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Abstract

Early prediction of patient mortality risks during a pandemic can decrease mortality by

assuring efficient resource allocation and treatment planning. This study aimed to develop

and compare prognosis prediction machine learning models based on invasive laboratory

and noninvasive clinical and demographic data from patients’ day of admission. Three Sup-

port Vector Machine (SVM) models were developed and compared using invasive, non-

invasive, and both groups. The results suggested that non-invasive features could provide

mortality predictions that are similar to the invasive and roughly on par with the joint model.

Feature inspection results from SVM-RFE and sparsity analysis displayed that, compared

with the invasive model, the non-invasive model can provide better performances with a

fewer number of features, pointing to the presence of high predictive information contents in

several non-invasive features, including SPO2, age, and cardiovascular disorders. Further-

more, while the invasive model was able to provide better mortality predictions for the immi-

nent future, non-invasive features displayed better performance for more distant expiration

intervals. Early mortality prediction using non-invasive models can give us insights as to

where and with whom to intervene. Combined with novel technologies, such as wireless

wearable devices, these models can create powerful frameworks for various medical

assignments and patient triage.
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Introduction

The SARS-COV-2 pandemic has tremendously strained economic and healthcare infrastruc-

tures worldwide, leaving a trail of more than 1.6 million deaths behind as of December 22,

2020 [1]. With no effective treatment and the possibility of emerging new viral strains, an aver-

age global death rate of around 6000 per day could lead to the death of approximately 2.2 mil-

lion individuals in one year. Even though strict social distancing and preventive measures are

still in effect, the global mortality and prevalence curve of the disease shows little improvement

[1]. More focus on early clinical interventions could be helpful in reducing mortality rates.

Critical patients will need timely intensive care unit (ICU) admission and ventilators. In

China, it has been reported that about 54% of critical patients were unable to receive timely

ICU care, and 30% of patients who died did not receive mechanical ventilation in time [2].

With large patient loads, exhausted medical personnel, and insufficient medical resources,

expedited identification of patients that have high mortality risks becomes a key factor in

decreasing patient deaths.

Physicians are often unable to accurately predict the prognosis of COVID-19 patients upon

their admission until later stages of the disease. Furthermore, the course of COVID-19 can

take unpredictable turns where the condition of a seemingly stable patient deteriorates rapidly

to a critical state [3]; this could catch even the most skilled physicians off guard. To enhance

clinical prediction, Artificial Intelligence (AI) models could be valuable assistants since they

can detect complex patterns in large datasets [4, 5]; a capability the human brain is inept at. AI

tools have been recruited to fight COVID-19 [6] on various scales, from epidemiological

modelling [7, 8] to individualized diagnosis [9, 10] and prognosis prediction [11–14].

Although several COVID-19 prognostic models have been proposed [15], no comprehensive

study has evaluated and compared the prognostic prediction power of non-invasive and inva-

sive features.

The aim of this study was three-fold; first, to develop a mortality prediction model from

patients’ first day of admission routine clinical data; second, to investigate the possibility of

predicting COVID-19 mortality outcome using non-invasive patient features; third, to provide

a direct comparison of mortality prediction powers between non-invasive and invasive fea-

tures. Patient data was divided into invasive laboratory tests and non-invasive demographic

and clinical features. Three machine learning models were developed to investigate and com-

pare the prediction power of the aforementioned feature groups; two using each of these

groups and one using both (Fig 1). It has been reported that many COVID-19 patients experi-

enced their first exacerbation period 24 to 48 hours after admission [16]. Accordingly, we

based our model on data from the first day of patients’ admission to provide a tool that can be

beneficial in real-life scenarios.

Results

Data resources

Electronic medical records of 628 patients who were admitted to Masih Daneshvari Hospital

between February 20th, 2020, and May 4th, 2020, were initially included. Patient diagnosis and

severity classification was carried out using the criteria presented in Table 1. After the exclu-

sion of 136 patients, data from 492 individuals (66.1% male, 33.9% female) were used for

model development (S1 Fig in S1 File). The median age of the study population was 62 (25).

Furthermore, 324 (65.8%) patients were documented as severe, and 168 (34.2%) as non-severe

cases. Cough (86.1%), dyspnea (81.3%), and fever (71.4%) were the three most frequent symp-

toms. Hypertension (38.2%), diabetes mellitus (32.1%), and cardiovascular disease (21.1%)

PLOS ONE Amachine learning based exploration of COVID-19mortality risk

PLOSONE | https://doi.org/10.1371/journal.pone.0252384 July 2, 2021 2 / 20

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0252384


Fig 1. Illustration of the modeling framework. Three machine learning models were developed using the SVM framework with three
input groups; invasive, non-invasive, and their combination. The invasive group comprises laboratory results. Non-invasive features
comprise patient clinical and demographic data. The joint group comprises the combination of invasive and non-invasive features. P1,
P2, and P3 represent the prediction performance provided by the non-invasive, joint, and invasive models, respectively. The non-
invasive model displayed good prediction performance in the farther future (P1) whereas the invasive model showed good prediction
performance for the near future (P3). Neighborhood Component Analysis (NCA), recursive feature elimination via Support Vector
Machine (SVM-RFE), and linear SVMwith least absolute shrinkage and selection operator (Lasso) sparsity regularization (Sparse Linear
SVM) were utilized for inspection of feature contributions and dynamics with respect to the outcome.

https://doi.org/10.1371/journal.pone.0252384.g001

Table 1. Criteria for disease diagnosis and severity assessment upon hospital admission.

A. Diagnosis Criteria

a. Suspected Case b. Probable Case c. Confirmed Case

1- Fever and/or respiratory
symptoms with:

1- Suspected case with radiologic
features suggestive for COVID infection
(multilobular infiltration especially in
peripheral areas in CXR or Chest CT
scan, Ground Glass Opacity in Chest
CT scan)

1- The presence of SARS-CoV-2
nucleic acid is confirmed in
respiratory or blood samples; detected
by RT-PCR

• Contact with probable/
confirmed COVID-19 patients
within 14 days before the onset

• Healthcare workers

2- Dry cough or chills or sore
throat with or without fever

2- Suspected patient with pneumonia
that is unresponsive to typical
medications (clinically confirmed)

3- Inconclusive result: a suspected case
with unknown PCR test

B. Patient Severity Classification Criteria

a. Non-Severe b. Severe

Confirmed COVID infection + Both of the following Confirmed COVID infection + One of
the following

1- SpO2 � 90 1- ICU Admission

2- RR< 30 2- SpO2< 90

3- RR� 30

The criteria of this table were utilized by Iranian physicians for diagnosis (A) and severity classification (B) of

COVID-19 patients at the time of the data gathering phase. Only confirmed COVID-19 cases were included in the

study. CXR: Chest X-Ray, RT-PCR: Real Time-Polymerase Chain Reaction, SpO2: Saturation of Peripheral Oxygen,

RR: Respiratory Rate, ICU: Intensive Care Unit.

https://doi.org/10.1371/journal.pone.0252384.t001
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were the three most frequent comorbidities among patients (Table 2). Descriptive characteris-

tics of laboratory features are displayed in Table 3.

Contribution of individual factors to mortality prediction

Preliminary analysis of single parameters and earlier reports of COVID-19 mortality predic-

tion [15], suggested that mortality outcome can be predicted by the analysis of individual bio-

markers. In this study, an approach from simple to more complex analysis was adapted. Initial

analysis and comparison of the contribution of individual features to the prediction of mortal-

ity outcome was implemented via Neighborhood Component Analysis (NCA) (Fig 2A). The

results of NCA analysis on 37 biomarkers in Fig 2 panel A demonstrated that several non-inva-

sive features (green shaded), such as SPO2 and age, and laboratory biomarkers (gray shaded),

such as BUN and LDH, had significant weights in mortality prediction. Outcome prediction

using a single biomarker is not highly accurate since a feature’s information content is limited

and distinct features have different information contents. Fig 2B and 2C illustrate this fact;

while data points are roughly visually separable in the feature subspace of Fig 2B (higher

amount of information), they are significantly crunched and inseparable in the feature sub-

space of Fig 2C (lower amount of information). Results from the NCA dimensionality analysis

were further evaluated using a Generalized Linear model with the least absolute shrinkage and

Table 2. Demographic, clinical features and mortality outcome of patients collected frommedical records.

Characteristics Non-Severe Severe Total P

Age, median (Q3-Q1) 57.5 (24.75) 65.5 (26) 62 (25) <0.001

Sex 0.065

Male (%) 66.1 57.4 60.4

Female (%) 33.9 42.6 39.6

Clinical symptoms on admission

Cough (%) 83.6 90.3 86.1 0.11

Fever (%) 68.1 75.3 71.4 0.48

Fatigue (%) 35.3 40.7 38.7 0.72

Dyspnea (%) 72.6 92.8 81.3 0.001

Myalgia (%) 40.1 47.3 44.2 0.64

Comorbidities

Diabetes Mellitus (%) 28 34.3 32.1 0.186

Hypertension (%) 30.4 42.3 38.2 0.011

Cardiovascular Disease (%) 16.1 23.8 21.1 0.049

Vital Signs

Blood Pressure max, median (Q3-Q1) 120 (20) 120 (25) 120 (21) 0.149

Blood Pressure min, median (Q3-Q1) 70 (10) 75 (11) 75 (10) 0.229

Pulse Rate, median (Q3-Q1) 88 (16) 90 (21) 90 (20) 0.01

Respiratory Rate, median (Q3-Q1) 19 (2) 20 (6) 20 (5) <0.001

Temperature, median (Q3-Q1) 37.5 (0.8) 37 (0.7) 37 (0.7) 0.104

SpO2, median (Q3-Q1) 93 (4) 84.5 (13) 88 (12) <0.001

Outcome <0.001

Discharge (%) 95.2 45.1 62.2

Expired (%) 4.8 54.9 37.8

Data were first tested for normality by the Kolmogorov-Smirnov test. A test level of α = 0.05 and P < 0.05 showed that the sample distribution is not normal.

Continuous normally distributed variables are described by mean and standard deviation, and continuous non-normally distributed variables are described by median

and quartiles.

https://doi.org/10.1371/journal.pone.0252384.t002
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selection operator (Lasso) regularization (LassoGlm). Outcomes of the LassoGlm analysis con-

firmed that, indeed, several non-invasive and invasive features had prominent weights in mor-

tality prediction (S3 Fig in S1 File). The presence of non-invasive and invasive features with

significant prediction weights in dimensionality analyses motivated us to further investigate

the possibility of mortality prediction using non-invasive and invasive biomarker groups.

Predictive capability of invasive and non-invasive models

Following the results of the dimensionality reduction analysis, we explored the possibility of

accurate mortality prediction via non-invasive and invasive biomarkers and their

Table 3. Patients’ laboratory data collected frommedical records.

Characteristics Non-Severe Severe Total P

Complete Blood Count (CBC)

WBC, median (Q3-Q1) 6.65 (5.28) 8.57 (6.87) 7.8 (6.4) <0.001

Neutrophil, median (Q3-Q1) 4.97 (4.4) 6.83 (6.63) 6.11 (6.14) <0.001

Lymphocyte, median (Q3-Q1) 1.35 (0.93) 1.16 (0.77) 1.22 (0.88) <0.001

RBC, median (Q3-Q1) 4.51 (0.92) 4.44 (1.07) 4.46 (0.97) 0.737

HB, median (Q3-Q1) 13.2 (3.28) 13.1 (2.9) 13.1 (3.1) 0.348

HCT, median (Q3-Q1) 38.45 (7.55) 38.45 (7.9) 38.4 (7.8) 0.772

PLT, median (Q3-Q1) 187 (81.25) 186.5 (115) 186.5 (103) 0.85

MCV, median (Q3-Q1) 84.62 (7.59) 85.92 (7.67) 85.4 (7.7) 0.035

MCH, median (Q3-Q1) 29.29 (3.28) 29.2 (3.1) 29.2 (3.2) 0.326

MCHC, median (Q3-Q1) 34.31 (2.24) 33.73 (2.38) 34 (2.36) <0.001

RDW, median (Q3-Q1) 13.4 (2.33) 14.4 (2.6) 14 (2.7) <0.001

ESR, median (Q3-Q1) 35 (44.75) 49 (48.75) 44.5 (47.4) <0.001

Coagulation

PT, median (Q3-Q1) 13 (1) 13.7 (2) 13.4 (1.5) <0.001

PTT, median (Q3-Q1) 35 (10) 39 (15) 38 (13) <0.001

INR, median (Q3-Q1) 1.1 (0.2) 1.2 (0.42) 1.15 (0.35) <0.001

Biochemistry

BUN, median (Q3-Q1) 14.48 (10.24) 19 (16.98) 17.14 (16.1) <0.001

Cr, median (Q3-Q1) 1.19 (0.41) 1.2 (0.6) 1.2 (0.5) 0.145

Uric Acid, median (Q3-Q1) 3.1 (2.2) 4.7 (3.5) 4.3 (3.9) 0.012

AST, median (Q3-Q1) 32 (24.9) 41.15 (30.8) 38 (30) <0.001

ALT, median (Q3-Q1) 26.05 (29.15) 31 (31) 29 (30) 0.053

ALKp, median (Q3-Q1) 183 (111) 201.5 (109.75) 193 (112) 0.09

LDH, median (Q3-Q1) 480 (226.2) 612 (340.55) 565 (302) <0.001

Blood Gas Test

PH, median (Q3-Q1) 7.37 (0.08) 7.36 (0.1) 7.37 (0.09) 0.104

PCO2, median (Q3-Q1) 42.2 (9.52) 43.05 (11.88) 42.9 (11.1) 0.282

PO2, median (Q3-Q1) 28.09 (13.7) 31.5 (19.88) 29.95 (17.03) 0.007

HCO3, median (Q3-Q1) 24.8 (4.6) 24.8 (6) 24.8 (5.4) 0.956

BE, median (Q3-Q1) -0.1 (3.91) -0.02 (5.58) -0.02 (4.6) 0.687

Data were first tested for normality by the Kolmogorov-Smirnov test. A test level of α = 0.05 and P < 0.05 showed that the sample distribution is not normal.

Continuous normally distributed variables are described by mean and standard deviation, and continuous non-normally distributed variables are described by median

and quartiles. WBC: White Blood Cell, RBC: Red Blood Cell, HB: Hemoglobin, HCT: Hematocrit, PLT: Platelet, MCV: Mean corpuscular volume, MCH: Mean

corpuscular Hemoglobin, MCHC: Mean corpuscular Hemoglobin Concentration, RDW: Red cell Distribution Width, ESR: Erythrocyte Sedimentation Rate, PT:

Prothrombin Time, PTT: Partial Thromboplastin Time, INR: International Normalized Ratio, BUN: Blood Urea Nitrogen, Cr: Creatinine, AST: Aspartate

Transaminase, ALT: Alanine Aminotransferase, ALKp: Alkaline Phosphatase, LDH: Lactate Dehydrogenase, BE: Base Excess

https://doi.org/10.1371/journal.pone.0252384.t003
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combination. Towards this aim, mortality prediction was implemented using three models

(Fig 1). The joint model utilized all the demographic, laboratory, and clinical biomarkers as

inputs; this model is considered ideal, where all the required biomarkers are present for predic-

tion. To investigate the differences between invasive and non-invasive features for outcome

prediction, two separate models were developed; one solely based on laboratory features

(shown by grey color in Figures) and the other only based on non-invasive features (shown by

green color in Figures). For each of the Joint, invasive, and non-invasive models, a linear sup-

port vector machine (SVM) algorithm was trained and evaluated.

To generalize the results of model prediction to an independent dataset, the data were

divided into training and test set. For model training and tuning, 10-fold cross-validation was

utilized on instances of the training set [17]. To better validate the performance of the predic-

tive algorithms, independent of the algorithm decision criteria, receiver operating characteris-

tic (ROC) curves were generated. Fig 3A suggested that the prediction performance of the

Fig 2. Contribution of demographic, clinical, and laboratory features to mortality prediction. (A) The results of the regularized NCA analysis displays the
contribution of single features to mortality prediction. Features are sorted based on contribution importance and category. Features with prominent weights were
displayed by orange squares for visual convenience. (B) is a favorable feature space (PTT and age) where the information content of features with respect to the outcome
is high, so many data points could be visually distinguished via an illustrative decision border. Panel (C), in contrast, demonstrates unfavorable feature space where the
low information content of features has led to data points becoming crunched and hard to distinguish (Sex and Hgb). Panels B and C were created using half of the data
and Principal Component Analysis (PCA) for illustrative purposes.

https://doi.org/10.1371/journal.pone.0252384.g002
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Fig 3. Comparison of mortality prediction of invasive and non-invasive models. (A) ROC curve of joint, invasive, and non-invasive models. (B) Investigation of
models’ performance and robustness towards sample size. For each data point, a model was trained and evaluated using 90% of data which was randomly bootstrapped
from the main dataset while maintaining the original discharge to expired ratio. The models were robust to the sample size and no significant difference was observed
between the performance of invasive and non-invasive models. (C) Performance table of invasive, non-invasive, and joint models. Performances are reported as mean
along with standard deviations. (D) Comparing the dynamics of laboratory and non-invasive features for randomly selected combinations of features. (E) Recursive
feature elimination. Compared with invasive features, prominent non-invasive features had significant prediction information contents. In general, the first three
features with prominent contributions to the improvement of the non-invasive model’s performance were SPO2, age, and presence of cardiovascular disorders; the first
three invasive features were BUN, LDH, and PTT. (F) Sparsity analysis. Sparse linear SVM was utilized to investigate optimal feature combinations for fixed predictor
numbers. For a specific sparsity level (features number), the non-invasive model performs better than the invasive model. Green and gray represent non-invasive and
invasive modes, respectively.

https://doi.org/10.1371/journal.pone.0252384.g003
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non-invasive model is comparable with the joint model. Although the performance of the

non-invasive model was slightly better than the invasive model in Fig 3A, further statistical

analysis revealed no significant differences between these models (Fig 3B and 3C); to see if

there were significant differences between the performance of models and also test the robust-

ness of data towards the sample volume, 10% hold out cross-validation was performed over 20

iterations. In each iteration, 10% of the data were randomly removed then model training and

evaluation were carried out on the remaining data. The results displayed the robustness of

models towards the sample size and insignificant difference between invasive and non-invasive

models (Fig 3B). The test accuracy of the joint, non-invasive, and invasive models were

0.80 ± 0.03, 0.77 ± 0.04, and 0.75 ± 0.4, respectively. To further evaluate the prediction perfor-

mance of invasive and non-invasive models, a different classification framework was imple-

mented using an ensemble model of decision trees with Adaptive Logistic Boosting (S4 Fig in

S1 File). The results displayed that, indeed, the non-invasive model could achieve perfor-

mances roughly on par with the joint model (for more details, see the "Ensemble model" in the

supplementary section). Therefore, the non-invasive model can be an optimal choice to be

implemented and expanded as an assistive triage tool for sieving patients with high mortality

risks as it bypasses the high cost and response time of invasive laboratory tests.

Prediction dynamics of invasive and non-invasive features

Earlier studies of COVID-19 mortality predictions mostly focused on invasive biomarkers [11,

13]. Evaluating invasive biomarkers provides more direct and causal inferences about our

physiological state. In contrast, non-invasive features contain broader, indirect information

about the body. Thus, it could be hypothesized that accurate mortality risk anticipation is plau-

sible with a sufficient number of non-invasive features. On this basis, we investigated whether

the predictive power of non-invasive features (population signal) is comparable to those of

invasive features (causal signals). Although the ROC analysis tackles this question, it is still

unclear whether the significant performance of the non-invasive model, despite having a lower

feature number, is due to the higher absolute information that individual non-invasive mea-

surements carry, or the specific combination of the current measurements. To address this

question, we performed three groups of analysis; random bootstrapping, recursive feature

elimination via Support Vector Machine (SVM-RFE), and sparsity analysis with linear SVM

and Lasso regularization (i.e., sparse linear SVM).

To inspect the dependency of expiration risk information carried with each predictor, in 50

repetitions, the models were trained and compared over a fixed number of predictors which

were randomly bootstrapped from the complete set of invasive and non-invasive pools (total

iterations = 50�26 + 50�11 iteration). The outcome of this preliminary analysis (Fig 3D) dem-

onstrates the slight superiority of the non-invasive model over the invasive model with the

increase of fixed feature numbers. Considering the fact that the model predictors were boot-

strapped from full invasive and non-invasive feature spectrum without tuned selection, it can

be argued that, compared with invasive features, mortality prediction information of non-

invasive features is more independent and several major contributing features are present

among them. To further evaluate feature contributions, SVM-RFE was implemented. This

framework recursively eliminates features with the lowest prediction weights using an SVM

model. The results of SVM-RFE analysis displayed that, indeed, the non-invasive model was

able to reach a performance plateau with a lower number of features due to the significant con-

tribution of several individual features. In other words, several non-invasive features had sig-

nificantly high information content for mortality outcome prediction (Fig 3E). In contrast, a

more disperse distribution of information was present among invasive features since,
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compared to the non-invasive model, a higher number of invasive features were required for

the model to reach a performance plateau.

The previous two methods can have several limitations. For instance, some features might

be informative for outcome prediction when they are combined with specific features. Conse-

quently, when the features are recursively removed or randomly picked, these dependent fea-

tures can become less important for the model if their associated features are absent. To

address this issue and further investigate feature dynamics, a sparse linear SVMmodel with

Lasso regularization was adapted for feature inspection. As the strength of the regularization,

determined by lambda(λ) variable, increases, more feature coefficients are pushed to zero by

Lasso; this induces a state of sparsity where only feature combinations whose contributions are

significant for the model are kept. The results showed that with the increase of lambda, the

number of prime predictors (i.e., features with non-zero coefficients) of invasive and non-

invasive models is reduced. Furthermore, the non-invasive model maintains its superiority

over the invasive model in lower feature dimensions. This further supports the hypothesis that

several non-invasive features of this study contain a significant amount of predictive informa-

tion since even in a highly regularized, sparse state, the non-invasive model is able to provide

better performances compared with the invasive model (Fig 3F).

Three non-invasive features had substantial contributions towards mortality prediction;

these were SPO2, age, and presence of cardiovascular disorders. Among invasive features,

BUN, LDH, and PTT were the top three features with the highest prediction contributions.

The presence of the aforementioned features as significant predictors was consistent across

NCA (Fig 2A), SVM (S2 Fig in S1 File), SVM-RFE (Fig 3E), sparse linear SVM (Fig 3F), Las-

soGlm (S3 Fig in S1 File), and the ensemble (S5 Fig in S1 File) analyses.

Comparison of the prediction horizon

According to the functional dissimilarities that we observed between invasive and non-inva-

sive models, we aimed to investigate whether the temporal range of mortality prediction dif-

fered between models. The visual inspection of expiration intervals indicated that most

patients died within the first week of admission (median = 7 days) with a peak at 3 days (Fig

4A). Next, the data was divided into 8 distinct time intervals based on the expiration date of

Fig 4. Temporal range model predictions. (A) Temporal distribution of patient expiration intervals. The black vertical dashed line corresponds to the peak of the
expiration distribution which was 3 days from admission. The gray vertical dashed line corresponds to the median expiration interval which was 7 days after admission.
(B) and (C) Prediction performance of invasive and non-invasive models across expiration temporal spectrum. For panel (B), invasive and non-invasive models were
trained over all the dataset. Afterwards, the expiration prediction performance was evaluated for 8 different expiration intervals. Days to outcome represents the number
of days between patient admission and expiration. For panel (C), patient data were divided into three expiration intervals; from admission to day 3, from day 3 to day 7,
and after day 7. For each interval, independent SVMmodels were trained and the true expiration ratio (True positive rate) was reported for each interval’s model. While
invasive features were better predictors for imminent expiration, they were outperformed by non-invasive features over larger expiration intervals. Green and gray
represent non-invasive and invasive modes, respectively.

https://doi.org/10.1371/journal.pone.0252384.g004
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patients. Previous invasive and non-invasive models, each trained over the complete dataset,

were utilized to predict patient mortality of these intervals. In a real-word triage scenario, phy-

sicians face patients whose outcomes and expiration dates are not known. Therefore, past

experiences (here the model trained on all instances) are used for decision making (here pre-

dicting expiration of patients from each interval). The fraction of false death prediction to the

total number of predictions within each of the days to outcome intervals ( F
TþF

) was calculated

and prediction performance was defined as 1� F
TþF

. This framework tests the models that were

trained on patients with various expiration times to see how they would fare in predicting

patient mortality across a temporal range.

The comparison between green (non-invasive) and gray (invasive) traces in Fig 4B sug-

gested that while invasive features are more predictive within the last days prior to expiration,

they are outperformed by non-invasive features over longer expiration intervals. To further

evaluate these results, patient data was divided into 3 expiration intervals; from admission to

day 3 (the peak), from day 3 to day 7 (the median), and beyond day 7. Invasive and non-inva-

sive models were trained and evaluated on each interval separately. The results of this analysis

further confirmed that, indeed, while invasive features are better predictors for early expira-

tion, they are surpassed by non-invasive features as the distance between admission and time

of death increases (Fig 4C).

Discussion

Conducted for the first time on Iranian patients, this study provided and compared three prac-

tical prognostic models using invasive and non-invasive data from the first day of patients’

admission to predict the COVID19 mortality. Furthermore, the prediction power of non-inva-

sive and invasive feature groups was evaluated across the temporal and feature number spec-

trum to reveal interesting results. Compared with the invasive model, the non-invasive model

provided better performances in lower, sparse feature dimensions, pointing to the presence of

a significant concentration of prediction information in several non-invasive features. In con-

trast, a more disperse distribution of prediction information was observed among invasive fea-

tures. Furthermore, while invasive features were good predictors for imminent expiration,

they were outperformed by non-invasive features for a more distant expiration interval.

Predicting the trajectory destination of COVID-19 could provide substantial support for

decreasing mortality rates. In a pandemic, rapid disease transmission and high patient load

could quickly overload healthcare infrastructures; an overloaded medical system can result in

higher mortality rates due to inefficient management of limited medical resources; this issue

was highlighted by a study indicating that 30% of Chinese COVID-19 patients died without

receiving ventilator support [2]. Furthermore, strict preventive measures, social isolation, and

pandemic distress could lead to the activation of psychological defensive behaviors in patients

where they underestimate their symptoms and do not seek immediate medical assistance [18].

This optimistic bias could be fatal if a patient’s condition suddenly worsens towards a critical

stage. The disease has an unpredictable trajectory where the condition of some patients sud-

denly becomes critical [3], surprising even the most skilled physicians; this hampers physi-

cians’ performance by limiting their action time window. Moreover, rapid isolation of patients

with high mortality risks is required since these patients carry significantly more viral loads

even before their condition becomes critical [19]. Similar to an early warning system, our

models could be a step in alleviating these problems by providing unbiased, rapid prognosis

prediction to support resource allocation and decision making.

We developed three predictive models using invasive features, non-invasive features, and

both. Our joint model provides rapid, accurate predictions using features that are routinely
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collected upon patient admission, making it implementable even in conditions where imaging

or sophisticated laboratory equipment is unavailable. Our results revealed that non-invasive

features displayed an overall good prediction capacity compared with the invasive and joint

model (Fig 3A). The distribution of predictive information was dispersed among invasive fea-

tures and they were better predictors for patient expirations in near future. In contrast, several

non-invasive features had significant information concentrations and these features were bet-

ter predictors for deaths that happened further from the admission day (Figs 3 and 4). This dif-

ference in prediction dynamics and range might stem from the fact that invasive and non-

invasive biomarkers have distinct temporal dynamicity and biological information content.

Many key laboratory features, such as LDH and PTT, have high temporal dynamicity; to main-

tain homeostasis, after an insulting event, these features tend to rise and then return to their

normal range in a relatively short time [20]. Furthermore, laboratory feature abnormalities

only show disruptions in body systems that they are linked to, limiting their information con-

tent. The aforementioned factors require laboratory models to have high feature numbers for

accurate prediction and limit their prediction temporal range. In contrast, many non-invasive

features, such as age or presence of comorbidity, can be seen as signals that contain a signifi-

cant amount of compressed, less variable data. Consequently, mortality prediction could be

achieved by them with lower dimensions.

Although laboratory features provide valuable information, their analysis requires invasive

sampling. Many patients are wary of blood sampling [21]. Moreover, high patient load and

equipment shortage could hinder the availability and accuracy of blood testing [22]; many lab-

oratory biomarkers, such as LDH and blood gas tests, require careful sampling, preservation,

and transportation to avoid errors from complications, such as hemolysis [23]. Lab tests are

also generally expensive. A study from the United States indicates that, even in the absence of a

pandemic state, over 20% of patient medical care was not needed [24]. These unnecessary

cares will impose a significant financial burden on patients and healthcare systems. Rapid tri-

age of patients is also a critical factor, required to manage high patient loads [25]. However, an

important downside of routine rapid triage in a pandemic situation is the increased mortality

rate due to missing high-risk patients [14]. These patients might incorrectly be identified as

mild and, without further workup, be advised to take a home-treatment approach. Our model

using non-invasive features could provide rapid, accurate prognosis prediction without addi-

tional costs or waiting time to augment the initial triage and avoid missing high-risk patients.

To further automate this triage approach, vital signs could be effortlessly measured and relayed

by wireless wearable medical devices [26], and history data could be easily asked from patients

by predefined questions.

Three non-invasive features were highlighted by the analyses of this study; SPO2, age, and

the presence of cardiovascular disorders. Previous studies have shown that older age is posi-

tively associated with increased mortality in hospitalized COVID-19 patients [27]. Older age is

associated with more infection susceptibility and an atypical response to viral pathogens due

to reduced expression of type I interferon-beta [28]. Furthermore, age-related impairment of

lymphocyte function along with an abnormal expression of type 2 cytokines leads to prolonged

pro-inflammatory responses; this weakens the host response to viral replication causing poor

clinical outcomes and higher mortality [29]. In contrast to typical types of pneumonia, the ini-

tial phases of COVID-19 have little apparent symptoms, such as dyspnea. The cause is the fact

that there is still carbon dioxide exchange through alveoli at these stages. However, the oxygen

exchange is disturbed due to the alveolar collapse. This type of hypoxia, called “silent hypoxia,”

leads to the progression of pneumonia in the absence of clinical symptoms [30]. It also causes

a vicious cycle, where hypoxia promotes the activity of the local inflammatory system causing

further damage and higher hypoxia [31]. Moreover, activation of the hypoxia-inducible factor-
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1α could facilitate the ignition of cytokine storm in hypoxic patients through promoting prolif-

eration in inflammatory cells and activation of pro-inflammatory cytokines [32]. therefore,

SPO2 could be a decisive factor to uncover the pneumonia progression and the severity state of

patients. Pulse oximetry, via wearable devices or hospital equipment, could show decreased

levels of SPO2, in the blood; this is valuable for early detection of hypoxemia. Several studies

have demonstrated that preexisting cardiovascular diseases, including acute coronary syn-

drome, arrhythmia, and heart failure, can worsen the outcome of COVID-19 patients. Further-

more, the SARS-CoV-2 virus exacerbates cardiac damages through direct interaction with

ACE2 receptors [33].

In this study, LDH, PTT, and BUN had the highest mortality prediction weights among lab-

oratory features. Elevated levels of LDH could reflect tissue injury caused by SARS-CoV-2 and

concurrent lung fibrosis. Indeed, abnormal LDH is commonly seen in idiopathic lung fibrosis

[34]. During the course of COVID-19, higher levels of LDH were observed during both alveo-

litis and fibrosis stages [35], highlighting it as a candidate for predicting the need for invasive

ventilation [36] and mortality. In addition, a robust immune response to SARS-CoV-2 infec-

tion and subsequent cytokine storm could cause multi-organ damage, which leads to further

elevation of LDH levels [37]. The inflammatory response promoted by severe SARS-CoV-2

infection could cause endothelial damage, distortion of the coagulation cascade function, and

coagulopathy. Therefore, levels of PTT, a coagulation biomarker, during COVID-19 infection

can be informative of coagulopathy progression and disease severity [38]. Several studies have

found BUN as a predictor for adverse outcomes in COVID-19 patients [39]. A multicenter ret-

rospective cohort conducted on 12,000 Chinese patients demonstrated that, even on the first

day of admission, the BUN levels of patients who later expired were significantly higher than

those who survived. Moreover, the dynamics of changes in BUN levels were quite different

between expired patients and survivors within twenty-eight days of admission. Although the

exact mechanism of the increase in BUN levels in COVID-19 patients is fully unraveled, sev-

eral potential mechanisms have been proposed. The primary receptor of SARS-CoV2 is ACE2,

which is highly expressed in epithelial cells in the kidney. Therefore, the SARS-CoV2 can acti-

vate the RAAS system through interaction with ACE-2 receptors. The consequent increase in

the resorption of urea in renal tubules leads to a rise in BUN levels. Furthermore, another

cause of the observed rise in BUN levels could be due to increased activity of inflammatory fac-

tors and cells, such as neutrophils, lymphocytes, and cytokines, which can systematically dam-

age kidney tissue and alter renal function [40].

Limitations

The results of this study should be interpreted in light of several limitations. This study was

carried out within a retrospective framework. Consequently, supervision was not possible to

increase the quality of data documentation when patients were admitted. Furthermore, the

data gathering interval of this study encompassed the first pandemic wave, and medical rec-

ords were documented in haste as high patient loads and limited medical staff forced the medi-

cal system to prioritize patient treatment. Therefore, many patients had incomplete medical

profiles and were sieved before the data inspection phase. The aforementioned factors limited

the sample size of the study. Researchers were not blind to outcomes. No external validation

data was utilized due to limits imposed by the pandemic state of hospitals and preventive

regimes. The Massih Daneshvari Hospital had more severe and expired patients since it was a

primary care center for COVID-19. Thus, the severity and mortality rates of this study do not

reflect the population rates of these variables. This could add confounding effects to the study.

Finally, qualitative CRP, a feature reported by several studies to be associated with disease
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severity, was removed from the analysis due to high missing values owing to limited laboratory

resources and incomplete medical records caused by the pandemic. However, with the pres-

ence of other acute phase reactants and inflammatory markers, such as ESR, platelet number,

and LDH, in this model, it is likely that a significant portion of variance explained by CRP was

compensated by these features.

Future works

To increase speed and convenience, imaging features were not utilized in this study. Future

researches can compare the prediction power of imaging features with laboratory and non-inva-

sive features. This study, conducted as a pilot study, was not externally validated. Future studies

could include data from other hospitals for external validation. Furthermore, larger and more

diverse study populations can be used for further evaluation of our results. Future projects can

expand the practicality of our study by devising prognosis prediction software on various plat-

forms. In this study, binary outcome (i.e., discharged and expired) was used as outcome. pro-

spective projects can focus on other outcomes, such as whether a patient was intubated or

admitted to ICU as outcomes. To devise specific prognostic models, Future studies can focus on

individual groups of comorbidities (e.g., cardiovascular) and additional features to develop sep-

arate models. Continuous data input from various hospitals could be used to develop and incre-

mentally train an online learning model to predict the prognosis of COVID-19 patients, giving

increasingly precise and updated results to be used in clinical and non-clinical settings. Finally,

the framework of this study could be tested in other acute respiratory infectious diseases to

investigate the feasibility of mortality prediction via MLmodeling of non-invasive features.

Conclusion

Prediction of mortality prognosis during the COVID-19 pandemic is an important concept

that can reduce disease mortality rates by giving us insights into where and with whom to

intervene. The prognostic prediction capacity of laboratory biomarkers is distinct from those

of clinical and demographic data. To investigate these differences in this study, predictor fea-

tures obtained from patients’ first day of admission were divided into invasive laboratory tests

and non-invasive demographic and clinical data. Three prognostic machine learning models

were developed using the aforementioned invasive and noninvasive biomarker groups; two

using each of these groups and one using both. The models displayed optimal prediction per-

formance, making them valuable assistive tools in different settings for clinical decision mak-

ing and resource allocation. Furthermore, the implemented non-invasive model can be used

for rapid triage of patients without the need for additional costs or waiting time of laboratory

or imaging tests.

Analysis of invasive and non-invasive models across feature numbers revealed that the

non-invasive model provided better performances in sparse dimensions with lower feature

numbers. This points to the presence of a significant concentration of information in several

non-invasive features, such as SPO2 and age, and adds weight to the hypothesis that, given

enough features, the information content of noninvasive factors could provide mortality pre-

dictions which are as good as high dimensional laboratory models. Temporal analysis across

patient expiration intervals revealed that while invasive biomarkers are better predictors for

near future deaths, they were outperformed by non-invasive biomarkers over larger expiration

temporal intervals. This study aimed to explore the concept of combining machine learning

techniques with non-invasive features towards the ultimate goal of development of rapid, auto-

mated triage tools; future studies should further explore this concept across different disease,

feature, and population spectra.
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Methods

To increase the reporting quality and clarification, we aimed to follow the Transparent Report-

ing of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD)

reporting style to the extent that pandemic situational limitations permitted.

Ethics

The protocol for this study was approved by the Ethics Committee of Shahid Beheshti Univer-

sity of Medical Sciences (SBMU). Written informed consent was obtained from all patients

and, if applicable, their legal guardians regarding patient data utilization for medical research

upon admission. This study was carried out in accordance with the Helsinki and SBMU guide-

lines and regulations. Patient data were anonymized before the data analysis phase.

Study setting and population

This retrospective study was carried out using archived electronic medical records of COVID-19

patients who were admitted to the Masih Daneshvari Hospital in Tehran, Iran. As Iran’s largest

respiratory and pulmonary care center, the Masih Daneshvari Hospital was one of the first medi-

cal centers that admitted COVID-19 patients early during the pandemic.

The inclusion criterion for this study was hospital admission due to the initial diagnosis of

COVID-19 infection by a physician according to the 5th Iranian COVID-19 guideline

(Table 1). To enter this study, 628 patients who were admitted between February 20th, 2020, to

May 4th, 2020, were randomly selected from the hospital’s patient data pool. The review of

medical records was initiated on June 5th. Medical records were reviewed separately by two

physicians. Two pulmonologists adjudicated discordances. Afterwards, 12 patients who left

the hospital against medical advice with consent, 27 patients with uncertain or rolled out

COVID-19 diagnosis, 29 patients who were referred from other hospitals, 4 patients with age

under 18, 43 patients with more than 20% missing data, 18 patients who received radically dif-

ferent treatment protocols (i.e., were enrolled in clinical trials), 1 patient who had a cardiac

arrest shortly after arrival to the emergency ward, and 2 pregnant patients were excluded.

Afterwards, 186 patients with an “expired” outcome (37.8%) and 306 patients with “dis-

charged” outcome (62.2%) were included in the study (S1 Fig in S1 File).

Definition of variables

Data from the first 24 hours of patients’ admission was used in this study. The initial data,

comprised of 57 features, was categorized into two groups of features; demographic and

patient history features were labeled as non-invasive group, and laboratory results were labeled

as invasive group. Demographic and history features were extracted from admission history,

medical progress notes, and nursing notes. Laboratory features were extracted from the results

of the first blood tests, which were ordered by physicians during the initial 24 hours of admis-

sion. Features with more than 10% missing values were entirely omitted. Imputation via the k-

nearest neighbor (KNN) algorithm with k = 5 and uniform weights was used for features with

less than 10% missing values; KNN algorithm imputes every missing value using the mean

value from ‘k’ closest data points found in the training set.

The severity of a patient’s condition was evaluated by physicians upon admission according

to the criteria presented in Table 1. With the large magnitude of the outbreak and limited ICU

beds, the severity criteria were tuned to the hospital’s patient load and equipment to provide

an efficient containment response. The blood pressure of patients was measured via electronic

blood pressure patient monitoring devices by a physician or nurse. The oxygen saturation of
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patients was measured in the room air (i.e., without oxygen support) using the hospital’s pulse

oximeters. The pulse rate of patients was measured using hospital pulse oximeters. The tem-

perature of a patient was measured using digital forehead thermometers. Vital signs used in

this study were those that were the first measurements of these features upon admission. The

presence of a history of hypertension (HTN) was defined as the diagnosis of hypertension for

the patient by a physician. The presence of a history of diabetes mellitus (DM) was defined as a

diagnosis of DM type I or II for the patient by a physician. The presence of a history of cardio-

vascular diseases for the patient was defined as a history of Ischemic Heart Disease (IHD),

Acute Coronary Syndrome (ACS), and Heart Failure (HF) that was diagnosed by a physician.

Blood samples were obtained from venous blood and analyzed in the central medical labora-

tory of the Masih Daneshvari Hospital. S1 Table in S1 File contains a list of model input fea-

tures along with their definitions.

To predict mortality outcomes, the framework of this study was expressed as a classification

problem. Two outcome classes were defined; the discharged group (outcome = 1) consisted of

COVID-19 patients that were discharged after the completion of their treatment and two con-

secutive negative PCR results. The expired group (outcome = 0) consisted of patients who died

at any point during their treatment course.

Statistical tests

The Kolmogorov–Smirnov test was used to examine distribution normality. Mean and stan-

dard deviation were used to describe normal continuous variables. The median and interquar-

tile range were used to describe non-normal Continuous variables. Categorical data were

expressed as frequency in percent. MannWhitney U and Fisher’s exact tests were used to test

significance for numerical and categorical variables, respectively. Standardization (Z-score

normalization) was used for feature scaling of non-categorical features. Initial statistical analy-

sis was performed using SPSS 26.0 (IBM Corp. Released 2019. IBM SPSS Statistics for Win-

dows, Version 26.0. Armonk, NY: IBM Corp) with P-values significance threshold of 0.05.

Support Vector Machine analysis

Machine learning analyses were implemented using MATLAB version R2019b and the Statis-

tics and Machine Learning ToolboxTM package [41].

Support Vector Machine (SVM) classifiers were developed based on demographic (2 fea-

ture), laboratory (26 feature), and clinical (9 feature) information (Fig 2A) (S1 Table in S1

File). Although a simple model, SVM frameworks display strong performance on small and

medium-sized tabular datasets [42]. The SVMmodel, especially with a linear kernel, is self-

explainable; we can inspect feature importance by looking at their weights [43]. This property

facilitates the inspection and interpretation of feature contributions towards the outcome. The

SVM binary classification algorithm searches for an optimal hyperplane that separates the data

into two classes. For separable classes, the optimal hyperplane maximizes a margin (space that

does not contain any observations) surrounding itself, which creates boundaries for the posi-

tive and negative classes. For inseparable classes, the objective is the same, but the algorithm

imposes a penalty on the length of the margin for every observation that is on the wrong side

of its class boundary.

For the implementation of the main SVMmodel analyses, the data were first divided into

training and test sets with a holdout ratio of 0.2 using MATLAB’s cvpartition function. After-

wards, model training and tuning were carried out using MATLAB’s fitcsvm function and

Sequential Minimal Optimization (SMO) was utilized as the solver. Kernel scale hyperpara-

meter tuning was carried out using theHyperparameterOptimization input of the fitcsvm
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command on the training data over 30 evaluation iterations via the function’s default bayesian

optimization. Kfold cross-validation with 10 folds was utilized for model training and hyper-

parameter tuning via the KFold argument of the fitcsvm function. MATLAB command kfold-

Predict was used to obtain labels and scores from the cross-validated model for performance

assessment; for each fold, this command provides prediction labels and scores for in-fold

instances using a model trained on out-of-fold instances and concatenates them. Parameters

for the ROC curve and AUCmeasurement were obtained using the perfcurveMATLAB func-

tion and scores from the cross-validated model. The accuracy of the optimized cross-validated

model was evaluated on the test set. The mean and standard deviation of performance metrics

was calculated over 20 iterations of training and evaluation.

Neighborhood Component Analysis

To investigate the principal features for mortality prediction, regularized Neighborhood Com-

ponent Analysis (NCA) was utilized. This non-parametric analysis is an embedded method for

selecting features with the goal of maximizing the prediction accuracy of regression and classi-

fication algorithms. The framework tries to learn feature weights for minimizing an objective

function that measures the average leave-one-out classification or regression loss over the

input data [44]. Function fscnca fromMATLAB was utilized to perform NCA analysis with

regularization. To obtain feature weights in Fig 2A, 200 iterations of NCA training were uti-

lized. In each iteration, NCA training was implemented using all the data instances in 10 folds

(NumPartitions input of the fitcnca function was set to 10). Limited memory Broyden-

Fletcher-Goldfarb Shanno (LBFGS) algorithm was used as the solver. Regularization was

implemented through the Lambda input of the fscnca function to decrease model variance and

stabilize outputs. NCA weights were averaged over all the folds for each iteration then overall

iterations to obtain final results (Fig 2A).

Recursive feature elimination via SVM

Support Vector Machine-recursive feature elimination (SVM-RFE) is a feature evaluation

method that utilizes the feature weights from the SVM algorithm to eliminate features with

low importance in a recursive manner [45]. In this study, SVM-RFE was implemented using

customMATLAB code over 40 iterations. In each iteration, a linear support vector machine

was trained without optimization overall data instances and 10 folds using fitcsvm function

and its KFold input. Afterwards, accuracy was calculated using predictions that were obtained

using the kfoldPredictmethod of the trained algorithm. This method returns concatenated

labels of predictions over 10 folds; for each in-fold instance, the prediction is carried out using

the algorithm trained on all the out-of-fold instances. In the next step, the feature with the low-

est absolute weight was removed from the input dataset and the algorithm was retrained with

new, reduced features and new partitioning. The aforementioned steps were continued until

only one feature was left inside the input dataset. The mean and standard deviation of the

accuracy was calculated over all iterations.

Sparsity analysis

A combination of sparsity analysis with linear SVM (i.e., Sparse Linear SVM) is utilized for

identifying the importance of feature subsets and evaluating their relevance in a computation-

ally efficient framework [45]. In this study, we combined the least absolute shrinkage and

selection operator (Lasso), a sparse regularization framework, with liner SVM to evaluate the

predictive information content of invasive and non-invasive features with respect to the out-

come. A custom code was written in MATLAB to implement 100 iterations of Sparse Linear
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SVM analysis. In each iteration, 25 fixed, logarithmically space lambda values were utilized.

For each lambda value, a linear SVMmodel without optimization was trained using fitclinear

function utilizing all data instances as input and 10 folds (KFold input of the fitclinear was set

to 10). The Regularization input was set to lasso. Classification loss was obtained using the kfol-

dLossmethod of the trained algorithm which returns the loss averaged over all the folds. The

Number of non-zero features for each lambda was calculated as the total number of features

whose SVM weights were not reduced to zero. The mode of the number of non-zero features

was calculated for each lambda over all iterations and first instances were selected (e.g., if the

modes were [8 8 7 6 6 5] for 6 lambda columns, then the first 8 and 6 columns were selected as

representatives of non-zero feature numbers ([8 7 6 5]) of the column). The corresponding

mean and standard deviation of the loss of the selected non-zero feature numbers were calcu-

lated using instances whose number of non-zero features was equal to the calculated mode in

the corresponding lambda column.
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