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ABSTRACT 

Objective: To discover diverse genotype-phenotype associations affiliated with  Type 2 

Diabetes Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide 

association study (PheWAS), more cases (T2DM subjects) and controls (subjects without 

T2DM) are required to be identified (e.g., via Electronic Health Records (EHR)).  However, 

existing expert based identification algorithms often suffer in a low recall rate and could miss a 

large number of valuable samples under conservative filtering standards. The goal of this work is 

to develop a semi-automated framework based on machine learning as a pilot study to liberalize 

filtering criteria to improve recall rate with a keeping of low false positive rate.  

Materials and Methods: We propose a data informed framework for identifying subjects with and 

without T2DM from EHR via feature engineering and machine learning. We evaluate and 

contrast the identification performance of widely-used machine learning models within our 

framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, 

Support Vector Machine and Logistic Regression. Our framework was conducted on 300 patient 

samples (161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 

diabetes related cohort retrieved from a regional distributed EHR repository ranging from 2012 

to 2014.  

Results: We apply top-performing machine learning algorithms on the engineered features. We 

benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification 

models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our 

results indicate that the framework achieved high identification performances (~0.98 in average 

AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC).  
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Discussion: Expert algorithm-based identification of T2DM subjects from EHR is often 

hampered by the high missing rates due to their conservative selection criteria. Our framework 

leverages machine learning and feature engineering to loosen such selection criteria to achieve a 

high identification rate of cases and controls.  

Conclusions: Our proposed framework demonstrates a more accurate and efficient approach for 

identifying subjects with and without T2DM from EHR.  
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Background and Significance 

Type 2 diabetes mellitus (T2DM) is a major disease with high penetrance in humans around the 

globe, a trend that is still on the rise [1-2]. T2DM is a leading cause of morbidity and mortality 

and contributes to increased risks of heart disease by 2 to 4 times [1]. A significant number of 

research investigations have been devoted to it, notably by means of genome-wide association 

study (GWAS) and phenome-wide association study (PheWAS) in hope of detecting more 

associations between  genotypes and phenotypes [3-10, 23-26, 36]. To discover diverse 

genotype-phenotype associations affiliated with T2DM via PheWAS and GWAS, more cases 

(subjects with T2DM) and controls (subjects without T2DM) are required to be identified from 

electronic health records (EHR) [11-12, 34-35]. 

 A widely adopted approach for identifying subjects with and without T2DM is to have 

human experts (e.g., experienced physicians) manually design algorithms based on their 

experience and examination of EHR data [11, 13-15]. However, such strategies increasingly 

prove to be limited and not scalable [11, 13, 15] due to the laborious process of human 

intervention and rule abstraction capabilities of experts. Furthermore, expert algorithms are often 

designed with conservative identification strategy, thus may fail to identify complex (e.g., 

borderline) subjects and miss a significant number of potential T2DM cases and controls. In 

research settings such as GWAS and PheWAS, accumulating large sample sizes is often highly 

desirable and discarding valuable samples will influence the potentiality to discover diverse 

genotype-phenotype associations [26, 36]. A disease may be caused by the joint effects of 

multiple single nucleotide polymorphism (SNPs) (i.e. heterogeneity), while a SNP may lead to 

multiple diseases (i.e. pleiotropy) [32-34]. Involving more cases with diverse phenotypic 

characteristics such as comorbidities will enrich the association studies between phenotypes and 
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genotypes.  Given the limitations in high missing rate and laborious manual intervention, it is 

increasingly challenging for expert algorithms to scale to the ever-increasing volumes of diabetes 

related EHR data, secondary use and evolved GWAS and PheWAS studies [13, 15, 35].   

Machine learning and data mining models are increasingly utilized in diabetes related 

research from EHR data (e.g., diabetes-related adverse drug effect, and association between 

periodontitis and T2DM) [27-29]. These studies have primarily focused on mining T2DM-

related EHR data for clinical purposes, for instance, one such study aimed at forecasting clinical 

risk of diabetes from EHR [29]. The motivation and intended usage of the aforementioned work 

is different from ours, which aims to identify more cases and controls. Furthermore, the 

aforementioned study still has similar limitations in high missing rate [29]. To the best of our 

knowledge, very few studies have focused on reducing missing rate to identify more cases and 

controls for phenotyping purposes.  

The goal of this work is to develop a semi-automated framework based on machine 

learning as a pilot study to identifying subjects with and without T2DM. Our method features 

two advancements: 1) low false positive rate; 2) high recall (i.e., detecting as many samples of 

interest as possible). To achieve these goals, we carefully approach feature engineering (i.e., 

construction of features for predictive modeling) by constructing representative features at three 

levels. We then train multiple popular machine learning models based on constructed features to 

identify cases and controls. 

Our empirical evaluation is based on three years (ranging from 2012 to 2014) of EHR 

data from a large distributed EHR network consisting of multiple Chinese medical centers and 

hospitals in Shanghai, China. Our choice of this EHR repository is motivated by the fact that 

Chinese EHR data are often much worse than western EHR in terms of meaningful uses and data 
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quality [18]. In addition, medical care in China often have non-standard unique procedures (such 

as wide adoption of traditional Chinese medicine) that are not represented in EHR and expert 

algorithms from elsewhere (such as from mainstream western counterparts), rendering standard 

or western expert algorithms less relevant. Given all such factors, the Chinese EHR repository 

provides an ideal test-bed for evaluating the accuracy and robustness of our proposed framework. 

In addition, the customization and empirical evaluation of a machine learning-based T2DM 

identification framework specifically for Chinese EHR is also of separate interest, which is 

under-explored despite constituting huge demand.  

 

Research Design and Methods 

Study Materials 

Our investigations in this work focus on three years of EHR data (from Year 2012 to 

2014).  The data was stored in our centered repository, which has been managed by the District 

Bureau of Health in Changning, Shanghai since 2008. The EHR data generated from 10 local 

EHR systems are automatically deposited into the centralized repository hourly.  

We have 123,241 patients in total within the investigated three years. We use a filtering 

strategy to pre-select patients as our candidate samples whose EHR data are related to diabetes. 

We pre-selected samples whose EHRs should satisfy at least one of the three criteria: i) diabetes 

related diagnosis, ii) diabetes related medication and iii) diabetic laboratory test. Through this 

process, we managed to obtain 23,281 patient samples with diabetes related information. Our 

data preparation workflow is summarized in Figure 1.  

Our framework is based on supervised learning (e.g., classification, to be specific), which 

requires labeled training samples. Thus, we invited two clinical experts experienced in diabetes 

to assess EHRs of samples and label these samples into three categories: case, control and 
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unconfirmed. We point out that, as is common for similar efforts, our expert review process is 

based on manually judging the whole record of each patient instead of only considering the 

selected few criteria in our data filtering or baseline expert algorithms (introduced later). Due to 

huge amount of manual effort in the expert reviewing process, as a pilot study, we randomly 

selected 300 samples out of the 23,281 pre-selected ones and concentrated our reviewing efforts 

on the smaller subset. For the investigated 300 selected samples, there are 20,384 records (e.g., 

diagnostic notes, communication notes and summary notes). Samples with two confirmed labels 

of T2DM from both clinicians will be considered as cases, samples with two confirmations of 

Non-T2DM considered as controls. The other samples with conflicting labels or two 

confirmations of un-determined from two clinicians will be denoted as unconfirmed ones. 

Through clinicians’ assessments, we obtained 161 cases, 60 controls and 79 unconfirmed 

samples. For double check, we noticed that of the unconfirmed 79 samples, most (78.3%) are 

severely incomplete in their EHR documentation, which are not be suitable for EHR-based 

phenotyping. In order to reduce negative influences of incomplete EHRs on performances of our 

classification models, we dropped 79 unconfirmed samples. 
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Figure 1. A machine learning-based framework to identify subjects with and without T2DM 

from EHR data. The case refers to subjects with T2DM, and control refers to non-T2DM 

subjects. 

 

Figure 2. Separated boundary lines between cases and controls in our study and in traditional 

T2DM identification studies. 

Through our assessing processes of cases and controls, the separation range between cases and 

controls in our study is narrower than that in traditional expert algorithms as shown in Figure 2.  

This is because, in our study, controls refer to samples satisfying at least one of the following 

three criteria: i) one time of abnormal lab tests (HbA1C ≥6.0% or fasting plasma glucose ≥126 

mg/dl or 2-hours plasma glucose≥200 mg/dl or random plasma glucose ≥200 mg/dl), ii) one time 

of prescribed diabetic medicine, and iii) one time of diabetic diagnosis. However, these controls 

were excluded in expert algorithms [11, 13, 15, 30]. However, the widely used expert algorithms 

selected controls whose EHR data should not include any of the three above mentioned diabetic 

related information. The selection criteria of expert algorithms will miss many controls. For 

instance, we investigated a number of control samples, who had high values of HbA1C (≥6.0%) 

recorded, but their fasting and post-meal blood sugars were normal. Another example is we 

found several controls whose records contained prescriptions of diabetic medications, but no 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078634doi: bioRxiv preprint 

https://doi.org/10.1101/078634


diabetic diagnoses and laboratory tests were found in their records. One of reasons is the 

medications they prescribed were not for themselves, but for their friends or someone else.  

For the cases selection, expert algorithms selected samples whose EHR data should at least 

satisfy 2 of the following three requirements.  

(1) Abnormal laboratory tests (glucose ≥110 mg/dl or HbA1c ≥6.0%) 

(2) Diabetic medication 

(3) Diabetic diagnosis 

Such selection process does not consider patients satisfying no more than 1 of the above three 

requirements but considering as T2DM patients through their related support information such as 

diabetic complications and self-reported body weight loss, persistent hunger, polyuria, and 

polydipsia. As a result, these cases were missed. According to our selection criteria, the range of 

separations between cases and controls are much smaller than expert algorithms as shown in 

Figure 2.  We applied expert algorithms and our proposed framework to identify cases and 

controls in the same separation range (the range between two solid lines as shown in Figure 2). 

Both types of algorithms were studied on the same sources of 300 samples. 

 Our proposed framework includes feature construction, and classification models. 

Feature construction transforms raw EHR data into statistical features, which are further served 

as input entities to feed classification models (as shown in Figure 1). The expert algorithms 

extracted their three major features (abnormal laboratory tests, diabetic medication and diabetic 

diagnosis) in the same raw EHR data and then use their standards (workflows as depicted in the 

Figure A1 of Appendix F) to identify cases and controls.  

Feature construction 
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Constructing good features from EHR is often a must to warranty good prediction performance 

either for expert algorithms or machine learning-based models. This is because raw EHR data are 

often noisy, sparse, and contain unstructured information (e.g., text) that are not directly 

“computable”.  Traditional researches on identifying subjects with and without T2DM were 

using selection strategies built on three features: diabetic diagnosis, diabetic laboratory tests and 

diabetic medications extracted from EHRs of investigated samples [11, 16]. Such researches are 

limited due to their high missing rates on identification of cases and controls. This is because 

such strategies applied a conservative selection criteria on cases and controls (e.g., satisfying two 

of the aforementioned three features) and were tested in a broader separation range between 

cases and controls (the range between two dashed lines as shown in Figure 2).  

In our work, we include borderline (samples between two dashed lines of Figure 2), which can 

help to identify more cases and controls than traditional studies. To make the case/control 

identification more accurate, we need to incorporate more features than traditionally used. For 

instance, we constructed additional T2DM features such as self-reported diabetes related 

symptoms, and diabetic complications, and so on, in hope of better identifying borderline or 

more ambiguous samples. In total, we derived  110 features from  seven sources (we denote this 

as First-Level features): “demographic information”, “communication report”, “outpatient 

diagnosis report”, “inpatient diagnosis report”, “inpatient discharge summary”, “prescription 

report” and “laboratory test report”, as summarized in Table 1 and with in-depth explanation off 

each feature in Table A1 of Appendix A.  

Notably, the features includes supporting materials for T2DM such as diabetic 

complications (e.g., diabetic retinopathy, diabetic neuropathy, diabetic cerebral vascular and 

diabetic peripheral circulation diseases), self-reported symptoms (e.g., self-report of body weight 
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loss, persistent hunger, polyuria, and polydipsia), additional Chinese traditional medications and 

more laboratory test items (e.g., two-hours, fast and random glucose tests).  

For the features in the medication category, we list investigated medicines related with 

T2DM treatments as in Table A2 of Appendix B. Notably, to tailor for Chinese EHR, we added 

additional Chinese traditional medicine, and mixtures of Chinese traditional and western 

medicine into the medication list. This is due to observation that T2DM patients are usually 

treated with a combination of Chinese traditional and western medicine in China, which is 

different from the common practice (i.e., western medicine only) of the western world and was 

thus neglected by western EHR-oriented studies.  

For the diagnosis notes related features, we use regular expressions combining positive notes and 

negative notes as depicted in Table A3 of Appendix C to build each of them. 

Table 1. First-level Features constructed from source “demographic information”, 

“communication reports”, “outpatients diagnosis reports”, “inpatients diagnosis reports”, 

“inpatients discharge summaries”, “prescription reports” and “laboratory test reports”. 
Source  category  Feature

Demographic information 
De-identification ID, age and gender of a subject. (feature ranging from f1 to f3 as shown 

in Table A1 of Appendix A) 

Communication 

report 

Self-

reporting 

note 

Number of times a subject reporting body weight loss, persistent hunger, polyuria, 

polydipsia, prescribed diabetes medicine or returning visits for diabetes in communication 

report. (feature ranging from f4 to f9 as shown in Table A1 of Appendix A) 

Diagnosis 

code 

Number of times codes of type 2 diabetes, diabetic retinopathy, diabetic neuropathy, 

diabetic eye disease, diabetic kidney disease, diabetic cerebral vascular disease or diabetic 

peripheral circulation appeared in communication report. (feature ranging from f10 to f17 

as shown in Table A1 of Appendix A) 

Diagnosis 

note 

Number of times communication report containing notes of type 2 diabetes, diabetic 

retinopathy, diabetic neuropathy, diabetic eye disease, diabetic kidney disease, diabetic 

cerebral vascular disease or diabetic peripheral circulation disease. (feature ranging from 

f18 to f25 as shown in Table A1 of Appendix A) 

Outpatient 

diagnosis record 
Diagnosis 

code 

Number of times codes of type 2 diabetes, diabetic retinopathy, diabetic neuropathy, 

diabetic eye disease, diabetic kidney disease, diabetic cerebral vascular disease or diabetic 

peripheral circulation were appeared in outpatient diagnosis record. (feature ranging from 

f26 to f33 as shown in Table A1 of Appendix A) 
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Diagnosis 

note 

 Number of times outpatient diagnosis record containing notes of type 2 diabetes, diabetic 

retinopathy, diabetic neuropathy, diabetic eye disease, diabetic kidney disease, diabetic 

cerebral vascular disease or diabetic peripheral circulation disease. (feature ranging from 

f34 to f41 as shown in Table A1 of Appendix A) 

Inpatient 

discharge 

summary 

Diagnosis 

notes 

Number of times inpatient discharge summary containing notes of type 2 diabetes, 

diabetic retinopathy, diabetic neuropathy, diabetic eye disease, diabetic kidney disease, 

diabetic cerebral vascular disease or diabetic peripheral circulation disease. (feature 

ranging from f42 to f49 as shown in Table A1 of Appendix A) 

Inpatient 

diagnosis record 

Diagnosis 

codes 

Number of times codes of type 2 diabetes, diabetic retinopathy, diabetic neuropathy, 

diabetic eye disease, diabetic kidney disease, diabetic cerebral vascular disease or diabetic 

peripheral circulation were appeared in inpatient diagnosis record. (feature ranging from 

f50 to f57 as shown in Table A1 of Appendix A) 

Diagnosis 

notes 

Number of times inpatient diagnosis record containing notes of type 2 diabetes, diabetic 

retinopathy, diabetic neuropathy, diabetic eye disease, diabetic kidney disease, diabetic 

cerebral vascular disease or diabetic peripheral circulation disease. (feature ranging from 

f58 to f65 as shown in Table A1 of Appendix A) 

Prescription 

record 
Medication 

Number of prescriptions appearing in prescription report for oral hypoglycemic, insulin, 

Chinese traditional hypoglycemic, a mixture of western and Chinese traditional oral 

hypoglycemic, Epalrestat, Alpha-glucosidase inhibitor, Dipeptidyl peptidase IV(DPP-IV) 

inhibitors, Meglitinides, Sulfonylureas, Thiazolidinedione, Biguanides, Incretin Mimetics, 

GLP-1 (glucagon-like peptide 1) mimetics, compounds of sulfonylurea and 

thiazolidinedione, compounds of Biguanides and  Dipeptidyl peptidase IV(DPP-IV) 

inhibitors, compounds of Biguanides and  Sulfonylureas, or compounds of Biguanides 

and  Thiazolidinedione. (feature ranging from f66 to f82 as shown in Table A1 of 

Appendix A)  

Laboratory test 

report 

Venous 

plasma 

glucose test 

Number of times for 2-hours venous plasma glucose test, 2-hours venous plasma glucose 

test≥11.1mmol/l (200mg/dl), fasting venous plasma glucose test, fasting venous plasma 

glucose test ranging from 6.1 to 7.0 mmol/l (110 and 126 mg/dl), random venous plasma 

glucose test, or random venous plasma glucose test≥11.1mmol/l (200mg/dl). (feature f83, 

f84, f87, f88, f91, and f92 as shown in Table A1 of Appendix A) 
The maximum value of 2-hours venous plasma glucose test, fasting venous plasma 

glucose test, or random venous plasma glucose test. (feature f85, f89, and f93 as shown in 

Table A1 of Appendix A) 

The minimum value of 2-hours venous plasma glucose test, fasting venous plasma 

glucose test, or random venous plasma glucose test. (feature f86, f90, and f94 as shown in 

Table A1 of Appendix A) 

Peripheral  

plasma 

glucose test 

Number of times for 2-hours peripheral  plasma glucose test, 2-hours peripheral  plasma 

glucose test≥11.1mmol/l (200mg/dl), fasting peripheral  plasma glucose test, fasting 

peripheral  plasma glucose test ranging from 6.1 to 7.0 mmol/l (110 and 126 mg/dl), 

random peripheral  plasma glucose test, or random peripheral  plasma glucose 

test≥11.1mmol/l (200mg/dl). (feature f95, f96, f99, f100, f103, and f104 as shown in 

Table A1 of Appendix A) 
The maximum value of 2-hours peripheral plasma glucose test, fasting peripheral plasma 

glucose test, or random peripheral plasma glucose test. (feature f97, f101, and f105 as 

shown in Table A1 of Appendix A) 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078634doi: bioRxiv preprint 

https://doi.org/10.1101/078634


The minimum value of 2-hours peripheral plasma glucose test, fasting peripheral plasma 

glucose test, or random peripheral plasma glucose test. (feature f98, f102, and f106 as 

shown in Table A1 of Appendix A) 

HbA1C 

test 

Number of times for HbA1c test, HbA1C test ≥ 6.5%. (feature f107,  and f108 as shown 

in Table A1 of Appendix A) 
The maximum value of  HbA1C test (feature f109 as shown in Table A1 of Appendix A)

The minimum value of  HbA1C test (feature f110 as shown in Table A1 of Appendix A)

 

Feature summarization 

Features (as shown in Table A1 of Appendix A) cover seven EHR sources, however, some 

sources have the same type of features. For instance, f10 in the source of “communication 

report”, f26 in “outpatient diagnosis record”, and f50 in “inpatient diagnosis record” have the 

same definition on the counting of diagnosis codes.  These features are highly correlated with 

each other, which will influence performances of computational models to do classification [17, 

19, 22]. And thus we merge correlated features into one feature by summarizing them. For 

instance, f10, f26 and f50 are summarized as a new feature f’10= f10+f26+f50, which represents the 

total number of times T2DM diagnosis codes appearing in “communication reports” (f10), 

“outpatient diagnose records” (f26) and “inpatient diagnose records” (f50) respectively. By using 

the same way, we summarize all similar features across the seven sources into 36 features as 

shown in Table A4 of Appendix D.  At the same time, the features within a source are also 

correlated, so we transform 36 features into final 8 features through summarizing correlated 

features within a source. The final 8 features are listed in Table A5 of Appendix E. 

Classification 

We use several widely-used classification model such as k-Nearest-Neighbors (kNN), Naïve 

Bayes (NB), Decision Tree (J48), Random Forest (RF), Support Vector Machine (SVM) and 

Logistic Regression (LR) to model patterns of cases and controls based on our extracted features 
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and then use the models to test the ability of our extracted features on identifications of T2DM 

subjects. These classification models are frequently utilized in a wide range of fields, and are 

recognized as popular choices for classification tasks [20-21, 37]. 

Results 

Experimental set-up 

Our framework adopts feature engineering by abstracting the EHR data at three different levels. 

This ensures to leverage more available data while maximizing predictive power. For the 221 

T2DM samples (160 cases and 61 controls) collected with expert labels, we first construct 110 

features (as mentioned before; see also Table A1 in Appendix A) to represent their EHR data. 

This is roughly a summarized and structured version of the raw EHR data. To prevent data 

sparsity and noise, we then derive higher-level features by condensing the data into 36 features 

(see Table A4 in Appendix D) and 8 features (see Table A5 in Appendix E), respectively. Such 

abstraction is mainly based on common knowledge of EHR data hierarchies.  

 In our framework, we apply several widely-used machine learning models, including 

kNN, NB, J48, RF, SVM and LR. The goal is to find out the comparative performance of 

machine learning models against expert algorithms. We used Weka package to apply these 

models on our engineered features [31]. We perform training and evaluation on different 

abstraction levels of feature sets, e.g., on the 107 aforementioned features1 (the first level of 

features; as shown in Table A1 of Appendix A), 33 features (the second level of features; as 

shown in Table A4 of Appendix D), and 5 features (the third level of features; as shown in Table 

A5 of Appendix E), respectively. We conduct extensive comparison of different classifiers on 

the same level of features, as well as performance across the three different levels of feature sets 

                                                            
1We exclude three demographic features, because they do not indicate any significant differences between 

cases and controls, and in contrast, they will influence the correct determinations of classifiers such as 

kNN. 
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described before. Furthermore, we use the state-of-the-art expert algorithm [11] as a benchmark 

baseline, which is widely adopted by several large EHR and genetics consortia studies. We 

emphasize that the expert algorithm [11] is evaluated on the same raw EHR data as mentioned 

before. 

We also point out that our primary focus of this work is to demonstrate 

feasibility/suitability of machine learning-based framework for the given task, and to provide 

general model recommendations and suggestions. Comprehensive and systematic benchmark of 

different machine learning models is not the main focus and is a separate topic with extensive 

literature. To keep our work focused and data-efficient, we adopt default recommended model 

parameters instead of performing hyperparameter tuning, since the latter often requires setting 

aside independent validation datasets, which may not be a wise option given our relatively small 

(and valuable) expert-labeled dataset. Our decision thresholds in certain models are also based on 

default configurations in Weka software [31]. For instance, in logistic regression, we use p=0.50 

as the classification cut-off.  

Performance of classification models 

For each classifier and each level of feature set, we conduct 4-fold cross-validation and report on 

the average performance and standard deviation. We demonstrate the prediction accuracy results 

in Figure 3, which measures the ratio of correctly predicted samples. In Figure 4, the prediction 

sensitivity (also called recall) results are reported, which measures the ratio of true positives 

against all positives. Lastly, in Figure 5, we plot the specificity, which denotes the proportion of 

true negatives of all negatives. The precision (or positive predictive value) results are illustrated 

in Figure 6. For more comprehensive comparison, we also present the area under the receiver 

operating characteristic (ROC) curve (AUC) in Figure 7, which demonstrates the trade-off 
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between false positive and true positive rates (larger AUC generally implies better performance). 

All detailed numerical metrics are also summarized in Table 2.  

 

Figure 3. Prediction accuracy (y-axis) with different feature sets (x-axis), categorized by 

different classifiers (different lines plotted).  

 

Figure 4. Prediction sensitivity [True positive rate] (y-axis) with different feature sets (x-axis), 

categorized by different classifiers (different lines plotted).  

 

Figure 5 Prediction specificity [True negative rate] (y-axis) with different feature sets (x-axis), 

categorized by different classifiers (different lines plotted). 
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Figure 6 Prediction precision [Positive predictive value] (y-axis) with different feature sets (x-

axis), categorized by different classifiers (different lines plotted).  

 

Figure 7 Prediction AUC (y-axis) with different feature sets (x-axis), categorized by different 

classifiers (different lines plotted).  

Table 2. Comparison of different classifiers and the expert algorithm (baseline), measured by 

their average performance (and standard deviation) in cross-validation.  
 
Classifiers  Feature Sets  Accuracy  Sensitivity Specificity Precision  AUC

Expert 

Algorithm 
---  0.84  0.78  1.00  1.00  0.71 

LR 
#107  0.86 (0.06) 0.90 (0.09) 0.84 (0.10) 0.70 (0.11)  0.88  (0.07)

#33  0.91 (0.04) 0.98 (0.03) 0.88 (0.06) 0.77 (0.07)  0.92 (0.03)
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#5  0.99 (0.01) 1.00 (0) 0.98 (0.01) 0.95 (0.03)  0.99 (0.01)

NB 

#107  0.94 (0.05) 0.98 (0.03) 0.93 (0.07) 0.85 (0.11)  0.98 (0.02)

#33  0.91 (0.07) 1.00 (0) 0.88 (0.10) 0.79 (0.15)  1.00 (0)

#5  0.96 (0.03) 1.00 (0) 0.94 (0.05) 0.87 (0.09)  1.00 (0)

RF 

#107  0.98 (0.01) 1.00 (0) 0.97 (0.02) 0.94 (0.05)  1.00 (0)

#33  0.98 (0.01) 1.00 (0) 0.97 (0.02) 0.94 (0.05)  1.00 (0)

#5  0.98 (0)  0.98 (0.03) 0.98 (0.01) 0.95 (0.03)  1.00 (0)

kNN 

#107  0.83 (0.06) 0.87 (0.05) 0.81 (0.08) 0.65 (0.09)  0.91 (0.01)

#33  0.94 (0.05) 0.98 (0.03) 0.92 (0.08) 0.84 (0.12)  0.98 (0.02)

#5  0.97 (0.03) 1.00 (0) 0.96 (0.04) 0.90 (0.08)  0.99 (0.01)

SVM 

#107  0.96 (0.04) 0.95 (0.03) 0.96 (0.04) 0.91 (0.10)  0.96 (0.03)

#33  0.97 (0.02) 0.97 (0.04) 0.97 (0.02) 0.93 (0.06)  0.97 (0.02)

#5  0.98 (0.01) 0.95 (0.03) 0.99 (0.01) 0.98 (0.03)  0.97 (0.02)

J48 

#107  0.98 (0.02) 1.00 (0) 0.97 (0.02) 0.93 (0.05)  0.98 (0.01)

#33  0.97 (0.02) 0.97 (0.04) 0.97 (0.02) 0.94 (0.05)  0.99 (0.01)

#5  0.97 (0.03) 0.95 (0.03) 0.97 (0.03) 0.94 (0.07)  0.98 (0.03)

 

 Based on the above results, J48, RF, and SVM have high prediction performances across 

various metrics, yielding over 0.95 in accuracy, sensitivity, specificity, and AUC on all three 

levels of features. As a comparison, the state-of-the-art expert algorithm [11] leads to 
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performance of 0.84 in accuracy, 0.78 in sensitivity, 1.00 in specificity, and 0.71 in AUC. This 

indicates that our features constructed at all the three levels can identify T2DM subjects much 

better than the popular expert algorithm. State-of-the-art expert algorithm performs slightly 

better (and almost perfectly) in terms of specificity (1.00) and precision (1.00). This seems most 

likely due to its stringent conditions on case selection (e.g., a case subject should satisfy any two 

of the three metrics: diabetic diagnosis, diabetic medications and diabetic lab tests). Obviously, 

none of our controls satisfy the requirements of cases set above via expert algorithm, and thus 

bringing the specificity of the expert algorithm to 1 in our experiments. 

 LR has the highest accuracy (0.99) at the third level of features (as shown in Figure 2 and 

Table 2), with several other models closely following its performance, such as RF and SVM 

(with 0.98 in accuracy).  

In terms of sensitivity, according to Figure 4 and Table 2, most models experience 

performance improvement as features get summarized into higher levels. This indicates that 

simple feature engineering can boost the performance. Meanwhile, multiple models (e.g., LR, 

NB, and kNN) achieve (near) perfect sensitivity, namely 1.00, on the second or third levels of 

feature sets. This implies that our framework is highly efficient in make full use of all available 

data, especially regarding valuable case subjects which are often much rarer and more difficult to 

accumulate for subsequent studies (such as GWAS and PheWAS).  

Accuracy and sensitivity of all classifiers at the third level of features are more stable 

than on the other two levels of features as shown in Figure 3 and Figure 4, which indicates the 

summarized final 5 features are stable discriminators to identify T2DM subjects. 

For specificity shown in Figure 5 and Table 2, half of the classifiers have performance 

greater than 0.95 (e.g., RF, SVM, and J48).  LR and kNN performance worst when leveraging 
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the first level of features. This may be due to sparsity of features (thus many features end up 

being noise) or correlated features, which can bias such classifiers.  

The AUC performance of our framework also exhibits similar encouraging results. In 

brief, when trained over second- or third-level feature sets, all classifiers (except LR) manage to 

perform well above 0.95, which is significantly better than random guessing (0.50) and almost 

approaching the perfect 1.00. State-of-the-art expert algorithm [11] only scored 0.71 in AUC, 

making it significantly worse than all models in our framework.  

Roughly speaking, as is demonstrated across different metrics in Figures 3 to 7, there is a 

general trend of increasing predictive performance, as features are abstracted into higher levels. 

This demonstrates the importance of our feature engineering approach. In addition, we observe 

better performance improvement from feature engineering than from choices of different 

machine learning models. This implies that when sample sizes are not sufficiently large (as in 

most EHR settings), a better strategy to maximize performance should be to refine features.  

Overall, across all major metrics, models such as RF, J48 and SVM are more stable than 

the other three classifiers (kNN, NB, and LR) across the three levels of features. This may be 

because RF, J48 and SVM are less influenced by sparsity and noise of EHR data, whereas LR, 

kNN and NB are more vulnerable to these issues.  

Discussion 

Traditional expert algorithms use a wide range of separation to select cases and controls, and as a 

result, a large number of cases and controls are missed. In order to reduce missing rates of 

current studies, we propose a machine learning-based framework to identify cases and controls in 

a narrower separation range.  We evaluated our framework through Chinese EHR data, and the 
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experimental results show our framework can achieve higher performances than the state-of-the-

art algorithm in such EHR data. 

However, this work is a pilot study, which is limited in the following aspects: 

Firstly, the number of samples (cases and controls) we studied needs to be enlarged in 

future. Although current selected 221 samples achieve high identification rates on detecting 

cases and controls, we still need more samples from our repository to confirm scalability of our 

models. For instance, we can use our classification models to select candidate cases and controls 

from 23,281 diabetes related patients, and then submit them to clinicians for reviewing. Under 

such semi-supervised way, we can gain more samples to enrich our framework via a large scale 

of training (e.g., on more diverse cases and controls) and testing (e.g., on independent new 

unseen samples). This process will require more reviewing efforts from humans, and will be 

considered as our next plan.  

Second, our framework still involves human efforts in designing of features and 

confirmations of cases and controls. Although we spent a large amount of time on designing of 

features, we believe our extracted features could be utilized in other related studies without 

involving human efforts, which could save them huge amount of time. The evaluations of cases 

and controls are used to feed our machine learning models. According to achieved high 

performances of our classification models, researchers can use our model to select cases and 

controls with a high accuracy, which will save them time to get cases and controls through expert 

assessments.   

Third, compared with expert algorithms in terms of high specificity (small number of 

non-T2DM are considered as T2DM), our models have lower specificity. This is because we 

include most of patients between the separation range of cases and controls in expert algorithms 
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(the range between two dotted lines as shown in Figure 2), and as a result, it is hard to make sure 

all selected cases are predicted correctly. If a study focuses on accuracy of T2DM patient 

identification more than on number of T2DM patients required, then expert algorithms would be 

a better choice. If number of cases and controls has higher priority, then our framework would be 

a better choice. 

Fourth, our framework is not confirmed on EHR data of other institutes such as western 

EHR data. Although the framework achieves a high performance on Chinese EHR data, we 

believe such EHR data based strategy is also fit for identifying T2DM subjects on western EHR 

data, and we will test such hypothesis in our next step.  

Finally, our methodology focuses on case/control design for traditional association study 

between phenotypes and genotypes, which requires a perfect precision (wide range of separation 

between cases and controls in expert algorithms as shown in the Figure 2).  The reduced 

precision rate (leading to a higher recall rates of cases and controls) of our method may influence 

the traditional association studies. However, as the development of computational phenotyping 

from EHR data, the association studies will involve more cases with diverse phenotypic 

characteristics such as comorbidities to enrich the association studies between phenotypes and 

genotypes. This is because, a disease may be caused by the joint effects of multiple SNPs (i.e. 

heterogeneity), while a SNP may lead to multiple diseases (i.e. pleiotropy).  

Conclusions 

Identifying subjects with and without T2DM is the first step to enable subsequent analysis such 

as GWAS and PheWAS. In this work, we propose an accurate and efficient framework as a pilot 

study to identify subjects with and without T2DM from EHR data. Our framework leverages 

machine learning to automatically extract patterns of T2DM. And we further boost its predictive 
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power by overcoming the wide separation rage of cases and controls in expert algorithms. Our 

feature engineering framework considers a diverse set of data features spanning diabetic 

diagnosis codes, diagnosis notes, complications, self-reports, medications (both standard and 

traditional Chinese medicine), and laboratory tests to represent diabetes related patients. Based 

on engineered features, we train classification models. We collected 160 T2DM cases and 61 

controls and use 4-fold cross validation strategy to evaluate performances of classification 

models.  The experimental results show that our framework can identify subjects with and 

without T2DM at an average AUC of around 0.98, significantly outperforming the state-of-the-

art at an AUC of 0.71.  
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Appendix A: A list of 110 constructed features 

The constructed 110 features across seven sources are listed in Table A1.  For every source, we 

design specific features covering diagnosis codes (ICD-10 codes E11. ***), diagnosis notes 

(positive notes and negative notes as shown in Table A3 of Appendix C), self-report notes 

(persistent hunger, polyuria, and polydipsia), medications (traditional Chinese medicine and 

western medicine), plasma glucose test (venous and peripheral) and HbA1C test. 

 

Table A1. The constructed 110 features coming from seven sources. 

Source category Feature 

Demographic information 

f1: De-identification ID of a subject 

f2: An integer number representing age 

f3: Gender 

Communication 

report 

Self-

reporting 

note 

f4: Number of times a subject reporting body weight loss 

f5: Number of times a subject reporting persistent hunger 

f6: Number of times a subject reporting polyuria 

f7: Number of times a subject reporting polydipsia 

f8: Number of times a subject reporting prescribed diabetes medicine 

f9: Number of returning visits for diabetes 

Diagnosis 

code 

f10: Number of times type 2 diabetes codes were assigned 

f11: Number of times diabetes codes were assigned, but the type of diabetes is not specified 

f12: Number of times diabetic retinopathy codes were assigned 

f13: Number of times diabetic neuropathy codes were assigned 

f14: Number of times diabetic eye disease codes were assigned 

f15: Number of times diabetic kidney disease codes were assigned 

f16: Number of times diabetic cerebral vascular disease codes were assigned 

f17: Number of times diabetic peripheral circulation  disease codes were assigned 
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Diagnosis 

note 

f18: Number of times clinician’s notes containing type 2 diabetes 

f19: Number of times clinician’s notes containing diabetes but the type was not specified 

f20: Number of times clinician’s notes containing diabetic retinopathy 

f21: Number of times clinician’s notes containing diabetic neuropathy 

f22: Number of times clinician’s notes containing diabetic eye disease 

f23: Number of times clinician’s notes containing diabetic kidney disease 

f24: Number of times clinician’s notes containing diabetic cerebral vascular disease  

f25: Number of times clinician’s notes containing diabetic peripheral circulation  disease  

Outpatient 

diagnosis record 

Diagnosis 

code 

f26: Number of times type 2 diabetes codes were assigned 

f27: Number of times diabetes codes were assigned, but the type of diabetes is not specified 

f28: Number of times diabetic retinopathy codes were assigned 

f29: Number of times diabetic neuropathy codes were assigned 

f30: Number of times diabetic eye disease codes were assigned 

f31: Number of times diabetic kidney disease codes were assigned 

f32: Number of times diabetic cerebral vascular disease codes were assigned 

f33: Number of times diabetic peripheral circulation  disease codes were assigned 

Diagnosis 

note 

f34: Number of times clinician’s notes containing type 2 diabetes 

f35: Number of times clinician’s notes containing diabetes but the type was not specified 

f36: Number of times clinician’s notes containing diabetic retinopathy 

f37: Number of times clinician’s notes containing diabetic neuropathy 

f38: Number of times clinician’s notes containing diabetic eye disease 

f39: Number of times clinician’s notes containing diabetic kidney disease 

f40: Number of times clinician’s notes containing diabetic cerebral vascular disease 

f41: Number of times clinician’s notes containing diabetic peripheral circulation  disease  

Inpatient discharge 

summary 

Diagnosis 

note 

f42: Number of times summary notes containing type 2 diabetes 

f43: Number of times summary notes containing diabetes but the type was not specified 

f44: Number of times summary notes containing diabetic retinopathy 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078634doi: bioRxiv preprint 

https://doi.org/10.1101/078634


f45: Number of times summary notes containing diabetic neuropathy 

f46: Number of times summary notes containing diabetic eye disease 

f47: Number of times summary notes containing diabetic kidney disease 

f48: Number of times summary notes containing diabetic cerebral vascular disease 

f49: Number of times summary notes containing diabetic peripheral circulation  disease 

Inpatient diagnosis 

record 

Diagnosis 

code 

f50: Number of times type 2 diabetes codes were assigned 

f51: Number of times diabetes codes were assigned, but the type of diabetes is not specified 

f52: Number of times diabetic retinopathy codes were assigned 

f53: Number of times diabetic neuropathy codes were assigned 

f54: Number of times diabetic eye disease codes were assigned 

f55: Number of times diabetic kidney disease codes were assigned 

f56: Number of times diabetic cerebral vascular disease codes were assigned 

f57: Number of times diabetic peripheral circulation  disease codes were assigned 

Diagnosis 

note 

f58: Number of times clinician’s notes containing type 2 diabetes 

f59: Number of times clinician’s notes containing diabetes but the type was not specified 

f60: Number of times clinician’s notes containing diabetic retinopathy 

f61: Number of times clinician’s notes containing diabetic neuropathy 

f62: Number of times clinician’s notes containing diabetic eye disease 

f63: Number of times clinician’s notes containing diabetic kidney disease 

f64: Number of times clinician’s notes containing diabetic cerebral vascular disease 

f65: Number of times summary notes containing diabetic peripheral circulation  disease 

Prescription record Medication 

f66: Number of prescriptions for oral hypoglycemic 

f67: Number of prescriptions for insulin  

f68: Number of prescriptions for Chinese traditional hypoglycemic 

f69: Number of prescriptions for a mixture of western and Chinese traditional oral

hypoglycemic 

f70: Number of prescriptions for Epalrestat 
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f71: Number of prescriptions for Alpha-glucosidase inhibitor 

f72: Number of prescriptions for Dipeptidylpeptidase IV(DPP-IV) inhibitors 

f73: Number of prescriptions for Meglitinides 

f74: Number of prescriptions for Sulfonylureas 

f75: Number of prescriptions for Thiazolidinediones 

f76: Number of prescriptions for Biguanides 

f77: Number of prescriptions for Incretin Mimetics 

f78: Number of prescriptions for GLP-1 (glucagon-like peptide 1) mimetics 

f79: Number of prescriptions for compounds of sulfonylurea and thiazolidinedione  

f80: Number of prescriptions for compounds of Biguanides and  Dipeptidylpeptidase IV(DPP-

IV) inhibitors 

f81: Number of prescriptions for compounds of Biguanides and  Sulfonylureas compounds 

f82: Number of prescriptions for compounds of Biguanides and  Thiazolidinediones 

Laboratory test 

reports 

Venous 

plasma 

glucose test 

f83: Number of times for 2-hours  plasma glucose tests 

f84: Number of times for  2-hours  plasma glucose tests≥11.1mmol/l (200mg/dl) 

f85: The maximum value of  2-hours  plasma glucose tests 

f86: The minimum value  of  2-hours  plasma glucose tests 

f87: The number of times for  fasting plasma glucose tests 

f88: The number of  times for fasting plasma glucose tests ranging from 6.1 to 7.0 mmol/l (110

and 126 mg/dl) 

f89: The maximum value of  fasting plasma glucose tests 

f90: The minimum value of  fasting plasma glucose tests 

f91: Number of times for random plasma glucose tests 

f92: Number of times for random plasma glucose tests≥11.1mmol/l (200mg/dl) 

f93: The maximum value of random plasma glucose tests 

f94: The minimum value of random plasma glucose tests  

f95: Number of times for 2-hours peripheral plasma glucose tests 

f96: Number of times for  2-hours  peripheral  plasma glucose tests ≥ 11.1mmol/l (200mg/dl)
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Peripheral  

plasma 

glucose test 

f97: The maximum value of  2-hours peripheral  plasma glucose tests 

f98: The minimum value of  2-hours peripheral  plasma glucose tests 

f99: Number of times for peripheral  fasting plasma glucose tests 

f100: Number of times for peripheral  fasting plasma glucose tests ranging from 6.1 to 7.0

mmol/l (110 and 126 mg/dl) 

f101: The maximum value of  peripheral  fasting plasma glucose tests 

f102: The minimum value of  peripheral  fasting plasma glucose tests 

f103: Number of times for random peripheral  plasma glucose tests 

f104: Number of times for random  peripheral  plasma glucose tests ≥ 11.1mmol/l (200mg/dl)

f105: The maximum value of random  peripheral  plasma glucose tests 

f106: The minimum value of random  peripheral  plasma glucose tests 

HbA1C test 

f107: Number of times for HbA1c tests 

f108: Number of times for HbA1C tests ≥ 6.5% 

f109: The maximum value of  HbA1C tests 

f110: The minimum value of  HbA1C tests 
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Appendix B: A list of diabetic medicine 

Medicine is a principal factor to characterize phenotypes of subjects with type 2 diabetes mellitus 

(T2DM). In this paper, we use prescribed medicine listed in Table A2 as one of our seven sources 

to construct medicine related features as listed in Table A1. 

Table A2. A list of medicine associated with subjects with type 2 diabetes mellitus 

Category of 

medicine 

Chinese generic 

name  
Translated English generic name 

Western 

Medicine 

依帕司他 Epalrestat (A medicine treating for diabetic neuropathy) 

阿卡波糖 Acarbose (Alpha-glucosidase inhibitor) 

伏格列波糖 Voglibose (Alpha-glucosidase inhibitor) 

米格列醇 Miglitol (Alpha-glucosidase inhibitor) 

利拉利汀 Linagliptin (Dipeptidylpeptidase IV(DPP-IV) inhibitors) 

沙格列汀 Saxagliptin (Dipeptidylpeptidase IV(DPP-IV) inhibitors) 

维格列汀 Vidagliptin (Dipeptidylpeptidase IV(DPP-IV) inhibitors) 

西格列汀 Sitagliptin (Dipeptidylpeptidase IV(DPP-IV) inhibitors) 

那格列奈 Nateglinide (Meglitinides) 

瑞格列奈 Regalinide (Meglitinides) 

醋酸己脲 Acetohexamide (Sulfonylureas) 

格列本脲 Glyburide (Sulfonylureas) 

格列吡嗪 Glipizide (Sulfonylureas) 

格列喹酮 Gliquidone (Sulfonylureas) 

格列美脲 Glimepiride (Sulfonylureas) 

格列齐特 Gliclazide (Sulfonylureas) 

甲苯磺丁脲 Tolbutamide (Sulfonylureas) 

氯磺丙脲 Chlorpropamide (Sulfonylureas) 

马来酸罗格列酮和

格列美脲 
Glimepiride and rosiglitazone 

西格列汀二甲双胍

片 
Metformin and sitagliptin 

二甲双胍格列吡嗪 Metformin and glipizide 

格列本脲盐酸二甲

双胍 
Metformin and glyburide 

吡格列酮二甲双胍 Metformin and pioglitazone 
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二甲双胍马来酸罗

格列酮片 
Metformin and rosiglitazone 

吡格列酮 Pioglitazone (Thiazolidinediones) 

罗格列酮 Rosiglitazone (Thiazolidinediones) 

曲格列酮 Troglitazone (Thiazolidinediones) 

苯乙双胍 Phenformin (Biguanides) 

二甲双胍 Metformin (Biguanides) 

普兰林肽 Pramlintide (Incretin Mimetics) 

艾塞那肽 Exenatide symthetic (GLP-1(glucagon-like peptide 1) mimetics) 

利拉鲁肽 Liraglutide (GLP-1(glucagon-like peptide 1) mimetics) 

利西拉来 Lixisenatide (GLP-1 (glucagon-like peptide 1) mimetics) 

Integration of 

Traditional 

Chinese 

Medicine and 

Western 

Medicine 

葛根消渴丸 XiaoKeWan (The Root of Kudzu Vine) 

地黄消渴丸 XiaoKeWan (Radices Rehmanniae) 

黄芪消渴丸 XiaoKeWan (Astragalus Mongholicus) 

天花粉消渴丸 XiaoKeWan (Radix Trichosanthis) 

玉米须消渴丸 XiaoKeWan (Stigmata Maydis) 

南五味子消渴丸 XiaoKeWan (Kadsura Longepedunculata) 

山药消渴丸 XiaoKeWan (Chinese Yam) 

格列本脲消渴丸 XiaoKeWan (Glibenclamide) 

Traditional 

Chinese 

Medicine 

参花消渴茶 

ShenHuaXiaoKeCha (Ginseng, Astragalus Mongholicus, The Root of Kudzu 

Vine, Rhizoma Anemarrhenae, Radix Trichosanthis, Cortex Lycii Radicis, 

Radix Polygonati Officinalis, Green Tea, Rhizoma Phragmitis, Carthamus 

Tinctorious, The Dodder Weed, Gypsum,  Platycodon Grandiflorum) 

参芪降糖 

ShenQiJiangTang (Panax Ginseng Leaves Extract,The Fruit of Chinese 

Magnoliavine, Astragalus Mongholicus, Chinese Yam, Radices Rehmanniae,  

Fructus Rubi, Radix Ophiopogonis, Poria Cocos, Radix Trichosanthis, The 

Rhizome of Oriental Water Plantain, The Fruit of Chinese Wolfberry) 

地骨降糖 
DiGuJiangTang (Radix Curcumae, Cortex Lycii Radicis, Fructus Perillae, 

Tortoise Shell, Lumbricus, Leech, Cordyceps Sinensis) 

甘露消渴 

GanLuXiaoKe (Prepared Rehmannia Root, Radices Rehmanniae, Cortex 

Lycii Radicis, Ginseng, The Fruit of Chinese Wolfberry, Astragalus 

Mongholicus, The Dodder Weed, Fructus Corni, Codonopsis Pilosula, Coptis 

Chinensis) 

降糖甲 

JiangTangJia (Astragalus Mongholicus, Rhizoma Polygonati, Radices 

Rehmanniae, Radix Pseudostellariae, Radix Trichosanthis, Ginseng, Chinese 

yam, Gypsum, Rhizoma Anemarrhenae, Astragalus Mongholicus, Radix 

Trichosanthis, Poria Cocos, Radix Ophiopogonis, Radix Rehmanniae Recens, 

Cortex Lycii Radicis, Stigmata Maydis, Fructus Corni, Liquorice) 

降糖宁 

JiangTangNing (Ginseng, Chinese yam, Gypsum, Rhizoma Anemarrhenae, 

Astragalus Mongholicus, Radix Trichosanthis, Poria Cocos, Radix 

Ophiopogonis, Radix Rehmanniae Recens, Cortex Lycii Radicis, Stigmata 

Maydis, Fructus Corni, Liquorice) 

降糖舒胶囊 
JiangTangShuJiaoNang (Ginseng, The Fruit of Chinese Wolfberry, 

Astragalus Mongholicus, Radix et Caulis Acanthopanacis Senticosi, Rhizoma 
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Polygonati, Semen Amomi Amari, Concha Ostreae, Radices Rehmanniae, 

Prepared Rehmannia Root, The Root of Kudzu Vine, The Root of Red-Rooted 

Salvia, Semen Litchi, Rhizoma Anemarrhenae, Gypsum, Semen Euryales, 

Chinese Yam, Radix Scrophulariae, The Fruit of Chinese Magnoliavine, 

Radix Ophiopogonis, The Root of Three-nerved Spicebush, Radix 

Trichosanthis, Fructus Aurantii) 

金芪降糖 

JinQiJiangTang (Pearl, Astragalus Mongholicus, Rhizoma Polygonati, 

Scutellaria Baicalensis, Radices Rehmanniae, Radix Trichosanthis, Radix 

Ophiopogonis, Dendrobe, Cicada Slough, Endothelium Corneum Gigeriae 

Galli, Chinese Yam, Semen Astragali Complanati, Pericarpium Citri 

Reticulatae Viride, The Root of Kudzu Vine ) 

 

晶珠糖尿康 

JingZhuTangNiaoKang (Fructus Chebulae, Carthamus Tinctorious, 

Amomum Kravanh, Rock Extract, Shellac, Radix Et Rhizoma Rubiae, Fructus 

Phyllanthi, Turmeric, Berberis Kansuensis Schneid, Tribulus Terrestris L., 

Lapis Micae Aureus, Juniperus Formosana, Saxifraga Umbellulata Hook. f. et 

Thoms, Corydalis Impatiens, Leguminosae, Bear Gall, Bos Taurus 

Domesticus Gmelin ) 

渴乐宁 
KeLeNing (Astragalus Mongholicus, Rhizoma Polygonati, Radices 

Rehmanniae, Radix Pseudostellariae, Radix Trichosanthis ) 

糖脉康 

TangMaiKang (Astragalus Mongholicus, Radix Rehmanniae Recens, The 

Root of Red-rooted Salvia, The Root of Kudzu Vine, Folium Mori, Herba 

Epimedii) 

糖尿乐 

TangNiaoLe (Radix Trichosanthis, Radix Ginseng Rubra, Chinese Yam, 

Astragalus Mongholicus, Radices Rehmanniae, The Fruit of Chinese 

Wolfberry, Rhizoma Anemarrhenae, Fructus Corni, The Root of Kudzu Vine, 

The Fruit of Chinese Magnoliavine, Radix Asparagi, Poria Cocos, 

Endothelium Corneum Gigeriae Galli) 

糖脂消 

TangZhiXiao (Astragalus Mongholicus, The Root of Red-rooted Salvia, 

Stephania Tetrandra, Cortex Lycii Radicis, Coptis Chinensis, Bighead 

Atractylodes Rhizome) 

洗胰清糖素 
XiYiQingTangSu (Folium Mori, The Root of Kudzu Vine, Balsam Pear, 

Radix Polygonati Officinalis) 

消渴康 

XiaoKeKang (Gypsum, Rhizoma Anemarrhenae, Radix Rehmanniae Recens, 

Radix Ophiopogonis, Radix Trichosanthis, Radix Polygonati Officinalis, 

Radix Scrophulariae, The Root of Bidentate Achyranthes, The Root of Red-

rooted Salvia, The Rhizome of Oriental Water Plantain, Codonopsis Pilosula, 

Fructus Corni, Folium Eriobotryae, Kadsura Longepedunculata) 

消渴灵片 

XiaoKeLing Pian (Radices Rehmanniae, The Fruit of Chinese Magnoliavine, 

Radix Ophiopogonis, Cortex Moutan Radicis, Astragalus Mongholicus, 

Coptis Chinensis, Poria Cocos, Radix Ginseng Rubra, Radix Trichosanthis, 

Gypsum, The Fruit of Chinese Wolfberry) 

玉泉丸 

YuQuanWan (The Root of Kudzu Vine,Radix Trichosanthis, Radices 

Rehmanniae, Radix Ophiopogonis, The Fruit of Chinese Magnoliavine, 

Liquorice) 

珍芪降糖 

ZhenQiJiangTang (Pearl, Astragalus Mongholicus, Rhizoma Polygonati, 

Scutellaria Baicalensis, Radix Rehmanniae Recens, Radix Trichosanthis, 

Radix Ophiopogonis, Dendrobe, Cicada Slough, Endothelium Corneum 

Gigeriae Galli, Chinese Yam, Semen Astragali Complanati, Pericarpium Citri 

Reticulatae Viride, The Root of Kudzu Vine ) 
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Appendix C: A list of positive and negative diagnosis notes related with T2DM 

Diagnosis notes existing in diagnosis reports or clinical summaries are represented as unstructured 

texts. We create a dictionary of diagnosis notes related with T2DM. There are two types of 

diagnosis notes: positive and negative. We assume that if a subject’s EHR data contains positive 

diagnosis notes, but not negative diagnosis notes, then the positive diagnosis notes are counted to 

construct features associated with diagnosis notes. 

Table A3. A list of positive and negative diagnosis notes related with T2DM 

Diagnosis note 

category 
Chinese notes Translated English notes 

Positive diagnosis

notes 

2 型糖尿病 

Type 2 diabetes 

2-糖尿病 

2型糖尿病 

2-型糖尿病 

2型糖尿病  

Ⅱ型糖尿病 

II 型糖尿病 

II糖尿病 

II型糖尿病 

二型糖尿病 

糖尿病 II型 

糖尿病（Ⅱ型） 

糖尿病 2 
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糖尿病 2型 

糖尿病Ⅱ型 

糖尿病 II 

糖尿病 II型 

非胰岛素依赖型糖尿病 Noninsulin-dependent diabetes mellitus 

糖尿病 Diabetes mellitus 

Negative 

diagnosis notes 

排除糖尿病 

Exclusion of diabetes  

非糖尿病 

糖尿病的特殊筛查 

Special screening for diabetes  

糖尿病特殊筛查 

糖尿病母亲的婴儿综合征 

Syndrome of infant of diabetic mother  

糖尿病母亲的婴儿综合征 

母亲伴妊娠糖尿病的婴儿综合征 

妊娠糖尿病母亲婴儿综合征 

糖尿病家族史 Family history of diabetes mellitus  

潜伏性糖尿病 Occult diabetes 

早期型糖尿病 Early type diabetes  

隐性糖尿病 Latent diabetes 

化学性糖尿病 Chemical diabetes 

糖尿病前期 Prediabetes 

胰岛素和口服降血糖[抗糖尿病]药中毒 Oral hypoglycemic drug poisoning 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078634doi: bioRxiv preprint 

https://doi.org/10.1101/078634


口服降血糖[抗糖尿病]药中毒 
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Appendix D: A list of 36 features summarized from 110 features as listed in Table A1 

Features listed in Table A1 are extracted from seven sources, however, several features across 

sources are correlated. For instance, diagnosis-code related features appearing in “communication 

report”, “outpatient diagnosis record” and “inpatient diagnosis record” are similar. These features 

have the same definition in above three sources, so they can be summarized as a new feature. In 

this way, eight new features (f’10 to f’17) in the category of diagnosis codes as shown in Table A4 

are summarized from 24 features (f10 to f17, f26 to f33, f50 to f57) from Table A1.  By using the same way, 

we summarize 32 similar diagnosis-note related features appearing in “communication report” (f18 

to f25), “outpatient diagnosis record” (f34 to f41), “inpatient diagnosis record” (f42 to f49) and “inpatient 

discharge summary” (f58 to f65) into 8 new features (f’18 to f’25) in the category of diagnosis notes as 

shown in Table A4.  

Features as listed in the “laboratory test report” of Table A1 are also correlated with each 

other. For instance, features ranging from f83 to f86 are all correlated with venous 2-hours plasma 

glucose test. In order to reduce negative influences of correlated features on the performances of 

classification models such as k nearest neighbors, we only keep features which are positive signals 

of type 2 diabetes. For instance, feature f84 characterizing the number of times 2-hours plasma 

glucose test≥11.1mmol/l, which is a positive signal of type 2 diabetes conditions. So do feature 

f88, f92, f96, f100, f104 and f108. 

Most of subjects only take a small number of medicine listed in Table A2, as a result, the 

data covering features ranging from f66 to f82 has a big sparsity, which will influence the 

performances of computational models to learn patterns of T2DM [1]. In order to avoid a big 

sparsity, we transform original features ranging from f66 to f69 into new ones ranging from f’26 to 

f’29 as shown in Table A4.  
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Table A4. The original 110 constructed features as shown in Table A1 are transformed into 36 

features via summarizing similar features across seven sources: “communication report”, 

“outpatient diagnosis record”, “inpatient diagnosis record”, “inpatient discharge summary”, 

“prescription report” and “laboratory report”. 

Category of features New Merged Feature 

Demographic information 

f’1 = f1 

f’2 = f2 

f’3 = f3 

Self-reporting notes 

f’4 = f4 

f’5 = f5 

f’6 = f6 

f’7 = f7 

f’8 = f8 

f’9 = f9 

Diagnose codes 

f’10=f10+f26+f50 

f’11=f11+f27+f51 

f’12=f12+f28+f52 

f’13=f13+f29+f53 

f’14=f14+f30+f54 

f’15=f15+f31+f55 
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f’16=f16+f32+f56 

f’17=f17+f33+f57 

Diagnose notes 

f’18=f18+f34+f42+f58 

f’19=f19+f35+f43+f59 

f’20=f20+f36+f44+f60 

f’21=f21+f37+f45+f61 

f’22=f22+f38+f46+f62 

f’23=f23+f39+f47+f63 

f’24=f24+f40+f48+f64 

f’25=f25+f41+f49+f65 

Medication 

f’26 = f66 

f’27 = f67 

f’28 = f68 

f’29 = f69 

Plasma glucose  and HbA1C tests 

f’30=f84 

f’31=f88 

f’32=f92 

f’33=f96 

f’34=f100 
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f’35=f104 

f’36=f108 
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Appendix E: A list of 8 features summarized from 36 features as listed in Table A4 

36 features in Table A4 are summarized as 8 features in following 6 categories: 

(1) Patients’ demographic information: ranging from f’’1 to f’’3.  

(2) Self-report: summarize 6 features ranging from f’4 to f’9 in Table A4 as f’’4 in Table A5 

to represent the total number of times diabetic phenomena such as body weight loss, 

persistent hunger, polyuria, polydipsia, prescribed diabetes medicine and returning visits 

for diabetes were reported by subjects in the source of “communication report”. 

(3)  Diagnosis code: summarize 8 features ranging from f’10 to f’17 in Table A4 as f’’5 in Table 

A5 to represent the total number of times diabetic diagnosis-codes are assigned to a subject 

in “communication report”, “outpatient diagnosis record” and “inpatient diagnosis 

report”. 

(4) Diagnosis note: summarize 8 features ranging from f’18 to f’25 in Table A4 as f’’6 in Table 

A5 to represent the total number of times diabetic diagnosis-notes are described in a 

subject’s “communication report”, “outpatient diagnosis record”, “inpatient diagnosis 

record” and “inpatient discharge summary”. 

(5) Medication:  summarize 4 features ranging from f’26 to f’29 in Table A4 as f’’7 in Table A5 

to represent the total number of times diabetic medicines as listed in Table A2 are 

prescribed in a subject’s prescription record.  

(6) Plasma glucose and HbA1C test: summarize 7 features ranging from f’30 to f’36 in Table 

A4 as f’’8 in Table A5 to represent the total number of times venous plasma glucose, 

peripheral plasma glucose (fasting plasma glucose ≥126 mg/dl or 2-hours plasma 

glucose≥200 mg/dl or random plasma glucose ≥200 mg/dl) and HbA1C tests are abnormal.  
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Table A5. The 8 features after summarizing related features within a category such as “self-

reporting note”, “diagnosis code”, “diagnosis note”, “medication”, “plasma glucose” and 

“HbA1C test”. 

Category of features Feature 

Demographic information 

f’’1 = f’1 

f’’2 = f’2 

f’’3 = f’3; 

Self-reporting note f’’4 = f’4+ f’5+ f’6+ f’7+ f’8+ f’9 

Diagnosis code f’’5 = f’10+ f’11+ f’12+ f’13+ f’14+ f’15+ f’16+ f’17 

Diagnosis note f’’6 = f’18+ f’19+ f’20+ f’21+ f’22+ f’23+ f’24+ f’25 

Medication f’’7 = f’26+ f’27+ f’28+ f’29 

Plasma glucose  and HbA1C

test 

f’’8 = f’30+ f’31+ f’32+ f’33+ f’34+ f’35+ f’36 
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Appendix F: Expert algorithm for the identification of subjects with T2DM  

The expert algorithm2 we used as our baseline to do performance comparisons is depicted in Figure 

A1. The performance of the algorithm had been successfully validated at multiple eMERGE 

Network3 sites in the USA. The algorithms utilized various types of information including 

diagnosis codes, medication orders, laboratory results and clinical notes. We applied this algorithm 

on all of our investigated EHR sources including diagnoses, laboratory results, medications, 

communication reports and clinical notes. Notably, the expert algorithm and our approach both 

used the same EHR sources.  

Figure A1. Expert algorithm for the identification of subjects with T2DM 
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