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Abstract: The outcomes of hypertension refer to the death or serious complications (such as myocardial

infarction or stroke) that may occur in patients with hypertension. The outcomes of hypertension are

very concerning for patients and doctors, and are ideally avoided. However, there is no satisfactory

method for predicting the outcomes of hypertension. Therefore, this paper proposes a prediction

method for outcomes based on physical examination indicators of hypertension patients. In this work,

we divide the patients’ outcome prediction into two steps. The first step is to extract the key features

from the patients’ many physical examination indicators. The second step is to use the key features

extracted from the first step to predict the patients’ outcomes. To this end, we propose a model

combining recursive feature elimination with a cross-validation method and classification algorithm.

In the first step, we use the recursive feature elimination algorithm to rank the importance of all

features, and then extract the optimal features subset using cross-validation. In the second step, we

use four classification algorithms (support vector machine (SVM), C4.5 decision tree, random forest

(RF), and extreme gradient boosting (XGBoost)) to accurately predict patient outcomes by using their

optimal features subset. The selected model prediction performance evaluation metrics are accuracy,

F1 measure, and area under receiver operating characteristic curve. The 10-fold cross-validation

shows that C4.5, RF, and XGBoost can achieve very good prediction results with a small number of

features, and the classifier after recursive feature elimination with cross-validation feature selection

has better prediction performance. Among the four classifiers, XGBoost has the best prediction

performance, and its accuracy, F1, and area under receiver operating characteristic curve (AUC)

values are 94.36%, 0.875, and 0.927, respectively, using the optimal features subset. This article’s

prediction of hypertension outcomes contributes to the in-depth study of hypertension complications

and has strong practical significance.

Keywords: hypertension outcomes; feature selection; recursive feature elimination; classification

algorithm; XGBoost; prediction

1. Introduction

Hypertension is the most common chronic disease, and it is also the most important risk factor

of cardiovascular and cerebrovascular diseases. Hypertension is the leading preventable cause

of premature death worldwide. According to Mills et al., in 2010 there were approximately 1.33

billion people with hypertension worldwide, accounting for 19.3% of the world’s total population [1].

According to Kearney et al., by 2025 global hypertension patients will reach 1.56 billion [2]. Outcome

of hypertension is a clinical concept that refers to the death or serious complications (myocardial
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infarction, stroke, etc.) that may occur in patients with hypertension. In clinics, the incidence of

outcomes is not high, but once they occur they cause irreversible serious injury to patients.

Complications of hypertension refer to the diseases caused by hypertension. Studies have

shown that hypertension is associated with a variety of adverse clinical symptoms, including cardiac

complications, stroke, atherosclerosis, hypertensive kidney damage, and so on. These undesirable

clinical features are the result of target organs damaged by hypertension [3,4]. Complications caused

by hypertension pose a serious threat to patients’ health and life. Because about 50% of young and

middle-aged hypertensive patients are asymptomatic, it is not easy for them to detect the threat of

complications. Studies show that only 35.5% of patients have a good understanding of hypertension

complications and related treatments [5]. Hypertensive complications are an important cause of death

in hypertensive patients and impose a huge burden on families and the whole society [6].

In 2014, to determine the risk factors for complications of hypertension among patients attending

the medical Out-Patient Department (OPD) of Sree Mookambika Institute of Medical Sciences (SMIMS),

Devadason [7] obtained 100 hypertensive patients. 100 non-hypertensive patients from the same

OPD were used as control group. Through analysis and comparison, family history of hypertension

(Odds Ratio = 2.614, p = 0.002) and obesity (Odds Ratio = 1.833, p = 0.040) were determined as the

main risk factors for hypertension. In his research, the number of factors affecting complications was

not sufficient. In 2014, Wonji Lee et al. [8] used the classification algorithm to predict hypertension

complications. This is the only research on prediction of hypertension complications in the literature

so far. They used the sample national healthcare database established by Korean National Health

Insurance Corporation for this research. The factors they chose included socio-demographic variables,

medical treatment records, health check-up indices, behavior variables, and family history. Finally, they

selected 27 influencing factors. The data set contained a total of 10,814 hypertensive patients, including

1739 patients with complications. Patients with complications accounted for 17% of the total number.

They used three algorithms of logistic regression, linear discriminant analysis, and classification and

regression trees to predict complications. After five-fold cross-validation, the accuracy rates of the

three methods on the test set were not more than 60%. The three methods they proposed for predicting

complications were less effective, and were obviously unsatisfactory for the binary task. These methods

do not make much sense in practical applications (prediction of complications).

Various machine learning techniques have been widely used in medicine, such as disease

prediction, disease classification, and medical image recognition techniques. Ospina et al. proposed a

random forest tissue complication probability model (RF-NTCP) to predict late rectal toxicity after

radiotherapy for prostate cancer. The area under the receiving operating characteristic curve (AUC)

of this model is between 0.62 and 0.69. He used random forests to predict breast cancer survival,

which are more accurate than traditional logistic regression methods [9]. Su used decision tree and

serum test data to predict whether an individual had gastric cancer. Experiments showed that the

accuracy of this method was 86.45% [10]. Hassan et al. proposed a hill-climbing feature selection

algorithm that combines machine learning techniques (multi-layer perceptron, support vector machines,

C4.5, classification and regression trees, and random forests) to more accurately analyze and predict

pregnancy after IVF treatment. They put forward an effective method to identify the impact factors

and the prediction effect was very good [11]. Austin used a machine learning method to classify heart

failure subtypes [12]. Man et al. proposed an optimal weight learning machine and applied it to

handwritten image recognition [13].

Medical research on hypertension has always been a great concern. Many hospitals and research

institutes collect medical data of hypertension patients through follow-up, establish electronic cases

and medical databases, and accumulate a large amount of medical data. This provides data support for

predicting outcomes of hypertension and identifying key influencing factors using machine learning

technology. It is very effective to use machine learning models to automatically identify the significant

factors of outcomes and establish an effective prediction model. The knowledge gained from these

machine learning models will help doctors make decisions, make treatment plans, and give patients



Diagnostics 2019, 9, 178 3 of 21

effective advice. Ye et al. used the statewide electronic health record to predict the risk of hypertension

within a year using the extreme gradient boosting (XGBoost) method [14]. Park used different machine

learning methods to predict high-risk vascular disease in patients with hypertension [15].

For hypertensive patients and doctors, whether the hypertensive outcomes occur are the events

that they are most concerned about. Since the impact of outcomes on patients’ life and health is often

irreversible, the incidence of outcomes must be reduced. To achieve effective prevention, we must

first effectively predict the outcomes. Only by effectively predicting the outcomes can doctors provide

targeted treatment interventions for patients and control the patient’s condition, so as to effectively

reduce the occurrence of outcomes that patients are most concerned about. Despite the enormous harm

caused by hypertension outcomes, there are few studies on how to predict hypertension outcomes

(death or complications). In this paper, some classical machine learning algorithms were used to

find the influencing factors of hypertension outcomes and predict the outcomes effectively. These

machine learning models can automatically help doctors identify key factors in a large number of

medical indicators. At the same time, these models give suggestions on whether hypertension patients

will have outcomes and help doctors make informative decisions. The key factors and potential

knowledge identified by these machine learning models may play a positive role in medicine, better

promoting the research and treatment of hypertension outcomes. Regarding the research object and

the characteristics of the data set, this paper selects the following four machine learning techniques:

support vector machine (SVM), C4.5 decision tree, random forest, and XGBoost. SVM can achieve

better generalization ability in small sample classification tasks, and has been widely used in medical

fields. C4.5 decision tree also achieves good results in classification tasks, and has good interpretability.

Random forest and XGBoost are two typical ensemble learning algorithms. Random forest has been

widely used in medical fields. XGBoost is a relatively new method, but it has achieved excellent results

in many classification tasks. In addition, we used recursive feature elimination with cross-validation

(RFECV) method for feature selection. This method combined with a classifier can identify the most

influential factors and improve the prediction performance.

Support vector machine (SVM) was first proposed by Corinna, Cortes, and Vapnik in 1995 [16].

It has many unique advantages in solving small-sample, nonlinear, and high-dimensional pattern

recognition. Given a sample set, the basic idea of classification learning is to find a partition hyperplane

in the sample space based on the training set. This partition hyperplane can separate different categories

of samples. There may be many hyperplanes with which to divide the training set. SVM aims to

find a hyperplane so that different classes of points in the training sample set fall on both sides of the

hyperplane, and the blank area on both sides of the hyperplane is required to reach the maximum.

For two-dimensional linear separable data, SVM can theoretically achieve the optimal classification.

When it is extended to high-dimensional space, the optimal classification line is called the optimal

hyperplane [17]. SVM has a strong theoretical foundation and can ensure that the extremum solution

is the global optimal solution rather than the local minimum, which means that the SVM method

has good generalization ability for unknown samples. Because of these advantages, SVM can be

well-applied to pattern recognition, time series prediction, and regression estimation, among others. It

is also widely used in many fields, such as handwritten character recognition, text classification, image

classification, and recognition [18–22].

Decision tree is a common machine learning algorithm, which uses a “tree structure” to make

decisions. Decision tree is easy to understand because of its simple hierarchy and processing

mechanisms. Generally, a decision tree contains one root node, several internal nodes, and several leaf

nodes. Leaf nodes correspond to the decision results, and other nodes correspond to an attribute test.

The samples contained in each node are divided into sub-nodes according to the results of attribute

test, and the root node contains the entire sample set. The path from the root node to the final leaf

node corresponds to a decision test sequence. The process of decision tree training follows a simple

and intuitive “divide and conquer” strategy, which is a recursive process. The purpose of decision tree

learning is to produce a decision tree with strong generalization ability [23].
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For a data set, a decision tree is generated in a variety of forms. The key to decision tree learning

is how to select the optimal partitioning attributes. Shannon entropy is a good way to divide attributes.

Based on this, Hssina invented the Iterative Dichotmizer 3 (ID3) and C4.5 decision tree algorithms. ID3

uses information gain as a measure of feature selection, while C4.5 uses information gain ratio as a

measure of feature selection. C4.5 inherits the advantages of ID3, and the prediction effect is usually

better than ID3 [24]. Based on different attribute partitioning principles, a decision tree has many

branches. Studies have shown that a C4.5 decision tree usually achieves better classification results

than other decision trees [25].

Random forest (RF) is an extension of bagging method [26], a typical ensemble learning method.

The principle of bagging method is as follows: Given a data set containing m samples, one sample is

randomly selected and put into the sample set, and then the sample is put back into the initial data set,

so that the sample may still be selected at the next sampling time. In this way, after m random sampling

operations, we get a sample set with m samples. Some samples in the initial training set appear many

times in the resampling set, and some never appear. T samples containing m training samples are

selected, then a basic learner is trained based on each sample set, and then these basic learners are

combined. Bagging usually uses a simple voting method for tasks. The base learner of RF is a decision

tree, and random attribute selection is introduced in the training process of the decision tree. RF is

simple, understandable, computationally inexpensive, and has achieved powerful performance in

many real-world tasks, known as “methods representing the level of ensemble learning technology”.

RF has been applied in gene selection, remote sensing classification, image recognition, and disease

prediction, among others, and has achieved good results [27–29].

Extreme gradient boosting (XGBoost) is a new gradient boosting ensemble learning method.

It is a C++ implementation of Tianqi’s gradient boosting tree algorithm. It implements a machine

learning algorithm under the framework of gradient boosting, and has high efficiency, flexibility, and

portability [30]. Tree boosting is a highly effective and widely used machine learning method that

belongs to boosting ensemble learning [31]. Boosting is a family of algorithms that can turn weak

learners into strong learners. Tree boosting (gradient tree boosting is also known as gradient boosting

machine (GBM) or gradient boosted decision tree (GBDT)) has been shown to give state-of-the-art

results on many standard classification benchmarks [32].

The GBDT algorithm only uses the first derivative. The value of the current nth tree is related

to the residual of the first n − 1 trees, and it is difficult to achieve. XGBoost takes advantage of the

second-order Taylor expansion of the loss function, and adds a regularization term to balance the

complexity of the model and the decline of the loss function. It seeks the optimal solution as a whole

and avoids overfitting to some extent. XGboot can automatically implement gradient tree boosting

algorithms in parallel by using a multi-thread CPU, which makes the algorithms run faster and

improves the algorithm precision.

Suppose the model has t decision trees because XGBoost is a boosting algorithm based on residuals

ŷi
(t) =

t
∑

k=1

fk(xi) =ŷi
(t−1) + ft(xi), fk ∈ F, i ∈ n (1)

where ŷi
(t) represents the predicted value of the sample i, which is the value obtained by adding the

predicted values of t decision trees; n is the total number of samples, subscript i represents the i-th

sample, ft is the t-th regression tree, and F is the collection space of all trees.

The loss function is:

L(t) =
n
∑

i=1

l
(

yi, ŷi
(t)
)

+
t
∑

k=1

Ω( fk) (2)
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where l represents the degree of deviation between predicted value ŷi
(t) and true value yi; the second

part of the formula (2) represents the sum of complexity of each tree, and Ω( fk) = γ ∗ T + 1
2λ‖w‖

2, T is

the number of leaf nodes, γ is the weight of leaf nodes, and λ and ω are regular coefficients.

Combining Equations (1) and (2) with the Taylor expansion of loss function, Equation (3)

is obtained.

L(t) =
n
∑

i=1
l[yi, ŷi

(t−1) + fi(xi)] + Ω( ft) +
t−1
∑

k=1
Ω( fk) =

n
∑

i=1
[l
(

yi, ŷi
(t−1)
)

+ gi ft(xi) +
1
2 hi f 2

t
(xi)] + Ω( ft) +

t−1
∑

k=1
Ω( fk)

n
∑

i=1
[gi ft(xi) +

1
2 hi f 2

t
(xi)] + γT + 1

2λω
2
j
+ C

(3)

where gi is the first derivative, hi is the second derivative, and C is the constant.

gi = ∂ŷi
[t−1] l
(

yi, ŷi
t−1
)

(4)

hi = ∂
2

ŷi
[t−1]

l
(

yi, ŷi
t−1
)

(5)

C =
n
∑

i

l
(

yi, y
[t−1]
i

)

+
t−1
∑

k=1

Ω( fk) (6)

Definition I j =
{

i
∣

∣

∣q(xi) = j
}

represents a sample set of leaf nodes j. After the constant term is

removed from Equation (3), and the derivative is 0, the optimal solution ω∗
j

can be obtained.

ω∗j = −
G j

H j + λ
(7)

G j =
∑

i∈I j

gi (8)

H j =
∑

i=I j

hi (9)

Bringing the optimal solution ω∗
j

into Equation (3), we get Equation (10):

L(t) = −
1

2

T
∑

j=1

G2
j

H j + λ
+ λT + C (10)

XGBoost uses a greedy algorithm to segment existing nodes each time, in comparison to GBDT

using partitioning criteria to minimize mean square deviation. Suppose IL and IR are the set of left and

right nodes after segmentation, I = IL ∪ IR, then the information gain after segmentation is:

L(split)= Gain =
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
+

(GL + GR)
2

HL + HR + λ
] − γ (11)

GL =
∑

i∈IL

gi GR =
∑

i∈IR

gi HL =
∑

i∈IL

hi HR =
∑

i∈IR

hi (12)

As can be seen from Equation (11), similar to ID3, C4.5, and Classification and Regression Tree

(CART), XGBoost determines whether a node is splitting by subtracting the unsplit node score from

the left and right splitting node scores. At the same time XGBoost considers the complexity of the

model, adding the regular term λ to limit the growth of the tree. When the gain is less than λ, no node

splitting is performed.
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In this paper, there are several innovations in comparison with previous predictions of hypertension

complications: (1) The study is aimed at the outcomes of hypertension, and the outcomes are

complications that pose a major threat to human life. There has been no previous research on this

subject. Accurate prediction of high blood pressure outcomes can help doctors make judgments, and

doctors can perform preventive treatment on patients based on the results. (2) Previous studies have

used all the characteristics of patients for prediction. The method in this paper can automatically

select the key factors that cause the outcomes of hypertension, thus reducing the complexity of the

prediction method. (3) The method proposed in this paper has higher prediction accuracy and better

effect. (4) The result of this paper is the successful application of machine learning methods in the

medical field. It has important practical significance for the in-depth study of serious complications

of hypertension.

The other chapters of this paper are arranged below. The second chapter introduces the methods

and processes, the third chapter is the analysis and discussion of the results, and the fourth chapter is

the conclusion.

2. Materials and Methods

2.1. Recursive Feature Elimination with Cross-Validation (RFECV)

Some data sets have very high feature dimensions, and even dimensions that exceed the number

of samples in the data set. An excessive number of features does not mean that the model is better;

on the contrary, it will lead to inefficiency in the modeling process. The main reason is that there is a

lot of redundant information and noise in high-dimensional data. Therefore, how to extract useful

information from high-dimensional data plays an important role in subsequent modeling. Feature

selection algorithm can effectively delete redundant data and noise data and select the most relevant

feature variables, so it can effectively reduce the dimensions of data. At present, there are many

advanced feature selection technologies, such as F-score [33], which have good performance and are

widely used.

The recursive feature elimination (RFE) method for feature selection has attracted much attention

due to its better robustness [34]. In recent years, RFE has been widely used in protein classification,

gene selection, expression analysis, cancer diagnosis [35–39], and other biomedical fields. RFE is a

greedy algorithm and the representative of the wrapper model algorithm. Its search starting point

is a complete set, and the evaluation principle is the prediction accuracy of the classifier. At the end

of the iteration, the most irrelevant feature is eliminated. The most irrelevant features are eventually

eliminated, so the most relevant features are ranked at the top to sort the features. RFE generates some

feature subsets according to the feature sorting table generated by the above evaluation criteria. RFE

can be combined with different classifiers, such as SVM, random forest [40], and others. The steps of

the RFE algorithm are as follows:

(1) Initialize feature set F.

(2) Select classifier C.

(3) Calculate the weight of each feature fi in F (the criterion is the accuracy of classifier prediction).

(4) Delete the minimum weight feature fj and update the F.

(5) Repeat steps 3 and 4 until F has only one feature left.

(6) Feature importance ranking.

As mentioned above, the method of combining RFE with a classifier can output a list ln (n indicates

the number of features included in the list l) sorted by the importance of features from large to small.

However, the performance of the classifier is largely influenced by the number of selected features.

Therefore, on the basis of feature ranking, we need to determine the optimal number of features. Using

the sorted list ln, we can get a set of feature subsets F1 ⊂ F2 ⊂ · · · ⊂ Fn. F1 is composed of the first feature

in ln, F2 is composed of the top two features in ln, and so on, and Fn represents the complete feature set.
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Next, we select a classifier (SVM, C4.5 decision tree, RF, or XGBoost), train these feature subsets in

turn through cross-validation, and use the classification performance (accuracy or F1 measure) of the

classifier as the criteria to evaluate these subsets, so as to find the optimal feature subset. For a features

set F containing n features, the number of all its subsets is 2n − 1 (including empty sets). Compared

with the exhaustive method, the number of subsets that RFECV needs to verify is only n. When n is

large, the calculation of RFECV is much smaller than the exhaustive method.

RFECV cross-validates different combinations of features on the basis of RFE. By calculating the

sum of the decision coefficients, the importance of different features to the score is finally obtained, and

then the optimal feature combination is retained. The feature subset selected by RFECV is affected by

two aspects: one is the classifier combined with RFECV, and the other is the performance evaluation

criteria of the classifier. Selecting different classifiers or performance evaluation criteria, feature subsets

are often not the same. The RFECV method used in this paper uses 10-fold cross-validation. Ten-fold

cross-validation is a commonly used test method to test the performance of models. The idea is to

divide the data set into ten parts, and take turns to use nine of them as training data and one of them as

test data. Each test yields a correct rate, and the average of the correct rate of the 10 results is used as an

estimate of the accuracy of the algorithm. This method is very suitable for data sets with small amounts

of data, and is more powerful than the hold-out method in evaluating the generalization ability of the

algorithm [41]. In this paper, we use this method to train and test the model. All the samples in the

data set are randomly divided into 10 mutually exclusive subsets of a similar size. In each round of

training, 9 subsets are selected in turn to form the training set, and the remaining 1 subset forms the

test set. In each exclusive subset, the ratio between positive and negative cases should be similar to

that of the data set. This method allows the model to be trained and tested 10 times, each time using a

different set of training and testing. We take the average of the 10 test results as the final result.

2.2. Data Preprocessing

2.2.1. Missing Value Processing

Simple deletion and filling are the main ways to deal with missing values. The simple deletion

method involves deleting items with missing values. This method is simple and easy to implement.

It is very effective when the sample has many missing values and the deleted samples account for a

small proportion of the data set. However, this method has great limitations. It can reduce the sample

size in exchange for complete information, but it will cause a lot of waste of resources, discarding a lot

of hidden information in these samples. In the case of few samples in the data set, deleting a small

number of samples is enough to seriously affect the objectivity of the data set information and the

correctness of the results.

In view of the characteristics of our data set, we first delete many records whose features are

missing values from the data set, because these records do not provide enough valuable knowledge. In

this study, records missing more than 50% of the feature values are considered noise data and deleted

from the data set. In addition, when more than 50% of the value in the feature column is missing, we

also delete the feature because there is too much missing data to fill.

For other remaining missing values, we use the mean completer method to deal with them.

Features are divided into numerical features and non-numeric features for processing separately. If the

null value is numeric, the missing value is filled in according to the average value of the property in all

other samples; if the null value is non-numeric, the highest frequency of occurrence of the feature in

other objects is used to fill in the missing value according to the statistical mode principle.

2.2.2. Data Normalization

Normalization is due to the different dimensions or dimension units in different feature indices.

This causes the data with different attributes to be in different orders of magnitude. This may cause
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some indicators to be ignored and affect the results of the model. After normalization, all attributes of

the original data are in the same order of magnitude for comprehensive comparison and evaluation.

The normalization method commonly used is max–min standardization. It is a linear transformation

of raw data, so that the result is mapped to (0–1). The transformation function is as follows:

x∗ = (x−min)/(max−min) (13)

Among them, max is the maximum value of the sample data, and min is the minimum value of

the sample data.

The anonymized data set of this study is from the hypertension database of a cardiovascular

hospital in Beijing. The data was extracted from patients from various provinces in China, so the

sample is diverse. Data collection began in September 2012 and was completed in August 2016. A

total of 1357 cases were collected. The data set is divided into two parts. The first part is the physical

examination data of the patients at admission, and the other part is the data investigating whether

the patients who were followed up with by doctors had outcomes or not. The data set contains 132

physical examination indicators. These indicators are divided into the following categories: baseline

data, limb blood pressure, ambulatory blood pressure, echocardiography, heart failure, blood routine,

blood biochemistry, metabolism, and endocrine.

Table 1 is the original feature. In Appendix A, Table A1 is an explanation of the abbreviation in

Table 1. Table 2 shows the name, medical meaning, data type mean value standard deviation (Std.),

and data distribution range of some indicators of the data set.

Table 1. Original feature.

No. Name No. Name No. Name

Baseline Data Blood biochemical 57 RARMDBP
1 SEX 30 ALT 58 LARMSBP
2 AGE 31 AST 59 LARMDBP
3 HEIGHT 32 K 60 LLEGSBP
4 WEIGHT 33 Na 61 BAPWVR
5 BMI 34 Cl 62 RLEGSBP
6 HR 35 GLU 63 LLEGDBP
7 PULSE 36 CREA 64 RLEGDBP
8 RYSBPL 37 BUN 65 BAPWVL
9 RYDBPL 38 URIC 66 ABIR

10 HTBEGIN 39 HSCRP 67 ABIL

11 ZGSBP 40 TG
Dynamic blood

pressure
12 ZGDBP 41 TC 68 MEANSBP
13 PSSBP1 42 HDLC 69 MEANDBP
14 PSDBP1 43 LDLC 70 HIGHSBP

UCG cardiac vascular
ultrasound

Thyroid function 71 DAYMDBP

15 AO 44 FT3 72 LOWSBP
16 LA 45 FT4 73 LOWDBP
17 IVSD 46 T3 74 DAYMSBP
18 LV 47 T4 75 HIGHDBP
19 EF 48 TSH 76 NIHTMSBP
20 LVPWd Urine protein 77 NIHTMDBP
21 RVd 49 MAUCR Breathing sleep

blood routine 50 HUPRO 78 AHI
22 WBC Blood sugar 79 APNEA
23 NEUT 51 HBLAC 80 HYPOPNEA
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Table 1. Cont.

No. Name No. Name No. Name

24 RBC Inflammatory factor 81 SAO2
25 HB 52 ESR 82 MEANSAO2
26 PLT 53 CRP Other

Urine routine 54 NTPRO 83 HCY
27 UKET 55 ET 84 W_DISC_NOHPT
28 USG Limb blood pressure
29 USG1 56 RARMSBP

Table 2. Description of partial hypertension examination indicators.

Attribute
No.

Name Description Type Value Range
Mean
Value

Std.

1 Sex Baseline data Categorical
Male or female

(1 or 0)
/ /

2 Age Baseline data Numeric 15–76 38.31 11.42
3 BMI Body mass index Numeric 10–50.93 27.28 4.27
4 PULSE Pulse rate Numeric 49–121 76.28 12.65

5 RYSBPL
Left arm systolic

pressure
Numeric 95–230 151.90 22.67

6 FT3
One index of thyroid

function
Numeric 0.74–7.3 3.19 0.47

7 SaO2
One index of

respiratory sleep test
Numeric 55–96 84.13 6.54

8 meanSBP24h
24 h mean systolic

blood pressure
Numeric 96–184 135.09 15.12

82 NIHTMDBP
Mean diastolic

pressure at night
Numeric 48–131 82.23 12.57

83 NIHTMSBP
Mean systolic blood

pressure at night
Numeric 87–192 128.20 17.03

84 W_DISC_NOH
Number of

antihypertensive
drugs at discharge

Categorical 0,1,2,3,4 / /

After data preprocessing, the final data set consisted of 374 samples, 95 of which had hypertension

outcomes and the remaining 279 had no outcomes. The data set dimension ultimately has 84 dimensions.

Table 3 shows a part of the processed data set.

Table 3. Processed data set.

NO.

Item.
SEX AGE HEIGHT WEIGHT BMI W_DISC_NOH 1

1 1 36 168 65 23.03 3
2 1 55 178 105 33.13 3
3 1 26 172 90 30.42 3
4 1 36 170 73 25.25 2
5 0 36 168 75 26.57 4
6 1 30 178 102 32.19 3
7 1 34 180 90 27.77 3

370 0 29 178 60 29.38 2
371 1 34 180 67 29.68 1
372 0 38 178 70 23.63 0
373 1 31 180 65 33.95 2
374 0 43 173 72.5 24.22 3

1 W_DISC_NOH is the number of antihypertensive drugs at discharge.
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2.3. Model Performance Metrics

The generalization ability of the classifier should be evaluated according to the generalization

ability of the model. In order to evaluate the performance of classifiers, we adopt the following

evaluation criteria: accuracy (ACC), F1, and AUC. These are commonly used evaluation criteria for

classifier performance measurement.

(1) Accuracy (ACC): Generally, the percentage of misclassified samples from the total samples

is called the “error rate”. That is, if there are a samples in m samples, the error rate is E = a/m.

Correspondingly, the calculation method for accuracy is as follows:

ACC = (1− a)/m (14)

(2) F1 Measure: Although ACC is commonly used, it does not satisfy all requirements. For the

binary classification problem, the samples can be divided into four cases, true positive (TP), false

positive (FP), true negative (TN), and false negative (FN), according to the combination of their real

classes and classifier predicted classes. The confusion matrix of division results is shown in Table 4.

Table 4. Confusion matrix of classification results.

Real Situation
Prediction Results

Positive Class Negative Class

positive class TP 1 FN 2

negative class FP 3 TN 4

1 TP is Ture Positive; 2 FN is False Negative; 3 FP is False Positive; 4 TN is True Negative.

The following describes two metrics, precision (P) and recall (R).

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

Precision indicates that the percentage of real positive samples accounts for the number of samples

predicted to be positive samples. Recall indicates that the percentage of samples predicted to be

positive samples accounts for the number of real positive samples. The higher the R ratio, the smaller

the FN, the less the missing samples, the more complete the search. F1 measure is defined based on the

harmonic mean of precision and recall. It is a comprehensive consideration of precision and recall. The

formula is as follows:

F1 =
2 ∗ P ∗R

P + R
(17)

(3) Area under ROC (AUC)

AUC is often used in biomedical works [42,43]. It is defined as the area under the receiver

operating curve (ROC). ROC is a comprehensive indicator reflecting continuous variables of sensitivity

and specificity. Each point on the ROC curve reflects the sensitivity to the same signal stimulus. The

value of AUC will not be greater than 1, and since the ROC curve is generally above the line y = x, the

range of AUC is generally between 0.5 and 1. The criteria for AUC to judge the performance of the

classifier (predictive model) is:

If AUC = 1, the classifier is perfect, and with this predictive model, there is at least one threshold

that yields a perfect prediction.

If 0.5 < AUC < 1, the classifier is better than random guessing. If the classifier properly sets the

threshold, it can have predictive value.

If AUC = 0.5, the classifier follows the random guess and has no predictive value.



Diagnostics 2019, 9, 178 11 of 21

If AUC < 0.5, the classifier is worse than a random guess.

2.4. Diagnostic Process

The process diagram of the diagnosis is shown in Figure 1. Firstly, the data from patients with

hypertension is obtained, the samples with missing values are processed, and then normalized. There

are many physical examination indicators for patients. If all of them are brought into the model

for training, it will increase the computational burden of the model. In most cases, these physical

examination indicators will have a great correlation and reduce the accuracy of the results. For example,

nighttime average systolic blood pressure and 24-h average systolic blood pressure have a strong

correlation. Considering the computational burden and accuracy, dimensionality reduction of features

is needed. Next, this paper chooses the RFE method, which uses cross-validation to preserve the

best performance characteristics. Using this method, the optimal number of features under different

conditions can be obtained according to different classifiers. Then, these features are extracted from

the original sample to form a new sample set. Next, the new sample set is divided into a training set

and test set. Four classifiers are used to construct the model, and then the test set is input into the

model to get the results. The results are evaluated according to the accuracy, F1 measure, and AUC

evaluation indicators, and the best performance model is finally selected.

 

Hypertension DB

Missing value processing

Data normalization

Features sorting
(RFE with classifier)

Determining the optimal number of features
(cross-validation)

Optimal features 
subset and data

Training and testing classification Algorithm
(SVM, Decision Tree, RF and XGBoost )

Evaluation algorithm performance
(accuracy, F1 Measure, AUC)

Select the best performance 
classification algorithm

Data preprocessing

Feature selection

Classification and validation

 

Figure 1. Predictive model construction process. Abbreviations: RF = random forest; AUC = area

under receiver operating curve; RFE = recursive feature elimination; XGBoost = extreme gradient

boosting; SVM = support vector machine; F1 Measure is calculated according to Equation (17).

3. Results and Discussion

According to the feature selection method proposed in this paper, the feature subset selected by

RFECV is affected by two aspects: one is the classifier combined with RFECV, and the other is the

performance evaluation criteria of the classifier. When selecting different classifiers or performance
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evaluation criteria, feature subsets are often not the same. Table 4 lists the number of optimal feature

subsets for each classifier under three evaluation criteria.

From Table 5, it can be seen that the number of redundant features can be greatly reduced by the

feature selection method proposed in this paper, which will help to save computational efficiency and

improve the prediction effect of the model. It should be noted that because the number of samples

in this paper is relatively small, there is no significant difference in the operating time between the

four classifiers. Next, we use these feature subsets for training and testing. Under the F1 measure, the

optimal number of features for SVM is 16, while under each criteria, the optimal number of features

for C4.5 is 2. This result does not indicate that the lower the number of features needed, the better the

performance. The next step is to evaluate the performance of the various methods in their respective

best combinations.

Table 5. The number of optimal feature subsets for each classifier under three criteria.

Criterion

Classifier
SVM C4.5 RF XGBoost

ACC (%) 3 2 3 4
F1 Measure 16 2 6 3

AUC 9 2 3 9

The three features XGBoost selected under the F1 criteria are right lower extremity systolic blood

pressure (RLEGSBP), left lower extremity diastolic blood pressure (LLEGDBP), and daytime mean

diastolic blood pressure (DAYMDBP).

In previous experiments, the optimal number of features required for each classifier was determined.

All subsequent experiments were carried out with the optimal number of features. In the experiment,

by changing the two parameters of XGBoost (i.e., the number of evaluators and the depth of the tree),

we find the best combination of parameters for XGBoost, in which the number of evaluators is 50 and

the depth of the tree is 5. Other models also use the best parameters selected after multiple tests.

The optimal feature subsets selected by RFECV method under ACC, F1 measure and AUC are

used for modeling. Table 6 shows the performance of each classifier on different evaluation criteria.

The results shown in the table are the average of the 10-fold cross-validation results. From the table,

we can get the best results for the XGBoost classifier. Its accuracy is 94.36%, F1 measure is 0.875, and

AUC is 0.927. The next is random forest. Its accuracy is 88.98%, and F1 measure and AUC are over 0.85.

The third is the C4.5 decision tree, for which the accuracy is 86.03%, and F1 measure and AUC are

over 0.8. The worst performance classifier is SVM. Its accuracy is 75.80%, while the F1 measure and

AUC are not more than 0.7. Figure 2 shows more intuitively the performance scores of four classifiers

under three performance metrics. It is obvious that XGBoost has excellent performance under three

performance metrics, and SVM has the worst performance.

Table 6. Prediction performance (accuracy, F1 measure, and AUC) of each classifier using their optimal

features subset.

Criterion

Classifier
SVM C4.5 RF XGBoost

ACC (%) 75.80% 86.30% 88.98% 94.36%
F1 Measure 0.626 0.819 0.859 0.875

AUC 0.660 0.839 0.871 0.927
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Figure 2. Prediction performance (accuracy, F1 measure, and AUC) of each classifier using their optimal

features subset. (The blue dotted line represents the position of the maximum or minimum value).

Figure 3 shows the trend of accuracy for the four classifiers using different numbers of features.

Figure 4 shows the trend of the F1 measure for the four classifiers using different numbers of features.

Figure 5 shows the trend of AUC for the four classifiers using different numbers of features. From

Table 6 and Figure 3, we can find the highest accuracy of these four classifiers under different criteria.

Cutting or adding other features will make the accuracy decrease. The accuracy of SVM, C4.5, and

RF decreased significantly when the number of selected features exceeded the number of optimal

subsets. This shows that adding features does not necessarily improve performance, and unrelated and

redundant features may even degrade the performance of classifiers. The number of research object

features in this paper reaches 84, and there must be many unrelated or redundant features. These

features reduce the performance of the classifier and increase the amount of computation. A small

number of important features selected by the REFCV method can achieve higher accuracy. In medical

applications, fewer features mean that medical practitioners collect fewer physical indicators from

patients. This is of practical significance for reducing medical costs and saving time for diagnosis and

treatment. From Figure 3d, we can see that XGBoost used a small number of features to achieve high

prediction accuracy, and with the increase in the number of features, accuracy remains stable. That

is to say, XGBoost is insensitive to changes in the number of features, it is less affected by irrelevant

and redundant features, and has high robustness. From Figures 4 and 5 we can see the performance

of the four classifiers under these two performance metrics is roughly the same as that under the

accuracy. SVM, C4.5 decision tree, and RF achieve the best prediction results under their respective

optimal subset of features, and the number of features used is very small. Then, with the increase of the

number of features, the performance has a significant downward trend and volatility. The prediction

performance of XGBoost is less affected by the number of features.

Figure 6 shows the ranking of importance of the XGBoost method. The number on the ordinate

represents the number of features; for example, 61 represents the 62nd feature, because the numbers

start from 0.
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Figure 3. Relationship between accuracy and number of features used by the classifier: (a) SVM,

(b) decision tree, (c) RF, (d) XGBoost.

 

 
Figure 4. Relationship between F1 measure and number of features used by the classifier: (a) SVM,

(b) decision tree, (c) RF, (d) XGBoost.
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Figure 5. Relationship between AUC and number of features used by the classifier: (a) SVM, (b) decision

tree, (c) RF, (d) XGBoost.

Through the experiment, the accuracy and AUC of the XGBoost–RFECV prediction model are

94.36% and 0.927, respectively. Using the proposed method, the number of features used by the classifier

is very small, which reduces the difficulty of data collection and the cost of prediction. Generally

speaking, the method is practical in helping doctors predict the outcome of patients with hypertension.

There are two important parameters in XGBoost: one is the depth of the tree and the other is

the number of evaluators. In order to test the stability of XGBoost performance, the performance of

XGBoost is calculated by changing the two parameters. Figure 7A shows the relationship between

accuracy and the number of evaluators in XGBoost. With the increase of the number of evaluators,

the computational accuracy is over 0.870 and stable at about 0.910. Figure 7B shows the relationship

between the accuracy and the tree depth in XGBoost. With the increase of tree depth, the calculation

accuracy is maintained at about 0.905. This shows that the XGBoost method has high stability. However,

when the number of estimators exceeds 50 or the depth of transmission exceeds 5, the calculation

accuracy of XGBoost decreases, which indicates that the sample size is relatively small. If the model

constructed by XGBoost method is too complex, it will result in over-fitting.
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Figure 6. Feature weighting of XGBoost.
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Figure 7. Classification performance of different (A) number of evaluators and (B) depths for XGBoost.

4. Conclusions

Predicting the outcome of hypertensive patients is very meaningful research work. For this

work, this paper proposes a method combining a classifier (SVM, C4.5 decision tree, RF, or XGBoost)

with RFECV to accurately predict patient outcomes automatically. RFE method is used to assess

the importance of physical examination indicators for hypertension outcomes. On this basis,

cross-validation is used to find out the optimal feature subset to enhance the prediction performance

of the classifier. Experiments show that the RFEVC method combined with C4.5, RF, and XGBoost can

achieve better prediction performance. These three classifiers can achieve better predictive performance

with only a small number of feature subsets. Among them, XGBoost has the highest prediction accuracy

and good generalization ability, and is only slightly affected by the number of features. In addition,

through RFECV we found that limb blood pressure and ambulatory blood pressure have important

effects on the outcomes of hypertension.

The method proposed in this paper can effectively assist doctors to determine whether there will

be outcomes in patients with hypertension. In this way, doctors can provide targeted interventions for

patients with higher risk of outcomes and reduce the possibility of outcomes. The prediction model

proposed in this paper requires only a small number of physical examination indicators. On the one

hand, it reduces the cost of patients’ physical examinations and does not need many complicated

physical examination items, thus improving the applicability; on the other hand, this method can be

applied to telemedicine. Patients can measure their blood pressure by a simple self-test and transmit

information to doctors through the network, so that doctors can evaluate the risk of patient outcomes.

This will effectively reduce the cost and improve the efficiency of diagnosis and treatment.

Our future research will focus on the following issues. First, we will get a larger data set from

more data sources to further test the generalization ability of our proposed method. Second, RFECV is

a partial optimization algorithm, so we will improve the feature selection strategy to achieve better

predictive effect. Third, we will verify whether other advanced classification algorithms that have better

prediction performance, so as to provide doctors with more reliable, aided, automated decision-making

tools. The more machine learning methods are applied to the medical field, the more accurate disease

diagnosis will be.
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Appendix A

Table A1 is an explanation of the abbreviation in Table 1.

Table A1. The explanation of the abbreviated in Table 1.

NO. Abbreviations Explanation

1 SEX sex
2 AGE age
3 HEIGHT height
4 WEIGHT weight
5 BMI body mass index
6 HR heart rate
7 PULSE pulse
8 RYSBPL left arm systolic pressure
9 RYDBPL left arm diastolic pressure
10 HTBEGIN initial hypertension age
11 ZGSBP highest systolic blood pressure
12 ZGDBP highest diastolic blood pressure
13 PSSBP1 normal systolic blood pressure
14 PSDBP1 normal diastolic blood pressure
15 AO ascending aorta diameter
16 LA left atrium
17 IVSD ventricular septal thickness
18 LV left ventricular end diastolic diameter
19 EF ejection fraction
20 LVPWd thickness of the back wall
21 RVd right ventricle
22 WBC white blood cell
23 NEUT percentage of neutrophils
24 RBC red blood cells
25 HB hemoglobin
26 PLT platelet
27 UKET ketone body
28 USG specific gravity of urine
29 USG1 USG tube type
30 ALT alanine aminotransferase
31 AST aspartate aminotransferase
32 K serum potassium
33 Na serum sodium
34 Cl serum chlorine
35 GLU blood sugar
36 CREA creatinine
37 BUN urea nitrogen
38 URIC uric acid
39 HSCRP high-sensitivity C-reactive protein
40 TG triglyceride
41 TC triacylglycerol
42 HDLC high density lipoprotein cholesterol
43 LDLC low density lipoprotein cholesterol
44 FT3 serum free triiodothyronine
45 FT4 free thyroxine
46 T3 triiodothyronine



Diagnostics 2019, 9, 178 19 of 21

Table A1. Cont.

NO. Abbreviations Explanation

47 T4 tetraiodothyronine
48 TSH thyroid stimulating hormone
49 MAUCR urinary microalbumin/creatinine
50 HUPRO 4-hour urine protein quantitation
51 HBLAC glycated hemoglobin
52 HCY homocysteine
53 ESR erythrocyte sedimentation rate
54 CRP C-reactive protein
55 NTPRO amino terminal precursor protein of brain natural peptide
56 ET endothelin
57 RARMSBP right upper limb systolic blood pressure
58 RARMDBP right upper limb diastolic blood pressure
59 LARMSBP left upper limb systolic blood pressure
60 LARMDBP left upper limb diastolic blood pressure
61 RLEGSBP right lower limb systolic blood pressure
62 RLEGDBP right lower limb diastolic blood pressure
63 LLEGSBP left lower extremity systolic blood pressure
64 LLEGDBP left lower extremity diastolic blood pressure
65 BAPWVR right brachium-ankle pulse wave conduction velocity
66 BAPWVL left brachium-ankle pulse wave conduction velocity
67 ABIR right ankle-brachium index
68 ABIL left ankle-brachium index
69 AHI hourly breathing number
70 APNEA the longest apnea number
71 HYPOPNEA the longest hypoventilation time
72 SAO2 the lowest SaO2%
73 MEANSAO2 the average SaO2%
74 MEANSBP 24h mean systolic blood pressure
75 MEANDBP 24h mean diastolic blood pressure
76 HIGHSBP the highest systolic blood pressure
77 HIGHDBP the highest diastolic blood pressure
78 LOWSBP the lowest systolic blood pressure
79 LOWDBP the lowest diastolic blood pressure
80 DAYMSBP daytime average systolic blood pressure
81 DAYMDBP daytime mean diastolic blood pressure
82 NIHTMSBP nighttime average systolic blood pressure
83 NIHTMDBP nighttime average diastolic blood pressure
84 W_DISC_NOHPT number of antihypertensive drugs at discharge
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