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A machine learning-based test for 
adult sleep apnoea screening at 
home using oximetry and airflow
Daniel Álvarez1,2,3*, Ana Cerezo-Hernández1, Andrea Crespo1,2, Gonzalo C. Gutiérrez-Tobal2,3, 
Fernando Vaquerizo-Villar2, Verónica Barroso-García2, Fernando Moreno1, C. Ainhoa Arroyo1, 
Tomás Ruiz1, Roberto Hornero2,3 & Félix del Campo1,2,3

The most appropriate physiological signals to develop simplified as well as accurate screening tests 
for obstructive sleep apnoea (OSA) remain unknown. This study aimed at assessing whether joint 
analysis of at-home oximetry and airflow recordings by means of machine-learning algorithms leads 
to a significant diagnostic performance increase compared to single-channel approaches. Consecutive 
patients showing moderate-to-high clinical suspicion of OSA were involved. The apnoea-hypopnoea 
index (AHI) from unsupervised polysomnography was the gold standard. Oximetry and airflow from 
at-home polysomnography were parameterised by means of 38 time, frequency, and non-linear 
variables. Complementarity between both signals was exhaustively inspected via automated feature 
selection. Regression support vector machines were used to estimate the AHI from single-channel and 
dual-channel approaches. A total of 239 patients successfully completed at-home polysomnography. 
The optimum joint model reached 0.93 (95%CI 0.90–0.95) intra-class correlation coefficient between 
estimated and actual AHI. Overall performance of the dual-channel approach (kappa: 0.71; 4-class 
accuracy: 81.3%) significantly outperformed individual oximetry (kappa: 0.61; 4-class accuracy: 75.0%) 
and airflow (kappa: 0.42; 4-class accuracy: 61.5%). According to our findings, oximetry alone was able to 
reach notably high accuracy, particularly to confirm severe cases of the disease. Nevertheless, oximetry 
and airflow showed high complementarity leading to a remarkable performance increase compared to 
single-channel approaches. Consequently, their joint analysis via machine learning enables accurate 
abbreviated screening of OSA at home.

Recent epidemiological studies reported an increasing prevalence of obstructive sleep apnoea (OSA) among gen-
eral population1,2, as well as a substantially greater prevalence in groups with particularly high risk for adverse 
consequences, such as patients with hypertension, cardiovascular disease, diabetes, or subjects evaluated for 
bariatric surgery3. Undiagnosed OSA is a major health burden worldwide due to the signi�cant negative con-
sequences for the patient4 and the increased utilisation costs for the healthcare system5. �erefore, timely and 
accurately diagnosis is essential for an appropriate management of the disease.

In order to increase availability and accessibility to diagnostic resources for early detection, unattended abbre-
viated testing based on the recording of a reduced number of physiological signals at home has being encouraged 
during the last years6. Despite well-known drawbacks such as higher risk of invalid study due to poor signal 
quality and inability to provide the actual total sleep time and to detect arousals, the American Academy of Sleep 
Medicine (AASM) recommends the use of abbreviated tests at home (type III and IV monitors) for initial screen-
ing of OSA under appropriate constrains6: uncomplicated adult patients showing symptoms indicative of high 
suspicion of moderate-to-severe OSA.

Despite exhaustive validation7,8, there is a great discrepancy on the use of type III monitors for extensive 
routine screening of sleep apnoea at home because set up complexity, time-consuming manual analysis, and 
intrusiveness for patients are still relevant. In this regard, type IV portable devices, characterised by the acquisi-
tion of just one or two channels, are expected to de�nitively overcome these drawbacks. Nonetheless, the most 
appropriate number and type of signals involving unsupervised monitoring remains unknown. Further research 
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is needed to provide additional evidence on the most suitable way to maximise the performance of these simpli-
�ed approaches.

In the present study, we focus on the usefulness of blood oxygen saturation (SpO2) and air�ow, which are com-
monly involved in type IV devices. Individually, both signals have been found to provide relevant information 
for OSA diagnosis9–12. Notwithstanding, the potential complementarity of the features derived from both signals 
has been marginally studied13. SpO2 and air�ow are both needed to score a hypopnoea event, which shows a rel-
evant contribution to the overall apnoea-hypopnoea index (AHI) in several patients. Using either single-channel 
oximetry or air�ow alone, we could lose essential information on the interaction between both signals, leading to 
important misdiagnosis. �erefore, we hypothesised that joint recording and analysis of SpO2 and air�ow would 
be able to maximise diagnostic performance of abbreviated tests in the context of OSA screening. In this way, 
pattern recognition and machine-learning techniques have demonstrated unique usefulness in the characterisa-
tion of cardiorespiratory signals for automated OSA detection14–18. Particularly, support vector machines (SVMs) 
reached high diagnostic performance in binary classi�cation problems (OSA-positive vs. OSA-negative) improv-
ing conventional approaches15,19,20. Despite being less used, SVMs have been adapted to accomplish regression 
analysis tasks as well21. As knowing the rate of respiratory events provides precise information on the actual sever-
ity status of a patient, we proposed to use regression SVMs to estimate the AHI from SpO2 and air�ow, in order to 
thoroughly assess the contribution of each signal into a potential performance improvement.

Accordingly, this study is aimed at assessing whether joint analysis of SpO2 and air�ow recordings by means of 
machine-learning algorithms leads to a signi�cant diagnostic performance increase compared to single-channel 
approaches. In order to enhance generalisability of the research, all the sleep studies were carried out at home.

Methods
Population under study. Consecutive patients referred to the sleep unit of the Río Hortega University 
Hospital of Valladolid (Spain) were involved in the study. All patients showed moderate-to-high clinical suspicion 
of su�ering from OSA due to at least one of the following symptoms: excessive daytime hypersomnolence, loud 
snoring, nocturnal choking and awakenings and/or witnessed apnoeas. Patients with a previous diagnosis and/or 
treatment for OSA, severe cardiovascular diseases, neuromuscular diseases, chronic respiratory failure or addi-
tional sleep disorders, such as narcolepsy, insomnia, periodic leg movements, restless legs syndrome, central sleep 
apnoea (>50% of total events categorised as central) or Cheyne-Stokes respiration, were excluded. Participants 
aged ≥18 years old. All were informed to participate in the study and signed an informed consent. �e Ethics 
and Clinical Research Committee of the Río Hortega University Hospital (CEIC-HURH) approved the protocol 
of the study (approval number: CEIC 147/16), which was conducted according to the principles expressed in the 
Declaration of Helsinki.

G*Power 3.1 was used to estimate the sample size. Di�erences in mean and standard deviation among OSA 
severity degrees of relevant variables derived from oximetry and air�ow were used to measure the e�ect size15,17. 
For a statistical power of 95% (signi�cance level or type I error α = 0.05) a medium e�ect size equal to 0.45 was 
obtained, leading to a sample size of 252 patients. Considering a maximum rate of invalid unsupervised sleep 
studies equal to 20%, the estimated sample size for this research was 303 participants.

Data collection protocol. Participants were asked for tobacco and alcohol consumption in order to char-
acterise non-healthy habits. Clinical history was reviewed to con�rm/discard the presence of frequent comorbid-
ities, particularly chronic obstructive pulmonary disease, hypertension, and type 2 diabetes mellitus. Daytime 
somnolence was assessed by the Epworth Sleepiness Scale.

Unsupervised polysomnography (PSG) was carried out using an Embletta MPR with the ST + proxy (Embla 
Systems, Natus Medical Inc. CA, USA). Electroencephalogram (F3/C3/O1/F4/C4/O2), electrooculogram (le�/
right), chin electromyogram (le�/right), tibial electromyogram (le�/right), ECG, chest and abdominal move-
ments by respiratory inductance plethysmography, air�ow measured by both a nasal pressure transducer and an 
oral thermistor, position (triaxial accelerometer) and both SpO2 and pulse rate via pulseoximetry, were recorded 
at patients’ home. At-home sleep studies were programmed to start and �nish automatically at 23:30 P.M. and 
07:00 A.M., respectively (total recording time 450 min long). Trained nurses went to the patient’s home to 
attach sensors and set up the device. When all channels showed high signal quality (Embletta’s built-in qual-
ity measurement tool), nursing sta� le� the patient’s home. Next morning, the portable device was returned 
to the hospital, where a single trained expert downloaded the sleep study for subsequent offline analysis. 
Electroencephalographic and cardiorespiratory events were scored manually using AASM 2012 rules22. �e AHI 
from portable PSG (AHIPSG) was used as gold standard to con�rm OSA. All PSGs with a total sleep time <3 h 
due to bad signal quality (transient artefacts or sustained signi�cant signal loss), premature battery depletion, or 
voluntary termination of the study by the patient, as well as those showing low sleep e�ciency and/or no REM 
sleep, were withdrawn from the study.

Automated analysis of oximetry and airflow. SpO2 and air�ow were both obtained from unattended 
PSG at home and subsequently processed o�ine. SpO2 from nocturnal oximetry was recorded at a sampling rate 
of 75 Hz while the air�ow signal from the nasal prong pressure was sampled at 250 Hz. According to the input 
signal, three expert systems for automated estimation of the AHI were designed and prospectively assessed: (1) 
single-channel SpO2, (2) single-channel air�ow, and (3) dual-channel input composed of simultaneous SpO2 and 
air�ow recordings. In every branch of the methodology, four common signal-processing stages were applied to 
maximise the diagnostic performance of the signal: pre-processing, feature extraction, dimensionality reduc-
tion, and pattern recognition. Automated dimensionality reduction and pattern recognition stages were per-
formed using a training dataset for appropriate feature selection and optimisation of the AHI regression models, 
respectively. Finally, agreement and diagnostic performance of the three proposed models were assessed in an 
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independent test dataset. A detailed �owchart showing the procedures and the datasets involved at each stage of 
the methodology can be found as Supplementary Fig. S1.

Pre-processing. SpO2 recordings were automatically pre-processed to remove oximetric samples under 50% and 
transient deeps commonly linked with patient’s movements. Next, all oximetry signals were downsampled to 3 Hz 
to accomplish feature extraction22. Regarding air�ow recordings, �rstly, segments showing sustained malfunc-
tioning were removed. �en, a low-pass �lter with a cut-o� frequency of 1.2 Hz was applied to reduce noise17. All 
recordings, both SpO2 and air�ow, with a total recording time <4 h a�er pre-processing were discarded due to 
insu�cient data for accurate estimation of the AHI from a single/dual-channel approach6.

Feature extraction. SpO2 and air�ow signals were parameterised both in the time and frequency domains. 
Statistical, spectral, and non-linear features, as well as conventional oximetric and respiratory disturbance indices 
commonly used in the context of automated OSA diagnosis were computed14–17,23.

•	 Statistics in the time domain. �e widely known mean (M1t), variance (M2t), skewness (M3t), and kurtosis 
(M4t) were computed to quantify the position, width, asymmetry, and peakedness of the normalised data 
histogram of SpO2 and air�ow amplitudes in the time domain.

•	 Measures in the frequency domain. �e power spectral density (PSD) function of every SpO2 and air�ow 
recording was computed to estimate the power spectrum of the signal. An OSA-related frequency band was 
de�ned for each kind of signal (SpO2 and air�ow) based on previous studies: 0.014 to 0.033 Hz for oximetry14 
and 0.025 to 0.050 Hz for air�ow17. �en, the mean, variance, skewness, and kurtosis were derived from the 
histogram of spectral amplitudes (M1f to M4f). �e Shannon spectral entropy (SE), the median frequency 
(MF), and the Wootters distance (WD), which have been previously found to provide essential OSA-related 
information from oximetry and air�ow, were also computed15,17. Finally, amplitude- and power-based meas-
ures were computed to further characterise each spectral band of interest: maximum (MA) and minimum 
(mA) amplitudes as well as relative power (PR) were calculated.

•	 Non-linear features. Sample entropy (SampEn), central tendency measure (CTM), and Lempel-Ziv complex-
ity (LZC) were applied to obtain non-linear measures of irregularity, variability, and complexity commonly 
present in biological systems15,17.

•	 Conventional oximetric and disturbance indices. Despite evidences showing an intrinsic underestimation24, 
conventional indices based on the number of oximetric and respiratory events and the severity of desatura-
tions have been found to be very useful in OSA detection, particularly when they are used together with addi-
tional automated features16,25. Consequently, the commonly used oxygen desaturation index ≥3% (ODI3) 
and ≥4% (ODI4) and the respiratory disturbance index (RDI) from air�ow, as well as the minimum (SatMIN) 
and the average (SatAVG) saturation values and the cumulative time spent with a saturation below 90% (CT90) 
were computed.

Finally, according to the data source, three initial feature sets were built: (1) single-channel SpO2 feature set, 
composed of 21 features from oximetry; (2) single-channel air�ow feature set, composed of 17 features from air-
�ow; and (3) dual-channel feature set, composed of 38 features derived from the combination of all the variables 
from SpO2 and air�ow.

Dimensionality reduction. �e fast correlation-based �lter (FCBF) was applied for suitable feature selection 
owing the usefulness reported in previous studies in the context of OSA screening from oximetry26 and air-
�ow16,17. FCBF is able to detect the most relevant as well as non-redundant variables governing a system27. Feature 
selection is accomplished based on the characteristics of the problem under study, e.g., the AHI of each patient. 
An optimum feature subset is obtained independently of the particular algorithm used for subsequent pattern 
recognition, thus allowing for high generalisability27. Additionally, in order to avoid dependence on a particular 
training dataset, a bootstrapping approach was implemented. Accordingly, FCBF was repeated using 1000 boot-
strap replicates derived from the training set. �e signi�cance of each feature was de�ned as the number of times 
each input variable was selected. Finally, variables showing higher signi�cance than the average relevance for the 
whole input feature set were selected.

Pattern recognition using support vector machines. SVMs are non-linear algorithms originally designed to 
perform binary classi�cation tasks21. In this regard, SVMs have been previously applied to distinguish between 
OSA-positive and OSA-negative patients using input patterns from ECG19,20 or oximetry15 signals, reaching high 
diagnostic performance in both problems. In addition, based on the principles of statistical learning theory, they 
have been adapted to accomplish regression analysis tasks as well28. As under the most common classi�cation 
approach, the learning stage of a SVM algorithm for regression is based on the principle of structural risk min-
imisation. �is way, high performance is achieved on training data while avoiding over�tting, leading to high 
generalisation capability. Two user dependent parameters have to be tuned to maximise accuracy: a regularisa-
tion parameter (C), which governs the trade-o� between performance and model complexity; and the width of 
the Gaussian (sigma) of a radial basis function (RBF) kernel function, which represents a transformed feature 
space where separation of patterns is maximal. In the present study, a leave-one-out cross-validation procedure is 
applied in the training dataset to properly adjust these parameters. �e widely used values 10−3, 10−2, …, 103, 104 
were assessed for the regularisation parameter C, whereas 10−2, 10−1, …, 102, 103 were used for sigma, with a more 
accurate search round 102, where a local maxima was found. �e intra-class correlation coe�cient (ICC) between 
the AHI from at-home PSG and the estimated AHI was used to drive model selection. Once optimised, the �nal 
model was trained using the whole training population. �ree regression models were composed: (1) SVMSpO2, 
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which provides the estimated AHI from single-channel oximetry; (2) SVMAF, which provides the estimated AHI 
from single-channel air�ow; and (3) SVMSpO2+AF, which provides the estimated AHI from the dual-channel input 
that combines features from oximetry and air�ow. �en, these models were prospectively assessed in an inde-
pendent test dataset.

Statistical analysis. Matlab R2017a (�e MathWorks Inc., Natick, Massachusetts) was used to implement 
signal processing and pattern recognition algorithms, as well as to perform statistical analyses. �e median 
value and interquartile range were computed to perform a descriptive analysis of variables involved in the study. 
�e population was divided into training (60% �rst consecutive patients) and test (40% remaining consecutive 
patients) datasets. Normal distribution of input features was assessed by means of the Kolmogorov–Smirnov’s 
test, whereas the Levene’s test was used to assess homogeneity of variances. Accordingly, the non-parametric 
Mann-Whitney U test was used to assess di�erences in socio-demographic, anthropometric, and clinical variables 
from these datasets. �e Chi2 test was used for categorical variables. A p-value <0.01 was considered signi�cant.

�e ICC was computed to quantitatively measure the agreement between the actual AHI from unattended 
PSG and the estimated AHI from SVM models, while Bland-Altman and Mountain plots were used for quali-
tative analysis of agreement. Additionally, the four common severity groups of OSA were considered (No-OSA: 
AHI < 5 events/h; mild: 5 ≤ AHI < 15 events/h; moderate: 15 ≤ AHI < 30 events/h; severe: AHI ≥ 30 events/h) 
and both the kappa coe�cient and the overall accuracy were computed from the 4-class confusion matrices of 
each model in the independent test set.

Finally, the diagnostic performance was assessed for common binary cut-o�s for mild (AHI ≥ 5 events/h), 
moderate (AHI ≥ 15 events/h), and severe (AHI ≥ 30 events/h) OSA. �e widely known pairs of metrics from the 
2-class confusion matrices were computed in the test dataset: sensitivity (Se) vs. speci�city (Sp), positive predic-
tive value (PPV) vs. negative predictive value (NPV), and positive likelihood ratio (LR+) vs. negative likelihood 
ratio (LR−). In addition, the accuracy (Acc) and the area under the receiver operating characteristics curve 
(AUC) were computed as overall measures of diagnostic performance. �e 95% con�dence interval (95%CI) was 
computed for every metric using bootstrap. �e recommendations of the STARD group for reporting diagnostic 
accuracy studies were considered29.

Results
A total of 303 eligible patients with suspicion of su�ering from OSA were involved in the study from July 2016 
to September 2017. Figure 1 shows the patient �owchart with a detailed description of the recruitment process. 
Regarding unattended PSG, 43 participants were withdrawn due to poor signal quality, while 17 patients were 
further removed during automated signal pre-processing. Finally, 239 patients successfully passed to the pattern 
recognition stage. Table 1 shows the main characteristics of the population under study. Polysomnographic vari-
ables from at-home PSG are summarised in Table 2.

Figure 2 shows the feature selection process for the proposed data sources. From an initial feature set com-
posed of 21 variables from single-channel SpO2, 9 (42.9%) optimum features were selected. Similarly, 6 out of 17 
(35.3%) optimum features from single-channel air�ow were automatically selected. Finally, a total of 18 out of 38 

Figure 1. Patient recruitment �owchart. PSG: polysomnography; TRT: total recording time; TST: total sleep 
time.
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(47.4%) variables composed the optimum feature subset when both oximetry and air�ow are considered jointly 
(dual-channel approach).

Regarding the optimisation process of each model during the training stage, SVMSpO2 maximises ICC 
for C = 104 and sigma = 250 (maximum ICCtraining = 0.94 from leave-one-out cross-validation), SVMAF for 
C = 104 and sigma = 20 (maximum ICCtraining = 0.86), and SVMSpO2+AF for C = 104 and sigma = 100 (maximum 
ICCtraining = 0.96). Supplementary Fig. S2 shows the optimisation process of the SVM input-parameters C and 
sigma for each model.

�e regression model SVMSpO2 trained with the optimum features from oximetry reached an ICC of 0.92 
(95%CI 0.87–0.95) in the independent test dataset, whereas the SVMAF model achieved 0.75 ICC (95%CI 0.62–
0.85) using the selected features from air�ow. �e entire list of estimated AHI values from SVMSpO2 and SVMAF 
models as well as the actual AHI values from at-home PSG can be found online as Supplementary Tables S3 and 
S4, respectively. �e agreement between the estimated and the actual AHI was higher using the SVMSpO2+AF 
model, which reached 0.93 ICC (95%CI 0.90–0.95). �e estimated AHI values from the SVMSpO2+AF dual-channel 
model can be found as Supplementary Table S5. Figure 3 shows the Bland-Altman and Mountain plots for quali-
tative assessment of the agreement between actual and estimated AHI.

Regarding the four common severity groups in the OSA context, 4-class kappa values equal to 0.61 (95%CI 
0.46–0.75) and 0.42 (95%CI 0.25–0.58) were achieved using a single-channel approach based on oximetry and 
air�ow, respectively, while a signi�cantly higher (p < 0.01) agreement was reached using a dual-channel approach 
(0.71, 95%CI 0.58–0.84). Similarly, 4-class overall accuracy signi�cantly increased (p < 0.01) from 75.0% (95%CI 
64.3–84.6) for SVMSpO2 and from 61.5% (95%CI 49.8–72.1) for SVMAF to 81.3% (95%CI 72.0–90.2) when using 
the optimum feature subset from SpO2 and air�ow signals joint analysis. Table 3 shows the 4-class confusion 
matrices for the proposed approaches, whereas Tables 4–6 summarise the diagnostic assessment when setting 
a single �xed threshold for binary classi�cation. Overall, SVMSpO2+AF achieved the highest performance for the 
diagnosis of severe OSA (AHI ≥ 30 events/h), reaching 95.8% accuracy (95%CI 90.7–99.6) and 0.98 area under 
the ROC curve (AUC) (95%CI 0.95–1), as well as both sensitivity and speci�city values above 90%. Figure 4 
shows the ROC curves of each model for the three common cut-o�s for OSA. Diagnostic performance maximises 
when using both SpO2 and air�ow signals together, with AUC signi�cantly higher (p < 0.01) than those achieved 
by SVMSpO2 and SVMAF, for all the cut-o�s.

Discussion
In this study, we assessed the potential performance increase of simpli�ed OSA screening tests when using both 
SpO2 and air�ow recordings jointly. Signal processing and machine-learning methods were used to gain insight 
into the complementarity of these recordings in an unattended setting. A thorough automated feature selection 
procedure led to an optimum feature subset composed of variables from oximetry and air�ow almost in the 
same proportion, which reinforces their joint relevance: 8 out of 18 (44.4%) derived from SpO2 and 10 out of 18 
(55.6%) from air�ow. Under a dual-channel approach, variables within the joint optimum feature subset were 

All Training group Test group p-value

N° of subjects (n, %) 239 143 96 —

Age (years) 56.0 [46.0, 65.0] 55 [45.3, 64.0] 58.5 [48.5, 67.0] 0.157

N° of males (n, %) 164 (68.6%) 97 (67.8%) 67 (69.8%) 0.778

BMI (kg/m2) 28.4 [25.8, 32.4] 28.1 [25.5, 32.6] 28.8 [26.6, 32.1] 0.322

Smoking status

Never-smoker 124 (51.9%) 72 (50.4%) 52 (54.2%) 0.782

Ex-smoker 86 (36.0%) 54 (37.8%) 32 (33.3%)

Current smoker 29 (12.1%) 17 (11.9%) 12 (12.5%)

Alcohol consumption 8 (3.3%) 7 (4.9%) 1 (1.0%) 0.104

Daytime somnolence

ESS 11 [7, 15] 11 [7, 15] 10 [7, 14] 0.400

Comorbidities

COPD 13 (5.4%) 6 (4.2%) 7 (7.3%) 0.301

HT 81 (33.9%) 43 (30.1) 38 (39.6%) 0.128

DM 28 (11.7%) 21 (14.7) 7 (7.3%) 0.081

OSA severity

N° of patients AHI < 5 events/h 15 (6.3%) 9 (6.3%) 6 (6.3%) 0.999

N° of patients 5 ≤ AHI < 15 events/h 54 (22.6%) 38 (26.6%) 16 (16.7%) 0.084

N° of patients 15 ≤ AHI < 30 events/h 56 (23.4%) 29 (20.3%) 27 (28.1%) 0.165

N° of patients AHI ≥ 30 events/h 114 (47.7%) 67 (46.9%) 47 (49.0%) 0.792

Table 1. Main characteristics of the entire population under study and training and test groups. Data are 
presented as median [interquartile range] or number (percentage). AHI: apnoea-hypopnoea index; BMI: body 
mass index; COPD: chronic obstructive pulmonary disease; DM: diabetes mellitus; ESS: Epworth sleepiness 
scale; HT: hypertension.
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di�erent compared with features selected in each single-channel approach, particularly air�ow-derived variables 
(Fig. 2). While the histogram of relevance values for SpO2-derived features is very similar under both single- and 
dual-channel approaches, the pro�le for air�ow-derived features is completely di�erent. �is suggests that air�ow 
recordings contain essential information for OSA detection that is hidden when using the signal alone, while this 
complementary information arises when combined with overnight oximetry.

�e estimated AHI from the optimum SVMSpO2+AF model reached remarkable agreement with the actual AHI 
from PSG. Bland-Altman plots (Fig. 3) showed a small bias both using oximetry alone and using SpO2 and air-
�ow jointly, with smaller dispersion under the dual-channel approach, particularly for AHI values <30 events/h. 
Overall limits of agreement were narrower when using oximetry and air�ow together: con�dence intervals of 
32.45, 50.14, and 29.98 events/h were obtained using SpO2, air�ow, and SpO2 + air�ow, respectively. Accordingly, 
the performance of the dual-channel approach signi�cantly outperformed individual SpO2 and air�ow. AUC 
of SVMSpO2+AF model was signi�cantly higher (p < 0.01) for all diagnostic thresholds. Moreover, in contrast to 
single-channel approaches, balanced sensitivity-speci�city pairs were always obtained. Concerning feasibility 
of out-of-centre portable devices to rule in OSA, Collop et al. established the criteria for ensuring appropriate 
accurateness30. Assuming a pre-test probability equal to the prevalence in our dataset for the di�erent cut-o�s, 
minimum LR+ values of 1.3, 5.6, and 19.8 would be needed to reach the recommended post-test probability of 
95% in order to rule in mild, moderate, and severe OSA, respectively. �e dual-channel approach notably out-
performed these feasibility thresholds for mild (5.73, 95%CI 1.18–6.29) and severe (45.9, 95%CI 12.5–34.8) OSA, 
demonstrating the largest screening capability. In addition, the model simultaneously using both signals was the 
closest to the recommended limit for moderate-to-severe OSA.

According to the confusion matrix of the dual-channel SVMSpO2+AF model shown in Table 3, the follow-
ing screening protocol can be implemented in clinical practice: (i) if our model estimates an AHI < 5 events/h, 
then the physician could consider to follow-up patients and derive to PSG only if symptoms persists, since no 
moderate-to-severe OSA patients were categorised within the No OSA class and the 4 patients with mild OSA 

All (N = 239) Training (N = 143) Test (N = 96) p-value

Overall analysis of the recording

TRT (h) 450.0 [449.9, 450.0] 450.0 [450.0, 450.0] 450.0 [419.3, 450.0] —

TST (h) 392 [348.8, 417.8] 395.5 [369.6, 423.2] 380.8 [326.5, 411.8] <0.01

Sleep e�. (%) 89.1 [82.8, 93.9] 89.1 [82.8, 94.2] 89.5 [82.8, 92.7] 0.453

Sleep lat. (min) 7.5 [0.0, 24.8] 8.5 [0.0, 25.4] 5.5 [0.0. 23.7] 0.370

Sleep staging

N1 (%) 11.6 [7.4, 18.0] 11.8 [6.8, 19.6] 11.6 [8.0, 16.3] 0.689

N2 (%) 35.6 [29.9, 43.7] 36.7 [30.9, 44.9] 34.1 [28.5, 40.6] 0.018

N3 (%) 27.7 [20.9, 34.2] 26.3 [19.7, 32.9] 30.0 [24.3, 36.2] <0.01

REM (%) 22.6 [18.0, 26.1] 22.7 [18.1, 26.4] 22.5 [17.8, 25.8] 0.633

REM lat. (min) 69.0 [47.3, 105.0] 67.5 [46.1, 107.6] 71.8 [49.5, 101.0] 0.688

Total Ar (events/h) 20.2 [13.1, 31.6] 21.9 [13.6, 33.7] 18.0 [11.7, 28.1] 0.032

Resp. Ar (events/h) 11.8 [5.9, 21.3] 12.8 [6.1, 25.1] 10.7 [5.5, 16.7] 0.165

Respiratory events

AHI (events/h) 27.2 [12.6, 45.6] 27.2 [11.4, 47.6] 26.2 [15.3, 44.4] 0.915

HI (events/h) 18.9 [9.2, 28.2] 17.1 [8.9, 26.3] 20.3 [11.9, 30.3] 0.093

AI (events/h) 5.0 [1.1, 15.7] 5.7 [1.4, 16.8] 4.1 [0.9, 12.6] 0.128

Obstructive/mixed events (%) 96.4 [89.7, 99.5] 95.8 [89.3, 99.2] 96.6 [91.7, 99.7] 0.199

Central events (%) 3.6 [0.6, 10.3] 4.2 [0.8, 10.7] 3.4 [0.3, 8.3] 0.199

Supine position (%) 39.9 [22.6, 59.5] 41.4 [27.6, 60.7] 33.4 [18.1, 58.3] 0.063

Events Avg time (s) 22.4 [20.2, 25.5] 22.2 [20.6, 25.1] 23.0 [19.9, 26.8] 0.279

Events Max time (s) 54.9 [44.0, 71.1] 55.0 [45.2, 67.3] 54.0 [43.2, 72.6] 0.627

Oximetry

Sat Ini (%) 94.0 [92.9, 95.1] 93.7 [92.8, 95.0] 94.0 [92.8, 96.0] 0.410

Sat Avg (%) 92.5 [91.1, 94.0] 92.5 [91.1, 94.1] 92.6 [91.1, 93.9] 0.763

Sat Min (%) 83.0 [77.0, 87.0] 83.0 [76.3, 87.0] 83.0 [77.0, 86.0] 0.775

CT90 (%) 4.4 [0.4, 17.9] 4.2 [0.3, 17.6] 4.7 [0.6, 20.9] 0.791

ODI3 (events/h) 22.4 [11.1, 45.8] 25.1 [10.7, 46.2] 21.9 [12.1, 42.9] 0.937

Table 2. Polysomnographic variables derived from unattended PSG at patient’s home. Data are presented as 
median [interquartile range]. AI: apnoea index; AHI: apnoea-hypopnoea index; CT90: cumulative time spent 
with a saturation below 90%; Events Avg time: average duration of events; Events Max time: maximum duration 
of events; HI: hypopnoea index; N1: percentage of sleep time in N1 stage; N2: percentage of sleep time in N2 
stage; N3: percentage of sleep time in N3 stage; ODI3: number of desaturations ≥3% per hour of sleep; REM: 
percentage of sleep time in rapid eye movement sleep; REM lat: REM stage latency; Resp Ar: respiratory arousal 
index; Sat Avg: average saturation; Sat Ini: initial saturation; Sat Min: minimum saturation; Sleep e�: sleep 
e�ciency; Sleep lat: sleep latency; Total Ar: total arousal index; TRT: total recording time; TST: total sleep time.

https://doi.org/10.1038/s41598-020-62223-4


7SCIENTIFIC REPORTS |         (2020) 10:5332  | https://doi.org/10.1038/s41598-020-62223-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

classi�ed as No OSA actually had an AHI < 9 events/h; (ii) if our model estimates an AHI ≥ 30 events/h, then the 
physician could derive these patients for treatment, since 100% of subjects with an estimated AHI ≥ 30 events/h 
had at least moderate OSA with symptoms; (iii) patients with an estimated AHI between 5 and 30 will undergo 
PSG to con�rm/discard the disease. Under this conservative protocol, 56.3% of PSGs (54 out of 96) would be 
potentially avoidable. Using a less conservative approach, with patients showing an estimated AHI ≥ 15 events/h 
directly referred for treatment since 100% of patients categorised as moderate-severe OSA had at least mild OSA 
with symptoms (71 out of 77 actually had moderate or severe OSA, while 6 out of 77 had mild OSA), the number 
of PSGs potentially avoidable would increase up to 89.6%.

To our knowledge, this is the �rst study that exhaustively analyses unattended SpO2 and air�ow recordings 
jointly using machine-learning techniques. It is important to highlight two main novelties in this study. First, 
regarding healthcare resources, all the recordings were obtained at patient’s home, laying the foundations for an 
e�cient simpli�ed screening protocol able to decrease current overload of sleep laboratories. Previous studies 
highlight non-inferiority of at-home PSG in the management of OSA patients regarding both feasibility and 
repeatability, leading to shorter waiting times and substantial cost savings31,32. Nevertheless, simpli�ed alternatives 
to complete PSG are needed to further decrease complexity and intrusiveness33. In this way, recent studies aimed 
at assessing abbreviated protocols at home against domiciliary PSG focus on single-channel approaches, mainly 
oximetry25,34,35. Chung et al. reported accuracies of 87.0%, 84.0%, and 93.7% for cut-o�s of 5, 15, and 30 events/h, 
respectively34. Similarly, Gutiérrez-Tobal et al. reached accuracies of 92.9%, 87.4%, and 78.7% in the same thresh-
olds25, whereas Schlotthauer et al. achieved 83.8% sensitivity and 85.5% speci�city using a cut-o� of 15 events/h35. 
In addition, several studies focused on the validation of single-channel air�ow monitoring against in-laboratory 
PSG36–40. Poor performance and unbalanced sensitivity-specificity pairs were reported by Pang et al.36,  
while Rofail et al. reached 0.89 AUC for a cut-o� of 5 events/h38. In the study by Oktay et al.39, sensitivity ranged 
from 55.6% to 76.9% and speci�city from 76.9% to 95.5% for common diagnostic thresholds, whereas Crowley et 
al. reported sensitivity values ranging from 66.7% to 87.5% and speci�cities from 85.0% to 93.3%40. By contrast, 
Nakano et al. reported AUC values of 0.95, 0.96, and 0.98 for 5, 15, and 30 events/h using just a thermal sensor, 
although air�ow and reference PSG were conducted in the hospital37.

A second novelty, from a machine-learning point of view, is that regression SVMs have been found to be 
high-performance tools able to accurately estimate the AHI using a reduced set of signals. Previous works already 
reached remarkable agreement between estimated AHI and PSG using both oximetry23,41,42 and air�ow16,17 indi-
vidually. Gutiérrez-Tobal et al. achieved 0.85 ICC using an arti�cial neural network fed with air�ow-derived 

Figure 2. Automated feature selection procedure using a FCBF-based bootstrap (1000 iterations) approach 
for the proposed data sources: (A) single-channel oximetry; (B) single-channel air�ow; and (C) dual-channel 
SpO2 and air�ow. In the upper panels, variables are grouped according to the signal processing methodology: 
statistics in the time domain, spectral features, non-linear measures, and conventional indices. In the lower 
panel, variables are presented in the same order. For each data source, the particular signi�cance threshold for 
feature selection is plotted (dashed black line). Selected optimum variables with relevance above the threshold 
are marked with an asterisk. M1t-M4t: 1st to 4th order statistical moments in the time domain; M1f-M4f: 1st to 
4th order statistical moments in the apnoea-related frequency band; SE: Shannon spectral entropy; MF: median 
frequency; WD: Wootters distance; MA: maximum amplitude in the spectral band; mA: minimum amplitude in 
the spectral band; PR: relative power; SampEn: sample entropy; CTM: central tendency measure; LZC: Lempel-
Ziv complexity; ODI3: oxygen desaturation index of 3%; ODI4: oxygen desaturation index of 4%; SatMIN: 
minimum saturation; SatAVG: average saturation; CT90: cumulative time spent with a saturation below 90%; 
RDI: respiratory disturbance index.
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(thermistor) features16 and a 4-class kappa value of 0.43 applying ensemble learning to features from a nasal-prong 
pressure signal17. Using SpO2, Marcos et al. reached 0.91 ICC with a multivariate arti�cial neural network23 and 
Ebben & Krieger 0.88 ICC transforming the conventional ODI4 via quadratic regression analysis41. Furthermore, 
Jung et al. recently reported 0.99 ICC applying Hill regression to the ODI342. Nevertheless, these studies were 
conducted in a hospital without prospective validation in unattended settings. On the other hand, the present 
study found that agreement and diagnostic performance might be improved using oximetry and air�ow signals 
together.

Our proposal is a robust approach without signi�cantly increasing the complexity and intrusiveness of port-
able monitoring. Indeed, commercial portable devices for simultaneous measurement of oximetry an air�ow 
already exist, such as the widely known ARES and ApneaLink. Ayappa et al. and Masdeu et al. reported 0.80 ICC 
between in-lab PSG and semi-automated AHI from the ARES43,44. Similarly, Tonelli et al. reached AUC values of 
0.96, 0.91, and 0.92 for cut-o�s of 5, 15, and 30 events/h comparing manual AHI from ARES with in-lab PSG45. 

Figure 3. Bland-Altman and Mountain plots for characterising agreement between actual AHI from PSG 
and the estimated AHI derived from (A,B) single-channel SpO2, (C,D) single-channel air�ow, and (E,F) the 
proposed dual-channel approach based on SpO2 and air�ow jointly. AHI: apnoea-hypopnoea index; AHIPSG: 
actual AHI from polysomnography; SVM: support vector machine; SVMSpO2: regression SVM-based model 
for estimation of AHI from SpO2; SVMAF: regression SVM-based model for estimation of AHI from AF; 
SVMSpO2+AF: regression SVM-based model for estimation of AHI from joint analysis of SpO2 and AF.
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Using the ApneaLink, Gantner et al.46 and Chai-Coetzer et al.47 obtained sensitivity-speci�city pairs of 86–85% 
and 88–82% in the detection of severe OSA compared to simultaneous PSG at home. Recently, Ward et al.  
reported sensitivities ranging from 43% to 80% and speci�cities ranging from 83% to 100% for the common 
cut-o�s for OSA, although the reference PSG was conducted in the sleep laboratory in a separate night48.

Regarding the feasibility of unattended monitoring, in the present study 43 out of 299 (14.4%) at-home PSGs 
were discarded due to technical issues, mainly linked with EEG. Additionally, 6 (14.0%) PSGs were invalid due 
to low quality of air�ow. Concerning the dual-channel approach, 17 out of 256 (6.6%) studies were removed 
a�er the pre-processing stage, of which 12 were invalid due to low quality of air�ow. �ese numbers suggest 

SVMSpO2 SVMAF SVMSpO2+AF

NO
OSA MILD MOD SEV

NO
OSA MILD MOD SEV

NO
OSA MILD MOD SEV

PSG

NO OSA 1 4 1 0 4 1 1 0 5 1 0 0

MILD 2 5 8 1 1 9 6 0 4 6 6 0

MODERATE 0 2 24 1 1 6 14 6 0 3 23 1

SEVERE 0 0 5 42 0 0 15 32 0 0 3 44

Table 3. Confusion matrices for a 4-class diagnostic assessment of the estimated AHI from automated 
pattern recognition of the proposed data sources. AF: air�ow from nasal prong pressure; MILD: mild OSA; 
MOD: moderate OSA; OSA: obstructive sleep apnoea; SEV: severe OSA; SpO2: blood oxygen saturation from 
oximetry; SVM: support vector machine.

Cut-o� for positive OSA: AHI ≥ 5 events/h

Approach Se (%) Sp (%) PPV (%) NPV (%) LR + LR− Acc (%) AUC

SVMSpO2
97.8
(93.9, 100)

16.7
(0.0, 84.4)

94.6
(88.7, 99.6)

33.3
(0.0, 100)

1.17
(0.94, 1.99)

0.13
(0.0, 0.26)

92.7
(86.1, 97.6)

0.95
(0.89, 1)

SVMAF
97.8
(93.8, 100)

66.7
(0.0, 100)

97.8
(93.6, 100)

66.7
(5.3, 100)

2.93
(0.98, 5.41)

0.03
(0.0, 0.12)

95.8
(90.6, 99.6)

0.93
(0.73, 1)

SVMSpO2+AF
95.6
(90.1, 99.6)

83.3
(18.4, 100)

98.9
(96.4, 100)

55.6
(7.4, 95.4)

5.73
(1.18, 6.29)

0.05
(0.0, 0.15)

94.8
(89.1, 99.6)

0.97
(0.92, 1)

Table 4. Diagnostic assessment of the proposed models for estimation of the AHI using SpO2 and AF for a cut-
o� of 5 events/h for positive OSA in the independent test dataset. AHI: apnoea-hypopnoea index; AF: air�ow 
from nasal prong pressure; OSA: obstructive sleep apnoea; SpO2: blood oxygen saturation from oximetry; 
SVM: support vector machine.

Cut-o� for positive OSA: AHI ≥ 30 events/h

Approach Se (%) Sp (%) PPV (%) NPV (%) LR + LR- Acc (%) AUC

SVMSpO2
89.4
(78.3, 99.1)

95.9
(88.7, 100)

95.5
(87.4, 100)

90.4
(79.8, 99.2)

21.89
(7.52, 31.9)

0.11
(0.01, 0.23)

92.7
(86.2, 98.9)

0.98
(0.94, 1)

SVMAF
68.1
(51.5, 84.3)

87.8
(75.9, 98.6)

84.2
(69.2, 98.2)

74.1
(60.5, 87.5)

5.56
(2.71, 15.9)

0.36
(0.18, 0.57)

78.1
(67.8, 88.0)

0.90
(0.83, 0.97)

SVMSpO2+AF
93.6
(85.2, 100)

98.0
(93.0, 100)

97.8
(92.5, 100)

94.1
(85.3, 100)

45.9
(12.5, 34.8)

0.07
(0.0, 0.15)

95.8
(90.7, 99.6)

0.98
(0.95, 1)

Table 6. Diagnostic assessment of the proposed models for estimation of the AHI using SpO2 and AF for a cut-
o� of 30 events/h for positive OSA in the independent test dataset. AHI: apnoea-hypopnoea index; AF: air�ow 
from nasal prong pressure; OSA: obstructive sleep apnoea; SpO2: blood oxygen saturation from oximetry; SVM: 
support vector machine.

Cut-o� for positive OSA: AHI ≥ 15 events/h

Approach Se (%) Sp (%) PPV (%) NPV (%) LR + LR- Acc (%) AUC

SVMSpO2
97.3
(92.4, 100)

54.6
(28.1, 80.3)

87.8
(78.9, 95.7)

85.7
(55.3, 100)

2.14
(1.36, 5.11)

0.05
(0.0, 0.17)

87.5
(79.4, 94.3)

0.92
(0.84, 0.99)

SVMAF
90.5
(82.3, 98.8)

68.2
(42.7, 95.2)

90.5
(81.8, 98.7)

68.2
(41.3, 95.6)

2.85
(1.57, 7.54)

0.14
(0.02, 0.31)

85.4
(76.5, 93.3)

0.91
(0.83, 0.98)

SVMSpO2+AF
96.0
(90.0, 100)

72.7
(46.8, 96.7)

92.2
(84.2, 99.1)

84.2
(62.5, 100)

3.52
(1.84, 9.36)

0.06
(0.0, 0.15)

90.6
(83.1, 96.8)

0.96
(0.91, 1)

Table 5. Diagnostic assessment of the proposed models for estimation of the AHI using SpO2 and AF for a cut-
o� of 15 events/h for positive OSA in the independent test dataset. AHI: apnoea-hypopnoea index; AF: air�ow 
from nasal prong pressure; OSA: obstructive sleep apnoea; SpO2: blood oxygen saturation from oximetry; 
SVM: support vector machine.

https://doi.org/10.1038/s41598-020-62223-4


1 0SCIENTIFIC REPORTS |         (2020) 10:5332  | https://doi.org/10.1038/s41598-020-62223-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

that unsupervised air�ow is more likely to be a�ected by artefacts than oximetry. In addition, beyond the valu-
able complementarity of both signals, our results revealed that the contribution of oximetry to the performance 
increase is greater than that of air�ow. �erefore, the present study highlights again the importance of oximetry as 
a tool for simpli�ed initial screening, especially to con�rm severe OSA, where a PPV greater than 95% is reached, 
notably higher than single-channel air�ow.

Some limitations should be considered. Despite the large at-home database used in the current study, more 
participants would increase the generalisability of our �ndings. In addition, although high OSA prevalence was 
observed in the sample, it agrees with the proportion of patients attended in sleep units. �is is also consistent 
with the recommendations of the AASM regarding the use of portable abbreviated testing at home with patients 
showing high pre-test probability. Nevertheless, as machine-learning algorithms are known to be a�ected by 
unbalanced training datasets, this issue could in�uence our results.

Recent studies reported that the level of hypoxia is better correlated with mortality, cardiovascular disease or 
cancer incidence than conventional respiratory indexes based on the number of events per hour of sleep, such as 
the AHI or the ODI49–51. In this regard, novel estimates of hypoxia have been proposed, such as the hypoxic bur-
den51, the hypoxia load49 or the desaturation severity parameter52. Our methodology includes di�erent oximetry 
measures beyond the common indexes based on the number of desaturations, which could potentially account for 
this level of hypoxia, such as the frequency-domain (M3f and PR) and non-linear (SampEn, CTM, LZC) features 
included in the optimum model. Nevertheless, novel measures of hypoxia could increase the performance of the 
proposed methodology in the context of OSA screening. Concerning potential confounders that could in�uence 
our �ndings, the AASM recently demanded additional evidence on the e�ectiveness of abbreviated techniques for 
OSA screening in the presence of comorbidities, particularly cardiovascular and pulmonary diseases6. �erefore, 
further research is needed to con�rm the accurateness of our dual-channel approach in patients with history of 
cardiovascular disease or su�ering from COPD or obesity hypoventilation syndrome, among others.

Conclusions
�is study provides signi�cant evidence on the superiority of a dual-channel approach in the framework of unat-
tended abbreviated monitoring for OSA screening. Particularly, SpO2 and air�ow signals have been found to 
provide complementary information leading to a remarkable performance increase compared to single-channel 
approaches. Our results also reveal that air�ow recordings are more likely to be a�ected by permanent signal loss 
issues than oximetry in unattended settings. Nevertheless, we found that oximetry alone was able to maintain 
notably high accuracy, particularly in severe cases. We can conclude that joint analysis of simultaneous SpO2 
and air�ow recordings by means of machine-learning techniques provides accurate estimates of the AHI, which 
suggests its use as extensive routine screening test for OSA at home.

Data availability
All data generated during this study (estimated AHI) are included in this published article and its Supplementary 
Information Files. Additionally, the datasets (raw signals) analysed during the current study are available from the 
corresponding author on reasonable request.
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Figure 4. ROC curves for the AHI estimated using the proposed single-channel and dual-channel approaches 
using di�erent cut-o�s for positive OSA: (A) AHI = 5 events/h, (B) AHI = 15 events/h, and (C) AHI = 30 
events/h. AHI: apnoea-hypopnoea index; SVM: support vector machine; SVMSpO2: regression SVM-based 
model for estimation of AHI from SpO2; SVMAF: regression SVM-based model for estimation of AHI from AF; 
SVMSpO2+AF: regression SVM-based model for estimation of AHI from joint analysis of SpO2 and AF.
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