56 23 39 126 132 46 101 193

PCB 81 7 20 30 9 71 10 108 21 63 197

RB 160 183 34 105 46 68 92 0 8 6 200

PB 148 172 100 28 35 154 179 192 123 166 200

RPB 180 194 171 171 138 99 137 194 34 28 200

RS_rc106

Avg. 4708 2317 984 842 535 411,4 247,5 168,2 69,6 89,9

MFB PCB RB PB RPB MFB PCB RB PB RPB Opt

MFB 13 101 37 53 16 28 104 127 35 91 189

PCB 101 9 30 39 13 93 12 117 21 77 197

RB 165 173 49 111 59 71 81 6 13 16 198

PB 151 166 93 20 25 164 178 186 128 169 199

RPB 187 191 154 178 133 108 122 183 30 25 199

size). For example, a win for a larger instance could weigh more than several losses
for smaller instances in terms of the number of processed nodes or run-time.

In order to account for this kind of inconsistency, we report in Table 5 the pairwise
“win” matrices for the average number of nodes and the average run-times, for each
instance. Those matrices report the number of “wins” of one algorithm (row) over
another algorithm (column). Along the diagonal we report the number of overall
“wins” for each algorithm (displayed in bold), as in Table 4. Further, the number of
instances solved to optimality are reported as well.

123

Amachine learning-based branch and price algorithm... 727

Table 6 Comparison of Prediction Metrics for Fixed and Random Sized Instances

r110 RSr110 r111 RSr111 c109 RSc109 rc106 RSrc106

Precision 0,58 0,58 0,60 0,61 0,85 0,84 0,65 0,64

MCC 0,49 0,48 0,49 0,49 0,79 0,78 0,54 0,53

APP 0,68 0,70 0,72 0,72 0,64 0,64 0,63 0,68

Results demonstrate that PB and RPB are robust with respect to (relatively small)
changes in instance sizes. This can be observed by both average number of nodes and
run-times, as well as pairwise and overall “win” statistics. PB clearly dominates all
other algorithms in terms of average run times, and dominates its counterparts that
do not require additional LPs to be solved in terms of average and wins of processed
nodes. For instance RSr110,MFB results in the most overall wins, but wins of PB over
MFB (and vice-versa) are evenly distributed. Reconsidering the results of fixed size
instances of base instance r110 (Table 4), i.e., 67 overall wins of PB and 64 overall
wins of MFB with a significant lower average run-time of PB, we can conclude that,
for that particular base instance, MFB seems to win “easier” instances more regularly
than PB. This behavior can also be observed for random sized instances RSr110. In
terms of average processed nodes, and wins with respect to processed nodes, RPB is
dominant over all other algorithms.

Table 6 compares prediction performance indicators of Algorithms 1 and 2 for fixed
and random sized instances. Results show, that all indicators (precision, MCC and
APP) remain almost unchanged when considering random sized evaluation instances
instead of their fixed sized counterparts.

These results may raise the question whether models trained with data collected
over smaller instances can be used to solve significantly larger instances. For example,
training instances could be generated by sampling customers from specific regions in
the customer space. The question whether optimal solutions and features generated
during the search of such locally generated instances can be utilized for solving larger
instances is open and the subject of further research.

9 Conclusion and further research

We proposed a learning-based branch and price framework for a new variant of the
vehicle routing problem with time windows. The Sampled Vehicle Routing Problem
with Time Windows (SVRPTW) is based on the assumption that instances to solve
follow a specific pattern. In particular, instances are random samples from a larger base
instance. Thus the properties of already solved instances could be ‘learned” and used
to solved other not yet seen instances more efficiently. We introduced ML models
for the prediction of values of binary decision variables in the optimal solutions.
These predictions are incorporated in a node selection policy of the branch and price
algorithm. For variable selection, we trainedMLmodels over training instances which
were solved by full strong branching. Those models are used to predict branching

123

728 N. Furian et al.

scores while solving new unseen instances. Both, node and variable selection models,
make explicit use of the structure imposed by the SVRPTW.Additionally, we integrate
those learning-based policies in a reliability-based branching algorithm, that assesses
the quality of score predictions in an online manner. If the quality of models is not
satisfactory for a particular variable of a given unseen instance, the proposed method
switches to standard policies for that variable. Experiments show that our approaches
outperform standard algorithms in terms of the number of nodes processed during the
search and also in terms of run-time. Additionally, the numerical results demonstrate
that the proposed method is robust with respect to small changes in instance sizes (i.e.
in terms of the number of customers).

In future work, we intend to investigate whether models trained on small training
instances can be used to solve significantly larger unseen instances. In this context the
generation of specific training instances may play an important role and this should
be subject of further research. Another topic for future research concerns the fixed
time windows and demand values per customer which were assumed in the model
considered in this paper. It would be of interest to relax these assumptions and analyze
the benefit of the integration of ML models in branch and price approaches for the
resulting problems. In a first step, one could keep fixed the customers, but allow
“orders” at different time windows and with different demand values. Ultimately, both
versions could be merged to a problem variant where both customers, time windows
and demand values may alter over instances.

Finally, the process of generating instances by sampling from a base instance and
learning the structure of optimal solutions viaMLcan be applied to other combinatorial
optimization problems, e.g., bin packing.

Funding Open Access funding provided by Graz University of Technology.

Availability of data andmaterial Data of instances can be published along with manuscript.

Compliance with ethical standards

Conflict of interest All authors have declared that they have no conflict of interest.

Code availability Custom code for branch and price, Gurobi 9.0 for solving LPs.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Amachine learning-based branch and price algorithm... 729

Appendix

Algorithm 3 CorrectByDegree
1: Input: Instance I, Predicted Edges PE
2: Output: Corrected Predicted Edges PE
3: Keep removing edges until there is no excess in-degree
4: while

∣∣{i |i ∈ Pe
E , inDegree(i) > 1

}∣∣ > 0 do
5: Search all edges where the end node has in-degree > 1
6: SH = (x, y) ∈ {

(i, j)| j ∈ Pe
E , inDegree(j) > 1

}
7: Gather all edges in the search set with maximum out-degree of the start node
8: EH = argmax(x,y)∈SH outDegree(x)
9: Select the edge with maximum distance
10: (x, y) = argmax(i, j)∈EH

ti, j
11: Remove it from the solution
12: PE = PE\ {(x, y)}, inDegree(y) −= 1, outDegree(x) −= 1
13: end while
14: Keep removing edges until there is no excess out-degree
15: while

∣∣{i |i ∈ Ps
E , outDegree(i) > 1

}∣∣ > 0 do
16: Search all edges where the start node has out-degree > 1
17: SH = {

(i, j)|i ∈ Ps
E , outDegree(i) > 1

}
18: EH = argmax(x,y)∈SH inDegree(x)
19: (x, y) = argmax(i, j)∈EH

ti, j
20: PE = PE\ {(x, y)}, inDegree(y) −= 1, outDegree(x) −= 1
21: end while
22: return PE

Algorithm 4 CheckFeasibility
1: Input: Instance I, Predicted Edges PE
2: Output: Corrected Predicted Edges PE
3: Let RPE be the set of routes given by PE
4: Consider all routes
5: while

∣∣RPE

∣∣ > 0 do
6: Choose any route r = (e1, . . . , ek) from RPE , Set t = 0, q = 0
7: Consider all edges on route r
8: for eh = (i, j) in (e1, . . . , ek) do
9: t = max(t, ai) + ci, j , q = q + d j
10: If the edge violates time windows or resources constraints then
11: if t > b j ∨ q > Q then
12: Remove it from the route
13: PE = PE\ {(i, j)}, RPE = RPE ∪ {

(e1, . . . , eh−1), (eh+1, . . . , ek)
}
, h = k + 1

14: end if
15: end for
16: RPE = RPE \ {r}
17: end while
18: return PE

123

730 N. Furian et al.

References

Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Oper Res Lett 33(1):42–54
Achterberg T, Koch T, Martin A (2006) Miplib 2003. Oper Res Lett 34(4):361–372
Albareda-Sambola M, Fernández E, Laporte G (2014) The dynamic multiperiod vehicle routing problem

with probabilistic information. Comput Oper Res 48:31–39
Alvarez AM, Louveaux Q, Wehenkel L (2017) A machine learning-based approximation of strong branch-

ing. Inf J Comput 29(1):185–195
Balcan M-F, Dick T, Sandholm T, Vitercik E (2018) Learning to branch. In: Proceedings of the 35th

international conference on machine learning, pp 344–353. PMLR
Baldacci R,Mingozzi A, Roberti R (2011)New route relaxation and pricing strategies for the vehicle routing

problem. Oper Res 59(5):1269–1283
Bello I, PhamH, LeQV,NorouziM,Bengio S (2016)Neural combinatorial optimizationwith reinforcement

learning. arXiv preprint arXiv:1611.09940
Bengio Y, Lodi A, Prouvost A (2018) Machine learning for combinatorial optimization: a methodological

tour d’horizon. arXiv preprint arXiv:1811.06128. to appear in Eur J Oper Res, 2020
Braekers K, Ramaekers K, Nieuwenhuyse IV (2016) The vehicle routing problem: state of the art classifi-

cation and review. Comput Ind Eng 99:300–313
Bulhões T, Sadykov R, Uchoa E (2018) A branch-and-price algorithm for the minimum latency problem.

Comput Oper Res 93:66–78
Campbell AM, Wilson JH (2014) Forty years of periodic vehicle routing. Networks 63(1):2–15
Contardo C, Martinelli R (2014) A new exact algorithm for the multi-depot vehicle routing problem under

capacity and route length constraints. Discrete Optim 12:129–146
Costa L, Contardo C, Desaulniers G (2019) Exact branch-price-and-cut algorithms for vehicle routing.

Transport Sci 53(4):946–985
Desaulniers G, Desrosiers J, Solomon MM (2006) Column generation, vol 5. Springer, Berlin
Dilkina B, Khalil EB, Nemhauser GL (2017) On learning and branching: a survey. Top 25(2):242–246
Ding J-Y, Zhang C, Shen L, Li S, Wang B, Xu Y, Song L (2019) Optimal solution predictions for mixed

integer programs. arXiv preprint arXiv:1906.09575
Erera AL, Savelsbergh M, Uyar E (2009) Fixed routes with backup vehicles for stochastic vehicle routing

problems with time constraints. Networks 54(4):270–283
Fischetti M, Fraccaro M (2019) Machine learning meets mathematical optimization to predict the optimal

production of offshore wind parks. Comput Oper Res 106:289–297
François A, Cappart Q, Rousseau L-M (2019) How to evaluate machine learning approaches for combina-

torial optimization: Application to the travelling salesman problem. arXiv preprint arXiv:1909.13121
Fukasawa R, Longo H, Lysgaard J, De Aragão MP, Reis M, Uchoa E, Werneck RF (2006) Robust branch-

and-cut-and-price for the capacitated vehicle routing problem. Math Program 106(3):491–511
Furian N, O’Sullivan M, Walker C, Vössner S (2018) Evaluating the impact of optimization algorithms for

patient transits dispatching using discrete event simulation. Oper Res Health Care 19:134–155
Gasse M, Chételat D, Ferroni N, Charlin L, Lodi A (2019) Exact combinatorial optimization with graph

convolutional neural networks. Adv Neural Inf Process Syst 68:15554–15566
GehringH,Homberger J (2005)A parallel hybrid evolutionarymetaheuristic for the vehicle routing problem

with time windows. Eur J Oper Res 162(1):220–238
GendreauM, Laporte G, Séguin R (1995)An exact algorithm for the vehicle routing problemwith stochastic

demands and customers. Transp Sci 29(2):143–155
Gendreau M, Laporte G, Séguin R (1996) A tabu search heuristic for the vehicle routing problem with

stochastic demands and customers. Oper Res 44(3):469–477
Gutschi C, Furian N, Voessner S, Graefe M, Kolios A (2019) Evaluating the performance of maintenance

strategies: a simulation-based approach for wind turbines. In: 2019 winter simulation conference
(WSC), pp. 842–853

Hansknecht C, Joormann I, Stiller S (2018) Cuts, primal heuristics, and learning to branch for the time-
dependent traveling salesman problem. arXiv preprint arXiv:1805.01415

He H, Daumé III H, Eisner J (2014) Learning to search in branch-and-bound algorithms. In: Proceedings
of the 27th international conference on neural information processing systems, Vol 2, pp 3293–3301

Hottung A, Tanaka S, Tierney K (2020) Deep learning assisted heuristic tree search for the container
pre-marshalling problem. Comput Oper Res 113:104781

123

http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1906.09575
http://arxiv.org/abs/1909.13121
http://arxiv.org/abs/1805.01415

Amachine learning-based branch and price algorithm... 731

Hottung A, Tierney K (2019) Neural large neighborhood search for the capacitated vehicle routing problem.
arXiv preprint arXiv:1911.09539

Irnich S, Villeneuve D (2006) The shortest-path problem with resource constraints and k-cycle elimination
for k≥3. Inf J Comput 18(3):391–406

Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset-row inequalities applied to the vehicle-
routing problem with time windows. Oper Res 56(2):497–511

Joshi CK, Laurent T, BressonX (2019) An efficient graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227

Kaempfer Y, Wolf L (2018) Learning the multiple traveling salesmen problem with permutation invariant
pooling networks. arXiv preprint arXiv:1803.09621

Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017a) Learning combinatorial optimization algorithms over
graphs. Adv Neural Inf Process Syst 10:6348–6358

Khalil EB, Dilkina B, Nemhauser GL, Ahmed S, Shao Y (2017b) Learning to run heuristics in tree search.
In: Proceedings of the 26th international joint conference on artificial intelligence, pp 659–666

Khalil EB, Le Bodic P, Song L, Nemhauser G, Dilkina B (2016) Learning to branch in mixed integer
programming. In Thirtieth AAAI Conference on Artificial Intelligence, pages 724–731. Association
for the Advancement of Artificial Intelligence (AAAI)

Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby RE, Danna E, Gamrath G, Gleixner AM,
Heinz S et al (2011) Miplib 2010. Math Program Comput 3(2):103

Kool W, Hoof H, Welling M (2018) Attention solves your tsp, approximately. Statistics 1050:22
KruberM, LübbeckeME, Parmentier A (2017) Learningwhen to use a decomposition. In: International con-

ference on AI and OR techniques in constraint programming for combinatorial optimization problems,
pp 202–210. Springer

Li Z, Chen Q, Koltun V (2018) Combinatorial optimization with graph convolutional networks and guided
tree search. In: Proceedings of the 32nd international conference on neural information processing
systems, pp 537–546. Curran Associates Inc

Liberto GD, Kadioglu S, Leo K, Malitsky Y (2016) Dash: dynamic approach for switching heuristics. Eur
J Oper Res 248(3):943–953

Lodi A, Mossina L, Rachelson E (2019) Learning to handle parameter perturbations in combinatorial
optimization: an application to facility location. arXiv preprint arXiv:1907.05765

Lodi A, Zarpellon G (2017) On learning and branching: a survey. Top 25(2):207–236
Lombardi M Milano M (2018) Boosting combinatorial problem modeling with machine learning. In: Pro-

ceedings of the 27th international joint conference on artificial intelligence, pp 5472–5478
Lysgaard J, Letchford AN, Eglese RW (2004) A new branch-and-cut algorithm for the capacitated vehicle

routing problem. Math Program 100(2):423–445
Marcos Alvarez A, Wehenkel L, Louveaux Q (2016) Online learning for strong branching approximation

in branch-and-bound. www.optimization-online.org
Martinelli R, Pecin D, Poggi M (2014) Efficient elementary and restricted non-elementary route pricing.

Eur J Oper Res 239(1):102–111
Matsuoka Y, Nishi T, TiemeyK (2019)Machine learning approach for identification of objective function in

production scheduling problems. In: 2019 IEEE 15th international conference on automation science
and engineering (CASE), pp 679–684

Miki S, Yamamoto D, Ebara H (2018) Applying deep learning and reinforcement learning to traveling
salesman problem. In: 2018 international conference on computing, electronics communications engi-
neering (iCCECE), pp 65–70

Murphy KP (2012) Machine learning: a probabilistic perspective. MIT press, London
Nazari M, Oroojlooy A, Snyder LV, Takác M (2018a) Deep reinforcement learning for solving the vehicle

routing problem. arXiv preprintarXiv:1802.04240
Nazari M, Oroojlooy A, Takáč M, Snyder LV (2018b) Reinforcement learning for solving the vehicle

routing problem. In: Proceedings of the 32nd international conference onneural information processing
systems, pp 9861–9871. Curran Associates Inc

Oyola J, Arntzen H, Woodruff DL (2018) The stochastic vehicle routing problem, a literature review, part
I: models. EURO J Transp Logist 7(3):193–221

Pecin D, Contardo C, Desaulniers G, Uchoa E (2017a) New enhancements for the exact solution of the
vehicle routing problem with time windows. INFORMS J Comput 29(3):489–502

Pecin D, Pessoa A, Poggi M, Uchoa E (2017b) Improved branch-cut-and-price for capacitated vehicle
routing. Math Program Comput 9(1):61–100

123

http://arxiv.org/abs/1911.09539
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1803.09621
http://arxiv.org/abs/1907.05765

732 N. Furian et al.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F (2020) A generic exact solver for vehicle routing and related
problems. Math Program 183(1):483–523

Pillac V, Gendreau M, Guéret C, Medaglia AL (2013) A review of dynamic vehicle routing problems. Eur
J Oper Res 225(1):1–11

Righini G, Salani M (2006) Symmetry helps: Bounded bi-directional dynamic programming for the ele-
mentary shortest path problem with resource constraints. Discrete Optim 3(3):255–273

Righini G, Salani M (2008) New dynamic programming algorithms for the resource constrained elementary
shortest path problem. Networks 51(3):155–170

Ritzinger U, Puchinger J, Hartl RF (2016) A survey on dynamic and stochastic vehicle routing problems.
Int J of Prod Res 54(1):215–231

SabharwalA, SamulowitzH, ReddyC (2012)Guiding combinatorial optimizationwith uct. In: International
conference on integration of artificial intelligence (AI) and operations research (OR) techniques in
constraint programming, pp 356–361. Springer

Schneider M, Schwahn F, Vigo D (2017) Designing granular solution methods for routing problems with
time windows. Eur J Oper Res 263(2):493–509

Shylo OV, Shams H (2018) Boosting binary optimization via binary classification: a case study of job shop
scheduling. arXiv preprint arXiv:1808.10813

Solomon MM (1987) Algorithms for the vehicle routing and scheduling problems with time window
constraints. Oper Res 35(2):254–265

Sörensen K, Sevaux M (2009) A practical approach for robust and flexible vehicle routing using meta-
heuristics and monte carlo sampling. J Math Model Alg 8(4):387

Sun Y, Li X, Ernst A (2019) Using statistical measures and machine learning for graph reduction to solve
maximum weight clique problems. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/
TPAMI.2019.2954827

Sungur I, Ren Y, Ordóñez F, Dessouky M, Zhong H (2010) A model and algorithm for the courier delivery
problem with uncertainty. Transp Sci 44(2):193–205

Tang Y, Agrawal S, Faenza Y (2019) Reinforcement learning for integer programming: Learning to cut.
arXiv preprint arXiv:1906.04859

Vera JM, Abad AG (2019) Deep reinforcement learning for routing a heterogeneous fleet of vehicles. arXiv
preprint arXiv:1912.03341

Waters CDJ (1989) Vehicle-scheduling problems with uncertainty and omitted customers. J Oper Res Soc
40(12):1099–1108

Xavier AS, Qiu F, Ahmed S (2019) Learning to solve large-scale security-constrained unit commitment
problems. arXiv preprint arXiv:1902.01697

Yu JJQ, Yu W, Gu J (2019) Online vehicle routing with neural combinatorial optimization and deep rein-
forcement learning. IEEE Trans Intell Transp Syst 20(10):3806–3817

Zhong H, Hall RW, Dessouky M (2007) Territory planning and vehicle dispatching with driver learning.
Transp Sci 41(1):74–89

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1808.10813
https://doi.org/10.1109/TPAMI.2019.2954827
https://doi.org/10.1109/TPAMI.2019.2954827
http://arxiv.org/abs/1906.04859
http://arxiv.org/abs/1912.03341
http://arxiv.org/abs/1902.01697

	A machine learning-based branch and price algorithm for a sampled vehicle routing problem
	Abstract
	1 Introduction
	2 Related work
	2.1 Vehicle routing
	2.2 ML and optimization

	3 Problem formulation
	4 Branch and price for the VRPTW
	4.1 A set covering formulation for the master problem
	4.2 Solving the relaxed sub-problem
	4.3 Embedding column generation in branch and price
	4.4 Variable selection strategies
	4.4.1 Most fractional score
	4.4.2 Full strong branching
	4.4.3 Pseudo cost branching
	4.4.4 Hybrid branching

	4.5 Node selection

	5 Predicting solution structures of the SVRPTW
	5.1 An edge-based model
	5.2 A node-based model
	5.3 Combined models and post-processing

	6 Prediction of strong branching scores
	7 A machine learning-based branching scheme
	7.1 Node selection
	7.2 Variable selection

	8 Results
	8.1 Benchmark instance generation and training phase
	8.2 Evaluation of predicted solution structures
	8.3 Evaluation of learning-based branching
	8.3.1 Fixed size instances
	8.3.2 Random size instances

	9 Conclusion and further research
	Appendix
	References

