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Abstract. Low-cost sensing strategies hold the promise of

denser air quality monitoring networks, which could signif-

icantly improve our understanding of personal air pollution

exposure. Additionally, low-cost air quality sensors could be

deployed to areas where limited monitoring exists. However,

low-cost sensors are frequently sensitive to environmental

conditions and pollutant cross-sensitivities, which have his-

torically been poorly addressed by laboratory calibrations,

limiting their utility for monitoring. In this study, we investi-

gated different calibration models for the Real-time Afford-

able Multi-Pollutant (RAMP) sensor package, which mea-

sures CO, NO2, O3, and CO2. We explored three methods:

(1) laboratory univariate linear regression, (2) empirical mul-

tiple linear regression, and (3) machine-learning-based cali-

bration models using random forests (RF). Calibration mod-

els were developed for 16–19 RAMP monitors (varied by

pollutant) using training and testing windows spanning Au-

gust 2016 through February 2017 in Pittsburgh, PA, US. The

random forest models matched (CO) or significantly outper-

formed (NO2, CO2, O3) the other calibration models, and

their accuracy and precision were robust over time for test-

ing windows of up to 16 weeks. Following calibration, av-

erage mean absolute error on the testing data set from the

random forest models was 38 ppb for CO (14 % relative er-

ror), 10 ppm for CO2 (2 % relative error), 3.5 ppb for NO2

(29 % relative error), and 3.4 ppb for O3 (15 % relative error),

and Pearson r versus the reference monitors exceeded 0.8 for

most units. Model performance is explored in detail, includ-

ing a quantification of model variable importance, accuracy

across different concentration ranges, and performance in a

range of monitoring contexts including the National Ambient

Air Quality Standards (NAAQS) and the US EPA Air Sen-

sors Guidebook recommendations of minimum data quality

for personal exposure measurement. A key strength of the RF

approach is that it accounts for pollutant cross-sensitivities.

This highlights the importance of developing multipollutant

sensor packages (as opposed to single-pollutant monitors);

we determined this is especially critical for NO2 and CO2.

The evaluation reveals that only the RF-calibrated sensors

meet the US EPA Air Sensors Guidebook recommendations

of minimum data quality for personal exposure measure-

ment. We also demonstrate that the RF-model-calibrated sen-

sors could detect differences in NO2 concentrations between

a near-road site and a suburban site less than 1.5 km away.

From this study, we conclude that combining RF models

with carefully controlled state-of-the-art multipollutant sen-

sor packages as in the RAMP monitors appears to be a very

promising approach to address the poor performance that has

plagued low-cost air quality sensors.

1 Introduction

Historically, spatial coverage of air quality monitoring sta-

tions has been limited by the high cost of instrumentation;

urban areas typically rely on a few reference-grade moni-

tors to assess population scale exposure. However, air pollu-

tant concentrations often exhibit significant spatial variabil-

ity depending on local sources and features of the built en-

vironment (Marshall et al., 2008; Nazelle et al., 2009; Pugh

et al., 2012; Tan et al., 2014), which may not be well cap-

tured by the existing monitoring networks. In the past sev-
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eral years, there has been a significant increase in the devel-

opment and applications of low-cost sensor-based air qual-

ity monitoring technology (Lewis and Edwards, 2016; McK-

ercher et al., 2017; Moltchanov et al., 2015; Snyder et al.,

2013). The use of low-cost air quality sensors for monitor-

ing ambient air pollution could enable much denser air qual-

ity monitoring networks at a comparable cost to the exist-

ing regime. Increasing the spatial density of air quality mon-

itoring would help quantify and characterize exposure gradi-

ents within urban areas and support better epidemiological

models. Additionally, more highly resolved air quality in-

formation can assist regulators with future policy planning,

with identification of hot spots or potential areas of concern

(e.g., fracking in rural areas) where more detailed character-

ization is needed, and with risk mitigation for noncompliant

zones. Furthermore, low-cost air quality sensors are gener-

ally characterized by their compact size and low power de-

mand. These features enable low-cost sensors to be moved

with relative ease to rural areas or developing regions where

limited monitoring exists.

The two primary requirements of low-cost sensors for am-

bient measurement are (1) hardware that is sensitive to ambi-

ent pollutant concentrations and (2) calibration of the sen-

sors. The latter is the focus of this study. The challenge

with low-cost air quality sensor calibration is that the sensors

are prone to cross-sensitivities with other ambient pollutants

(Bart et al., 2014; Cross et al., 2017; Masson et al., 2015b;

Mead et al., 2013). The most common example is for ozone

electrochemical sensors, which also undergo redox reactions

in the presence of NO2. Additionally, NO has also been ob-

served to interfere with NO2, and CO sensors have exhibited

some cross-sensitivity to molecular hydrogen in urban en-

vironments (Mead et al., 2013). Furthermore, low-cost sen-

sors can be affected by meteorology (Masson et al., 2015b;

Moltchanov et al., 2015; Pang et al., 2017; Williams et al.,

2013). Most electrochemical sensors are configured such that

the reactions are diffusion-limited, and the diffusion coeffi-

cient can be affected by temperature (Hitchman et al., 1997);

Masson et al. (2015b) have shown that at relative humidity

(RH) exceeding 75 % there is significant error, possibly due

to condensation on potentiostat electronics. Lastly, the stabil-

ity of low-cost sensors is known to degrade over time (Jiao

et al., 2016; Masson et al., 2015a). For example, in electro-

chemical cells, the reagents are consumed over time and have

a typical lifetime of 1–2 years.

Deconvolving the effects of cross-sensitivity and stability

on sensor performance is complex. Linear calibration mod-

els developed in the laboratory perform poorly on ambient

data (Castell et al., 2017). Attempts to build calibration mod-

els from first principles have shown some success, but the

models are difficult to construct and their transferability to

new environments remains unknown (Masson et al., 2015b).

Accurate and precise calibration models are particularly crit-

ical to the success of dense sensor networks deployed in ur-

ban areas of developed countries where concentrations are

on the low end of the spectrum of global pollutant concen-

trations, as poor signal-to-noise ratios and cross-sensitivities

may hamper their ability to distinguish between intra-urban

sites. As such, there has been increasing interest in more so-

phisticated algorithms (e.g., machine learning) for low-cost

sensor calibration. To date, there have been published studies

using high-dimensional multi-response models (Cross et al.,

2017) and neural networks (Esposito et al., 2016; Spinelle

et al., 2015, 2017, De Vito et al., 2008, 2009). Spinelle

et al. (2015) showed that artificial neural network calibra-

tion models could meet European data quality objectives for

measuring ozone (uncertainty < 18 ppb); however, meeting

these objectives for NO2 remained a challenge. In De Vito et

al. (2009), the neural network calibration approach was ap-

plied to CO, NO2, and NOx metal oxide sensors in Italy with

encouraging results; in general mean relative error was ap-

proximately 30 %. Cross et al. (2017) built high-dimensional

multi-response calibration models for CO, NO, NO2, and O3

which had good agreement with reference monitors (slopes:

0.47–0.94; R2: 0.39–0.88). Esposito et al. (2016) demon-

strated excellent performance with dynamic neural network

calibrations of NO2 sensors (mean absolute error (MAE)

< 2 ppb); however, the same performance for O3 was not ob-

served. Furthermore, these calibrations have only been tested

on a small number of sensor packages. For example, Cross et

al. (2017) tested two sensor packages, each containing one

sensor per pollutant over a 4-month period, of which 35 %

was used as training data. Spinelle et al. (2015) tested a clus-

ter of sensors in a single enclosure, testing 22 individual sen-

sors in total over a period of 5 months, of which 15 % was

used as training data. Esposito et al. (2016) reported calibra-

tion performance on a single sensor package (five gas sensors

per package for measuring NO, NO2, and O3), and the model

was tested on 4 weeks of data.

In this study, we aim to improve the calibration strategies

of low-cost sensors using a random-forest-based machine

learning algorithm, which, to our knowledge, has not been

previously applied to low-cost air quality monitor calibra-

tions. To ensure calibration model robustness, they were de-

veloped and validated for 16–19 Real-time Affordable Multi-

Pollutant (RAMP) monitors (depending on pollutant), with

each monitor containing one sensor per species (CO, CO2,

NO2, SO2 and O3). Furthermore, the study was conducted

over a 6-month period (August 2016 to February 2017) span-

ning multiple seasons and a wide range of meteorological

conditions. During this period, RAMP monitors were inter-

mittently deployed for air quality monitoring campaigns, re-

sulting in collocation periods ranging from 5.5 to 16 weeks

(median: 9 weeks). The fitting of the machine learning al-

gorithms is discussed in detail to determine ideal calibra-

tion data sets to maximize performance and minimize over-

training. The performance of the random forest (RF) models

is compared to traditional laboratory univariate linear mod-

els, multiple linear regression models, and EPA performance
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guidelines. The performance of a given model over time is

also discussed.

2 Experimental methods

2.1 Measurement sites

Measurements were made from 3 August 2016 to 7 February

2017 on the Carnegie Mellon University campus in the Oak-

land neighborhood of Pittsburgh, PA, US. The outdoor ambi-

ent testing environment (40◦26′31.5′′ N, 79◦56′33′′ W) is lo-

cated within a small (< 100 vehicles) limited-access, open-

air parking lot near the center of campus. It consisted of a

mobile laboratory equipped with reference-grade instrumen-

tation (Sect. 2.3) and adjacent lawn space where the RAMP

monitors were mounted on tripods (Sect. 2.2). The domi-

nant local source at the site is vehicle emissions when ve-

hicles enter and exit the parking lot during the morning and

evening rush hours. There was also occasional truck traffic

and restaurant emissions from nearby on-campus restaurants.

The small size of the parking lot (< 100 cars) and few other

local sources means that for most of the day the location is

essentially an urban background site. During the measure-

ment period, the site mean (range) ambient temperature and

relative humidity were 13 ◦C (−15 to 34 ◦C) and 71 % (27 to

98 %), respectively.

The RAMP monitors have also been intermittently de-

ployed across the Pittsburgh region as part of ongoing air

quality monitoring research. To demonstrate the accuracy of

the calibrated RAMP monitors, we also show data from a

RAMP monitor which was first calibrated at Carnegie Mel-

lon University and then moved to the Allegheny County

Health Department (ACHD; 40◦27′55.6′′ N, 79◦57′38.9′′ W)

from February to May 2017. The ACHD site has independent

reference monitors for CO, NO2, and O3; thus comparing

data from these two sites enables an independent, real-world

assessment of model performance. The ACHD site is char-

acterized by increased traffic volume, restaurant density, and

industry relative to the Carnegie Mellon site.

2.2 Real-time Affordable Multi-Pollutant monitor

The study uses the RAMP monitor, which was developed

in a collaboration between Carnegie Mellon University and

SenSevere. The RAMP monitor uses the following com-

mercially available electrochemical sensors from Alphasense

Ltd: carbon monoxide (CO, Alphasense ID: CO-B41), nitro-

gen dioxide (NO2, Alphasense ID: NO2-B43F), sulfur diox-

ide (SO2, Alphasense ID: SO2-B4), and total oxidants (Ox ,

Alphasense ID: Ox-B431). The unit also includes a nondis-

persive infrared (NDIR) CO2 sensor (SST CO2S-A) which

contains built-in T (method: bandgap) and RH (method: ca-

pacitive) measurement. The experiments involved 95 indi-

vidual pollutant sensors mounted in 19 unique RAMP mon-

itors. While the collocation period spanned August 2016 to

Figure 1. Photographs of the RAMP monitors and the sampling

setup. (a) Front view of the RAMP unit in the NEMA-rated en-

closure. (b) Bottom view of the RAMP monitors with sensor lay-

out labeled in yellow. (c) Example of collocation setup using tripod

mounting (not pictured: supersite containing the reference monitors,

immediately beside the tripods).

February 2017, many sensors were intermittently deployed

for air quality campaigns in Pittsburgh, so the collocation pe-

riod ranged from 30 days to the full study period, depending

on the unit. Additionally, calibrations were not built for sen-

sors for which reference data were below detection limits or

if reference monitoring units were malfunctioning, reducing

the total number of sensors in this experiment to 73, due to

issues with the SO2 and NO2 reference monitors.

The electrochemical sensor outputs were measured using

electronic circuitry custom-designed by SenSevere and opti-

mized for signal stability. The circuitry includes custom elec-

tronics to drive the device, multiple stages of filtering cir-

cuitry for specific noise signatures, and an analog-to-digital

converter for measurement of the conditioned signal. The

RAMP monitors are housed in a NEMA-rated weatherproof

enclosure (Fig. 1a) and equipped with GSM cards to transmit

data using cellular networks to an online server. The RAMP

monitors also log data to a Secure Digital (SD) card as a

fail-safe in case of wireless data transfer issues. The data are

logged to the server at ∼ 15 s resolution and down-sampled

to 15 min averages, which was deemed to be an appropriate

time resolution for assessing spatial variability in air pollu-

tion exposure and to reduce the size of the data set and in-

crease computational efficiency. Regulatory bodies typically

make their data available at hourly resolution. The sensors

sample passively from the bottom of the unit (Fig. 1b), with

screens installed to protect the sensors. Roughly 3 weeks

of measurements of gaseous species, T , and RH are pos-

sible on a single charge of a built-in 30-amp-hour nickel–

metal hydride (NiMH) battery. The RAMP monitors are ei-

ther mounted to a steel plate for easy pole mounting or are

deployed on tripods approximately 1.5 m above the ground

(Fig. 1c). In this study, all the RAMP monitors were tripod-

mounted at a consistent height.
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In their simplest configuration, electrochemical sensors

function based on a redox reaction within an electrochemi-

cal cell in which the target analyte oxidizes the anode and

the cathode is proportionally reduced (or vice versa, depend-

ing on target analyte). The subsequent movement of charge

between the electrodes produces a current which is propor-

tional to the analyte reaction rate, which can be used to de-

termine the analyte concentration. The Alphasense electro-

chemical sensors utilize a more complex configuration by

using four electrodes (working, reference, counter, and aux-

iliary) to account for zero current changes. Essentially, the

auxiliary electrode, which is not exposed to the target ana-

lyte, accounts for changes in the sensor baseline signal under

different meteorological conditions. Additional details on the

theory of operation for electrochemical sensors can be found

in Mead et al. (2013).

The RAMP monitors log two output signals from each

of the Alphasense sensors: one from the auxiliary electrode

and the other from the working electrode. The net sensor re-

sponse is determined by subtracting the auxiliary electrode

signal from that of the working electrode. In theory, for a tar-

get analyte a linear relationship should exist between the net

sensor signal for that analyte and ambient analyte concen-

trations, and this expectation forms the basis of univariate

linear regression models built from laboratory calibrations.

However, as noted in the Introduction, even with an auxil-

iary electrode, electrochemical sensors may insufficiently ac-

count for the impacts of temperature (which affects the rate

of diffusion) and relative humidity under high-humidity con-

ditions where condensation is possible. This has motivated

researchers to construct multiple linear regression (MLR)

models to account for these temperature and humidity ef-

fects (Jiao et al., 2016). While these calibration models typi-

cally improve performance relative to univariate linear mod-

els (Spinelle et al., 2015, 2017), they typically do not incor-

porate any cross-sensitivities to other pollutants or any non-

linearities in the response. In this study, we attempt to build

a calibration model for each analyte with no underlying as-

sumptions regarding the calibration model structure and al-

low the models to consider directly the full suite of data being

reported by the RAMP monitors using a machine learning

approach.

2.3 Reference instrumentation

Reference measurements were made on ambient air con-

tinuously drawn through an inlet on the roof of the mo-

bile laboratory located approximately 2.5 m above ground.

Gaseous pollutants were drawn through approximately

4 m of 0.953 cm outer-diameter Teflon fluorinated ethylene

propylene (FEP) tubing with a six-port stainless-steel mani-

fold for flow distribution to the gas analyzers. Measurements

were made using direct absorbance at 405 nm for NO2 (2B

Technologies Model 405 nm), a gas filter correlation infrared

analyzer for CO (Teledyne T300U), a nondispersive infrared

analyzer for CO2 (LICOR 820), UV absorption for O3 (Tele-

dyne T400 Photometric Ozone Analyzer), and UV fluores-

cence for SO2 (Teledyne T100A UV Fluorescence SO2 An-

alyzer). The time resolution for all reference measurements

was 1 s.

The reference gas analyzers were checked and calibrated

weekly using calibration gas mixtures, except for O3, which

is calibrated biannually at a nearby regulatory monitoring

site. The CO and NO2 analyzers experience modest baseline

drift between weekly calibrations, on the order of approxi-

mately 40 ppb for CO and 2 ppb for NO2. Hence, baseline

pollutant concentrations were normalized to a nearby regula-

tory monitoring site (Allegheny County Health Department,

Air Quality Division, Pittsburgh, PA, US). The baseline cor-

rection was done using a linear regression between the begin-

ning and end of the week on the baseline signals (local source

spikes removed). The regression was based on daytime dif-

ferences, as nighttime inversions may cause real differences

in the baseline signals between the two sites. The gas analyz-

ers at the regulatory monitoring site are checked daily, and

thus this normalization helped correct for any baseline drift

during the days between calibration. No significant drift was

observed for CO2 or O3.

3 Calibration methods

Three calibration methods were evaluated: (1) a laboratory-

based univariate linear regression based on net sensor re-

sponse when exposed to calibration gases; (2) an empirical

multiple linear regression of net sensor response, T , and RH

regressed against reference monitor concentrations; and (3) a

random forest machine learning model using net responses

from all sensors, T , and RH to predict reference monitor

concentrations. Calibration models were constructed for the

CO, NO2, CO2, and O3 sensors in each RAMP monitor. In

this study, no calibration models were built for SO2 due to

a combination of reference instrument malfunction and SO2

concentrations measured with the reference instrumentation

being below the instrument detection limit (< 0.4 ppbv) for

most of the campaign (no nearby sources of SO2). While lab

calibrations were conducted for the SO2 sensors, these data

will be the subject of a future publication on air quality in

industrial areas where SO2 is more commonly detected.

3.1 Laboratory-based univariate linear regression

(LAB)

Prior to outdoor collocation, the sensors inside the RAMP

monitors were calibrated in a laboratory environment us-

ing a custom-manufactured sensor bed and calibration gas

mixtures. The sensors were exposed to each step in the cal-

ibration window (Table 1) for 20 min, and a face veloc-

ity of 1.2 ms−1 flowed perpendicular to the sensor surface.

This face velocity is at the lower end of the wind speed
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Table 1. Calibration ranges for laboratory-based calibration (LAB).

Pollutant Calibration range Points per calibration

CO 0–1600 ppb 3–4

NO2 0–50 ppb 3–4

CO2 0–500 ppm 3–4

range in Pittsburgh, PA (e.g., average monthly windspeed

over January–May 2017 at 2 m height is estimated at 2.4–

3.4 ms−1). The sensor response at each calibration step was

averaged once the signal had stabilized (steady sensor output

voltage). Temperature and relative humidity were not con-

trolled during the calibration due to a lack of available in-

frastructure at the time of the study. The temperature was

at levels typical of indoor laboratory environments (approxi-

mately 20 ◦C), and the dry calibration gas provided very little

humidity (RH < 5 %). Calibrations were built for CO, NO2

and CO2. Laboratory calibrations for O3 were not performed

due to a lack of suitable O3 calibration gas.

The laboratory calibration follows a standard univariate

linear regression model of regression net (CO, NO2) or raw

(CO2) signal against the reference gas concentration (Eq. 1):

yreference(t) = β0 + β1 ×
[

net sensor resp.(CO,NO2)

or raw sensor resp.(CO2)
]

. (1)

Model performance was evaluated by comparing the cali-

brated response to reference measurements. We refer to the

laboratory univariate linear regression calibration as LAB.

Separate LAB calibrations were developed for each sensor

(37 individual calibrations, 9–14 per pollutant). Due to dif-

ficulty controlling temperature and RH over a wide range of

known ambient conditions, we focused on the relationship

between analyte response and the calibration gas concentra-

tion, which any user with access to basic lab infrastructure

can do. While beyond the scope of this study, an improved

LAB calibration would involve a chamber with variable T

and RH to better match ambient conditions.

3.2 Empirical multiple linear regression

Following laboratory calibration, the individual sensors were

mounted in the RAMP monitors and deployed outdoors ad-

jacent to the Carnegie Mellon University supersite. The col-

location period varied by RAMP monitors, with a mini-

mum collocation period of 6 weeks and a maximum collo-

cation period of the entire 6-month study period. The col-

location window varied due to intermittent deployment of

some RAMP monitors for ongoing air quality monitoring

campaigns in the Pittsburgh area. To build calibration mod-

els, the collocation period was separated into a training and

testing period identical to that used for the random forest cal-

ibration (see Sect. 3.3). Due to the previously established in-

fluence of T and RH on sensor response (Jiao et al., 2016;

Masson et al., 2015b; Spinelle et al., 2015, 2017), a MLR

model was used to calibrate the output from each sensor us-

ing net sensor response to the target analyte (e.g., CO for the

CO sensor), T , and RH as explanatory variables (Eq. 2), sim-

ilar to the approach described in a recent a European Union

report on protocols for evaluating and calibrating low-cost

sensors (Spinelle et al., 2013).

yreference(t) =β0

+ β1 ×
[

net sensor resp.(CO, NO2,O3)

or raw sensor resp.(CO2)
]

+ β2 × T + β3 × RH (2)

The training data were used to calculate the model coeffi-

cients (β0 through β3), and the model performance was eval-

uated on withheld testing data. Separate MLR models were

developed for each sensor (73 individual models). We refer

to these models as MLR.

3.3 Random forest model

An RF model is a machine learning algorithm for solving re-

gression or classification problems (Breiman, 2001). It works

by constructing an ensemble of decision trees using a training

data set; the mean value from that ensemble of decision trees

is then used to predict the value for new input data. Briefly,

to develop a random forest model, the user specifies the max-

imum number of trees that make up the forest, and each tree

is constructed using a bootstrapped random sample from the

training data set. The origin node of the decision tree is split

into sub-nodes by considering a random subset of the possi-

ble explanatory variables (mtry). The training algorithm splits

the tree based on which of the explanatory variables in each

random subset is the strongest predictor of the response. The

number of random explanatory variables considered at each

node (denoted mtry) is tuned by the user. This process of node

splitting is repeated until a terminal node is reached; the user

can specify the maximum number of sub-nodes or the mini-

mum number of data points in the node as the indication to

terminate the tree. For our random forest models, the termi-

nal node was specified using a minimum node size of five

data points per node.

To illustrate the method, consider building a random for-

est model for one RAMP monitor using a single decision tree

and a subset of 100 training data points to build a CO calibra-

tion model (Fig. 2). In this highly simplified example, at the

first node, the net CO sensor signal is the strongest predic-

tor of the CO reference monitor concentration, with a natural

split in the data at a net CO sensor voltage of 255.9 a.u. (ar-

bitrary units) If sensor voltage exceeds 255.9 a.u., a cluster

of seven data points from the training data predicts an aver-

age CO concentration of 357 ppb; if CO net sensor voltage

is ≤ 255.9 a.u., then the data go to the next decision node,

in which net CO sensor signal is again the strongest predic-

tor of the CO reference monitor concentration, with a natural

www.atmos-meas-tech.net/11/291/2018/ Atmos. Meas. Tech., 11, 291–313, 2018
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Figure 2. Simplified illustration of one potential CO random for-

est tree for one RAMP monitor using 100 data points (the trees

within the actual models are significantly more complex, and 500

such trees are included in the final models). Tree nodes are colored

by splitting variable, and split point is overlaid on the branch (e.g.,

at first split, points with CO sensor signal > 255.9 a.u. are sent to a

terminal node; the remaining points go to the next splitting node).

CO is the average CO reference monitor concentration (ppb) in each

terminal node; n is the number of data points in each terminal node.

break in the data at a net CO sensor voltage of 167.3 a.u. The

splitting proceeds until all the training data are assigned to a

terminal node. The prediction value for each terminal node

is the average reference monitor concentration of training

points assigned to that node. To apply the algorithm (i.e., pre-

dict the CO concentration from a set of measured inputs), the

user takes the measured T and the net CO, NO2, and O3 sig-

nals and follows the path through the tree to the appropriate

terminal node. The predicted CO concentration for that tree

is then the average training value associated with that termi-

nal node. This process is then repeated through multiple trees

(Fig. 2 shows only one simple tree), and the predictions from

each tree are averaged to determine the final output from the

entire random forest model. In this simple example, there are

only six possible CO concentrations the random forest model

will output. In practice, each tree has hundreds of terminal

nodes and the forest typically comprises hundreds of trees,

which means that there are thousands of possible answers.

The model prediction for a given set of inputs is the average

prediction across all the hundreds of trees that comprise the

forest.

The random forest model’s critical limitation is that its

ability to predict new outcomes is limited to the range of

the training data set; in other words, it will not predict data

with variable parameters outside the training range (no ex-

trapolation). Therefore, a larger and more variable training

data set should create a better final model. In this study, our

collocation window covered a broad range of concentrations

and meteorological conditions; however, in situations where

shorter collocation windows with less diverse training ranges

are desired, the RF model may not be suitable as a standalone

model. This is discussed further in Sect. 4.3.2. To maxi-

mize utilization of the training data set to avoid missing any

spikes during the training window, a k-fold cross-validation

approach was used. A k-fold cross-validation divides the data

into k equal-sized groups (where k is specified by the user),

and k repeats are used to tune the model. Consider an exam-

ple where k is equal to 5 (a fivefold cross-validated random

forest model). With a fivefold validation, five unique random

forest models are constructed, one for each fold. In building

the first random forest, the first 20 % (1/k) of the data will

be the testing data, and the remaining 80 % [(1−k)/k] of the

data will be used as training. In building the second random

forest, the next 20 % of the data will be used as test data, and

the first 20 % and remaining 60 % will be used to train. This

is repeated until the data are fully covered, at which point

the random forest model is created by combining the five (k)

individual models into one large random forest model. This

helps to minimize bias in training data selection when pre-

dicting new data and ensures that every point in the training

window is used to build the model.

In this study, reference gas data; RAMP net sensor data for

CO, NO2, SO2, and O3; and RAMP raw sensor data for CO2,

T , and RH were collected at 15 s resolution, time-matched,

and down-averaged to 15 min intervals (IGOR Pro v6.34),

which is a higher temporal resolution than the 1 h intervals at

which typical regulatory monitoring information is reported

and minimized computational cost. The down-sampled data

were then imported into R (ver. 3.3.3, “Another Canoe”) for

random forest model building. R is an open-source pack-

age for tuning and cross-validating many classes of statistical

models, including random forest models. The cross-validated

random forest models were compiled using the open-source

“caret” package (Kuhn et al., 2017). The model considered

all RAMP data (net voltage outputs from the five gas sen-

sors plus T and RH: seven possible variables total) as po-

tential explanatory variables to predict the reference monitor

gas concentration. The number of trees was capped at 100

per fold, and a fivefold cross-validation was used for a to-

tal of 500 trees. Therefore, the predicted value for a given

set of measured inputs is the average value from this set of

500 trees (each tree provides one prediction). The k value

was chosen by identifying the minimum number of folds for

which an increase in the fold size increased model perfor-

mance less than 5 % on the held-out data. The number of

trees was chosen based on the work of Oshiro et al. (2012),

who suggested that the number of trees range from 64 to 128.

The computation time to train a complete RAMP monitor

with five sensors was approximately 45 min. This was an-

other motivating factor for 15 min resolution data, as building

models at higher time resolutions would have significantly

increased computational demand.

When fitting the random forest models with the training

data, the main tuning parameter is the number of explanatory

variables to consider at each decision node (mtry). To deter-
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Figure 3. Flow path for data collection and RF model fitting and testing. From collocation period, 2688 points were sub-selected as training

(1A) data, while the remaining data were used for model testing (1B). The training data were further divided into five cross-validation folds,

and each fold was used to tune and build an RF model. All five models were then combined in R to build one cumulative model, and the

predictive power of the model was assessed for the withheld testing data.

mine the optimal mtry, the root mean square error (RMSE,

equation in the Supplement) and the coefficient of determi-

nation (R2) were calculated on the withheld folds of the train-

ing data (Fig. 3, step 2) for mtry equal to 2, 4, or 7 to span the

complete variable range. The random subset of explanatory

variables considered at each node was chosen based on which

value of mtry minimized RMSE. The cross-validation and the

subset of explanatory variables randomly considered at each

node (mtry) was tuned using the caret package in R (Kuhn

et al., 2017). Following random forest model generation and

tuning, the five 100-tree models were combined to create a fi-

nal model with 500 trees. This process was repeated for each

sensor to create 73 separate random forest models. The final

models convert the RAMP output signals into calibrated con-

centrations. The model conversion was done within R, where

it exists as a standalone object compatible with the standard

R configuration.

Data from three RAMP monitors (15 individual gas sen-

sors) were used to investigate the optimal training period,

which was determined by comparing the training data size

to MAE (the average of the absolute value of the resid-

uals). The optimal training period was the period beyond

which increases in the length of the training window (and

therefore size of the training dateset) no longer resulted in

significant reductions in the MAE. The initial training win-

dow evaluated was 1 week, and 1-week increments in train-

ing period duration were considered until MAE was min-

imized. The optimal collocation window was determined

to be 4 weeks (or 2688 data points at 15 min resolution).

This was evaluated for a consecutive collocation window

and for eight non-consecutive collocation windows equally

distributed throughout the whole collocation period (August

2016 to February 2017) in half-week increments. Details of

this evaluation are provided in the Supplement, but the non-

consecutive collocations generally performed slightly better,

with reductions in MAE of 12 ppb (4 % relative error) for

CO, 2 ppm for CO2 (0.4 % relative error), 0.4 ppb for NO2

(4 % relative error), and 1.6 ppb for O3 (7 % relative error)

compared to the consecutive 4-week collocation. The mo-

tivation for exploring non-consecutive collocation windows

dispersed throughout the study period was to ensure that the

training period covered a complete range of gas species con-

centrations, temperatures, and relative humidity. In practice,

the training data utilized in this study are equivalent to collo-

cating the RAMP monitors with reference monitors for 3–4

days every 1–2 months. If non-consecutive collocation is in-

convenient or not possible, consecutive collocation may be

satisfactory as determined by MAE and other accuracy pa-

rameters needed for the application at hand.

3.4 Metrics for performance evaluation

The evaluation of the different models was conducted on

15 min averaged testing data (i.e., data withheld entirely from

model building). Metrics to quantitatively compare the LAB,

MLR, and RF model output to the reference monitor con-

centrations included Pearson r , which is a measure of the

strength and direction of a linear relationship, and the co-
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efficient of variation of the mean absolute error (CvMAE,

Eq. 3). For comparing the RF model performance to other

published studies, we also evaluated mean bias error, mean

absolute error, slope of the linear regression of RF-model-

calibrated RAMP data and reference data, and coefficient of

determination (R2).

CvMAE =
MAE

avg. reference conc.
=

1

avg. reference conc.
×

[

1

n

n
∑

i=1

|modeli − referencei |

]

(3)

Another useful tool for visually comparing competing mod-

els is a target diagram (Jolliff et al., 2009). A target diagram

illustrates the contributions of the centered root mean square

error (CRMSE, which is RMSE corrected for bias) and the

mean bias error (MBE) towards total RMSE. In a target di-

agram, the x axis is the CRMSE, the y axis is the MBE,

and the vector distance to the origin is the RMSE. Since

CRMSE is always positive, a further dimension is added: if

the standard deviation of the model predictions (calibrated

sensor data) exceeds the standard deviation of the reference

measurements, the CRMSE is plotted in the right quadrants

and vice versa. To match previously constructed target di-

agrams (Borrego et al., 2016; Spinelle et al., 2015, 2017),

the CRMSE and MBE were normalized by the standard de-

viation of the reference measurements, and thus the vec-

tor distance in our diagrams is RMSE/σreference(nRMSE).

The resulting diagram enables visualization of four diag-

nostic measures: (1) whether the model tends to overesti-

mate (MBE > 0) or underestimate (MBE < 0); (2) whether

the standard deviation of the model predictions (calibrated

sensor data) is larger (right plane) or smaller (left plane)

than the standard deviation of the reference measurements;

(3) whether the variance of the residuals is smaller than the

variance of the reference measurements (inside circle of ra-

dius 1) or larger than the variance of the reference measure-

ments (outside circle); and (4) the error (nRMSE), i.e., the

vector distance between the coordinate and the origin. De-

tails of equations required to build a target diagram are pro-

vided in the Supplement. Model performance metrics were

calculated in R (ver. 3.3.3, Another Canoe) using the “tdr”

package (Perpinan Lamigueiro, 2015).

4 Results and discussion

4.1 Calibration model goodness of fit: comparing

model predictions to training data

Following model building, the goodness of fit between the

model output concentrations and the reference monitor con-

centrations during the training window (i.e., the data used

to build the model) were evaluated for all three calibration

model approaches (laboratory univariate linear regression, or

“LAB”; field-based multiple linear regression, or “MLR”;

and field-based random forest, or “RF”). For the training pe-

riod, the calibrated CO and O3 concentrations were all highly

correlated (Pearson r > 0.8) with the reference monitor con-

centrations for all the calibration model approaches (Table 2).

However, only the RF model achieved strong correlations

between the reference monitor and the RAMP monitors for

NO2 and CO2 (Pearson r: 0.99). Furthermore, CvMAE for

each species was ≤ 5 % during the training window for the

RF models, substantially outperforming the other models.

Regression plots for 19 RAMP monitors and for CO, CO2,

and O3 and 16 RAMP monitors for NO2 illustrating the

goodness of fit of the RF model are provided in the Sup-

plement (Figs. S3–S6). Only 16 of the 19 RAMP monitors

had an NO2 calibration, since the NO2 monitor malfunc-

tioned during the period when three RAMP monitors were

collocated, and so a calibration model could not be built for

NO2 for these three RAMP monitors. For the RF models,

Table 2 also provides the random subset of explanatory vari-

ables sampled for splitting at each decision node (mtry) to

achieve the lowest model RMSE. In general, the larger the

mtry, the simpler the underlying structure of the model. For

example, if there is one dominant variable but the model is

permitted to consider all seven explanatory variables at each

decision node (i.e., mtry = 7), then the model will most fre-

quently split the data based on the dominant variable. By

contrast, the advantage of a lower mtry is that subtle rela-

tionships between explanatory variables and the response can

be probed. When randomly selecting fewer explanatory vari-

ables (mtry = 2 or 4) at each decision node, the probability

of selecting a dominant variable decreases and the model

is forced to split the data into sub-nodes based on variables

which may have a smaller (but real) effect on the response.

If the goodness of fit of the calibration model is improved by

decreasing mtry, this suggests more complex variable inter-

actions with the response (Strobl et al., 2008).

Using the mtry metric, we observed that the underlying

RF model structure is the simplest for CO, that some model

explanatory variable complexities exist for the O3 and NO2

models, and that the CO2 model is the most complex and

relies on subtle relationships between the explanatory vari-

ables to best fit the data (lowest mtry had the best results).

This finding matches our expectations based on the LAB

and MLR models; these simpler models performed best for

CO and worst for CO2. The trends in the mtry metric high-

lights the value of the RF model approach which directly ac-

counts for multiple pollutants. This appears to be critical for

O3, NO2 and CO2 sensors because they are cross-sensitive to

other pollutants. Cross-sensitivities have been shown to have

a minimal impact on CO sensors, with the only notable cross-

sensitivity being to molecular hydrogen (Mead et al., 2013).

The poor performance of linear models at predicting CO2

concentration is not surprising, as the sensor was observed to

measure high concentrations under periods of high relative

humidity (e.g., during rain) and in some cases during heavy

rain will be saturated at 2000 ppm, the upper limit of the sen-
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Table 2. Performance metrics for fits to training data (i.e., goodness of fit) discussed in Sect. 4.1.

Type Species
No. of RAMP Avg. Pearson r Avg. MAE Avg. CvMAE β0 β1 β2 β3

monitors (± SD) (± SD) (± SD) (± SD) (± SD) (± SD) (± SD)

LAB

CO 9 0.99 (± 0.01) 132 (± 32 ppb) 38 % (± 17 %) −119 (± 53) 0.82 (± 0.69) – –

CO2 14 0.99 (± 0.01) 28 (± 24 ppm) 24 % (± 12 %) 20 (± 36) 0.98 (± 0.13) – –

NO2 14 0.99 (± 0.01) 35 (± 8 ppb) 188 % (± 48 %) −14 (± 4.9) 0.62 (± 0.15) – –

MLR

CO 19 0.94 (± 0.06) 39 (± 13 ppb) 15 % (± 5 %) 32 (± 50) 1.3 (± 0.2) −1.1 (± 2.8) −0.1 (± 0.6)

NO2 16 0.59 (± 0.17) 4.6 (± 0.7 ppb) 42 % (± 5 %) 3.9 (± 16) 1.2 (± 0.5) 0.1 (± 0.3) −0.1 (± 0.2)

O3 19 0.81 (± 0.06) 5.1 (± 0.6 ppb) 24 % (± 2 %) 9.4 (± 14) 0.92 (± 0.2) 0.1 (± 0.2) −0.2 (± 0.2)

CO2 19 0.49 (± 0.13) 19 (± 3 ppm) 4 % (± 1 %) 390 (± 72) 0.1 (± 0.1) −0.8 (± 0.7) 0.1 (± 1.0)

Median

mtry mtry = 2 mtry = 4 mtry = 7

RF

CO 19 0.99 (± 0.00) 7.9 (± 1.5 ppb) 3 % (± 0.5 %) 7 11 % 21 % 68 %

NO2 16 0.99 (± 0.01) 0.5 (± 0.1 ppb) 5 % (± 1 %) 4 21 % 74 % 5 %

O3 19 0.99 (± 0.00) 0.7 (± 0.1 ppb) 3 % (± 0.4 %) 4 0 % 84 % 16 %

CO2 19 0.99 (± 0.00) 1.7 (± 0.3 ppm) 0.4 % (± 0.1 %) 2 74 % 21 % 5 %

LAB: laboratory calibration (Eq. 1); MLR: multiple linear regression (Eq. 2); RF: random forest model. For the LAB and MLR models, the fit coefficients are provided. For the RF models, the median mtry

value across the 16–19 RAMP monitors and the breakdown of the mtry tuning results (mtry which minimized RMSE) across the 16–19 RAMP results are provided.

sor, and then is reset to 400 ppm daily, as per manufacturer

recommendations. The increase in CO2 under high-humidity

conditions is likely due to the interference of water with CO2

in the NDIR signal. Linear models are poorly suited to de-

scribe this behavior.

4.2 Evaluation of models using testing data

To test the performance of the three different calibration

models, the models were applied to the testing data that were

not used for model fitting. The RAMP monitor concentra-

tions after correction using the calibration models were com-

pared to the actual measured reference concentrations (Fig. 3,

step 5). To illustrate the approach, in Fig. 4 we show a very

short time series of the testing data (∼ 48 h window) for

RAMP #1. This RAMP monitor’s performance is represen-

tative of the average model performance across the RAMP

monitors and therefore illustrates the quality of an average

model. Figure 4 also shows the calibrated RAMP #1 output

regressed against the reference monitor concentration for the

entire testing period for all three calibration models (LAB,

MLR, and RF). For this period, the RF model outperformed

the LAB and MLR models for all pollutants except for CO.

Differences between the different models were smallest for

CO and O3 and largest for CO2 and NO2; the LAB models

essentially did not reproduce the reference concentrations for

CO2 and NO2. To illustrate the consistency of the RF-model-

calibrated RAMP monitors across the entire suite of moni-

tors, regressions for all the RAMP monitors for O3 are shown

in Fig. 5. Regression plots for all RAMP monitors across the

other gases are provided in the Supplement (Figs. S7–S10).

In this study, any data remaining after training were used

to test model performance, provided there was at least 48 h

of testing data (192 data points, each point a 15 min aver-

age). The RAMP sensors that met this threshold and are used

to test the model – 16 for CO and O3, 15 for CO2, and 10 for

NO2 – had at least 1.4 weeks and a maximum of 15 weeks

of testing data, with a median testing data set of 5 weeks.

The amount of data used to test model performance var-

ied by RAMP monitor and by pollutant because reference

monitors were occasionally offline for maintenance and cal-

ibration, and some RAMP monitors were intermittently de-

ployed for concurrent air quality monitoring campaigns in

Pittsburgh. Figure S11 shows examples of testing periods for

two RAMP monitors, one at the low end (#19 with ∼ 2300

testing data points) and one at the high end (#4 with ∼ 10 000

data points), interspersed with training periods (2688 data

points for each sensor.)

To assess the overall model performance, two performance

metrics (Pearson r and CvMAE) were calculated for each

RAMP monitor using the entire testing data set (Fig. 6). The

aggregate assessment shows that the MLR and RF models

are interchangeable for CO, as both models achieved Pear-

son r > 0.9 and CvMAE < 15 %. The LAB model achieved a

similar Pearson r , but CvMAE doubled to ∼ 30 %. For CO2,

NO2, and O3, the RF model substantially outperforms the

LAB and MLR calibration models on the testing data. On av-

erage, Pearson r exceeded 0.8 for the RF model for CO2 and

NO2 versus < 0.6 for the LAB and MLR calibration mod-

els. Furthermore, the RF model performance was more con-

sistent across the RAMP monitors than the MLR and LAB

models. For example, the Pearson r for O3 ranged from 0.92

to 0.95 for the RF models versus 0.74 to 0.89 for the MLR

models. This means that essentially all the RF models for

O3 performed well versus only a subset of the MLR models.

The consistency of the different models is indicated by the

smaller range in the box plots of Fig. 6.

To compare the LAB, MLR, and RF models, target dia-

grams were constructed for the four gases using all three cal-

ibration models for each RAMP monitor (Fig. 7). The tar-

get diagrams show that, on average, across the RAMP moni-
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Figure 4. Example time series and regressions comparing the reference monitor data (black) to statistically average RAMP (RAMP #1) using

LAB model (green), multiple linear regression (MLR) model (blue), and random forest (RF) model (pink). The left panel (a) shows only

48 h of time series data to illustrate the approach; the full evaluations (Table 3) were performed with much larger testing data sets; example

regressions from the full data set for RAMP #1 are shown in the right panel (b).

tors the random sensor error (distance to origin) was smaller

for RF models, and the RF models showed the least RAMP-

to-RAMP variability (less disperse). This contrasts with the

MLR models, whose bias and extent of model standard de-

viation varied much more widely between RAMP monitors,

especially for CO2. For the LAB models, the error for CO2

and NO2 was approximately an order of magnitude larger

than for the RF and MLR models and had to be plotted on

a separate inset due to their poor performance. Across all

gases, the RF models on average were biased towards pre-

dicting concentrations slightly lower than the reference (i.e.,

slight tendency to underpredict, MBE/σreference < 0). Thus,

we conclude that the low CvMAE, high Pearson r correla-

tions, lowest bias, and lowest absolute error characteristics of

the RF models for all four gases are significant improvements

compared to conventional calibration approaches (LAB and

MLR).
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Figure 5. RF model performance for ozone evaluated using the testing data (data withheld from building model). Correlation plots show

predicted ozone concentration (“RAMP”) versus the reference monitor concentration (“REF”) for 16 RAMP units. All values are in ppb, and

the 1 : 1 line is drawn as a black dashed line.
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Figure 6. Performance of different calibration models against reference monitor testing data (data not included in model fitting). (a) Pearson r

correlation coefficient (higher is better, maximum of 1) of different calibration models (“LAB”, green; “MLR”, blue; “RF”, pink) versus

reference monitor. (b) The CvMAE (coefficient of variation of the MAE; MAE normalized by average reference concentration; lower is

better) for the three calibration methods. The box plots show the range across the 10–16 RAMP monitors (whiskers: 10th and 90th percentile;

box edges: 25th and 75th percentile).
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Figure 7. Target diagrams for CO, CO2, NO2, and O3 to compare the LAB, MLR, and RF model performance. The y axis is the bias relative

to the reference, and the x axis is the bias-adjusted RMSE (CRMSE) normalized by reference monitor standard deviation; the vector distance

between any given point and the origin is the RMSE normalized by the standard deviation of the reference measurements. The CRMSE is

in the left plane if model standard deviation is smaller than the standard deviation of the reference observations, and vice versa. If data fall

within the circle, then the variance of the residuals is smaller than the variance of the reference measurements. The target diagram for the

LAB model for CO2 and NO2 is shown in the inset figure because of the order-of-magnitude difference in MBE and CRMSE compared to

the MLR and RF models.

4.3 Detailed assessment of RF model performance

To investigate the performance of the RF models in greater

detail, we assessed the effect of the amount of testing data

on model performance, the relative importance of the seven

explanatory variables, the performance of the models across

the different concentration ranges, and the number of data

points needed in each concentration range to optimize the fit.

4.3.1 Drift over amount of testing data

To assess the effect of testing window size on conclusions re-

garding RF model performance, we compare the MAE to the

number of weeks in the testing window (Fig. 8). For all the

gas species, the MAE was essentially flat across the RAMP

monitors, and the 95 % confidence interval on the slope in-

cluded 0; RAMP monitors with more testing data did not

have substantially higher (worse) MAE, suggesting the RF

models are robust over the study period. For NO2, the most

data available for testing amounted to approximately 8 weeks

due to instrument maintenance and repair taking the NO2 ref-

erence monitor offline for 6 weeks of the study. Figure 8 also

shows MAE over time from one RAMP monitor, RAMP #4,

which remained at the Carnegie Mellon supersite for the en-

tirety of the 6-month study. For RAMP #4, MAE was calcu-

lated for an increasing cumulative number of weeks forward

in time; again, MAE was consistent (and in some weeks im-

proved) over time.
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Figure 8. (a) Mean absolute error (MAE) versus the length of the testing period for CO (red), CO2 (blue), NO2 (orange), and O3 (purple)

for all the RAMP monitors. (b) Changes in MAE over time for the RAMP monitor with the longest testing window (RAMP #4). The figure

shows that the MAE is generally unchanged (or in some cases improves) as the amount of testing data increases, suggesting the RF models

are stable over the study period.

4.3.2 RF model explanatory variable importance

While RF models are non-parametric, some sense of the

model structure can be gained by examining the relative im-

portance of the explanatory variables. The importance of

each variable was quantified by comparing the percent in-

crease in mean square error (MSE) when an explanatory vari-

able signal is permuted – i.e., the values of the selected vari-

able are randomly shuffled, effectively eliminating this vari-

able from the model (Pearson, 2017). If an explanatory vari-

able strongly affects the model performance, permuting that

variable results in a large increase in MSE. Conversely, if a

variable is not a strong predictor of the response, then per-

muting the variable does not significantly increase the MSE.

Figure 9 shows for each of the gases (CO, CO2, NO2, and

O3) the increase in MSE when the explanatory variables

were permuted. For both CO and O3, the signal from the

sensor measuring the target analyte (CO or O3) is the most

important explanatory variable, as expected. For the O3, the

second-most-important variable was the NO2 signal, an ex-

pected cross-sensitivity, as the ozone sensor measures total

oxidants (O3 + NO2) (Spinelle et al., 2015).

The explanatory variable importance is more complex for

CO2 and NO2. For CO2, all variables are roughly equally im-

portant, with CO being the most important. This is likely due

to the strong meteorological effect of humidity on the mea-

sured CO2 concentration; the model must rely on other pri-

mary pollutants to predict the CO2 signal when the measured

CO2 has reached full scale (i.e., becomes saturated in peri-

ods of high humidity), and short-term fluctuations of CO2

are likely from combustion sources (e.g., vehicular traffic in

urban areas) which also emit CO. This highlights the value

of having sensors for multiple pollutants in the same mon-

itor. Including measurements of additional pollutants helps

the RF model correct for cross-sensitivities. However, the

drawback of this cross-sensitivity in the model is that the RF

model may not perform well in areas where the characteris-

tic source ratios of CO and CO2 have changed. For example,

this model was calibrated in an urban environment with many

traffic and combustion-related sources nearby. Such a model

would be expected to perform poorly for CO2 in a heav-

ily vegetated rural environment where CO and CO2 are not

strongly linked. For the NO2 model, RH was the most impor-

tant explanatory variable followed by the NO2 sensor signal,

highlighting again the importance of including meteorolog-

ical data within sensor packages. The NO2 model was also

more strongly affected by temperature than the other pollu-

tants. We hypothesize that the sensitivity of the NO2 sensor

to ambient NO2 is suppressed in Pittsburgh, which has low

ambient NO2 concentrations compared to other cities where

these sensors have been evaluated (see Table 3). NO2 is low-

est when O3 is highest in the summer, and thus the NO2 RF

model effectively uses T and RH as indicators for seasonal-

ity when NO2 is low and the sensor response is supressed.

Furthermore, the relatively equal variable importance of sev-

eral of the explanatory variables within a model suggests that

a cluster of sensors measuring many different species is crit-

ically important to build robust calibration models. Interest-

ingly, despite low SO2 concentrations, there was some contri-

bution from the RAMP SO2 sensor. This may be due to cross-
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Figure 9. Importance of the explanatory variables to each of the RF

models. For each model, the explanatory variables are rank-ordered

from most to least important, and the sensor response correspond-

ing to the target analyte is marked with a yellow star. The box plots

represent the range of importance across the 10–16 RAMP moni-

tors (whiskers: 10th and 90th percentile; box edges: 25th and 75th

percentile). The relative importance is determined by calculating the

increase in mean square error if the explanatory variable is permuted

(i.e., randomly shuffled).

sensitivities within the SO2 sensor itself, as the SO2 sensor

may respond to more than ambient SO2, warranting future in-

vestigation. However, in general the SO2 sensor contributed

the least to model performance; thus this sensor could be re-

placed with a more relevant sensor, such as NO, in future

iterations of the RAMP monitor. These findings highlight the

value of bundling sensors for measuring a suite of pollutants

together, as the different sensors can capture (at least to some

extent) cross-sensitivities to other pollutants and improve the

model performance for other sensors.

4.3.3 RF model performance as a function of ambient

concentration

In Sect. 4.2, predicted concentrations were normalized to av-

erage reference monitor concentration to quantitatively com-

pare differences between the calibration models (CvMAE).

To evaluate the RF model performance at different reference

concentrations, the testing data were divided into deciles

for which the median reference monitor concentration, the

absolute residual, and the residual normalized to the refer-

ence monitor concentration were calculated (Fig. 10). For all

species, the RF models tended to overestimate at lower con-

centrations and underestimate at the highest concentrations.

For the CO RF model, the normalized residual is within 10 %

of the reference monitor concentration by the 20th percentile

of the data (> 100 ppb) and continues to improve until the

50th percentile, when it plateaus at a normalized residual

of about 5 %. The US EPA requires a limit of detection of

100 ppb for CO instruments used for regulatory monitoring

(United States Environmental Protection Agency, 2014); thus

our performance meets that goal. In the top decile, the aver-

age absolute CO residual for the RF models approximately

doubles, but the relative error is still around 5 %. However,

the top decile spans the broadest concentration range due

to the lognormal shape of the CO concentration distribution,

and these points are difficult to capture in training data sets.

For the CO2 RF model, agreement with the reference mon-

itor data is within a few percent up to the 90th percentile,

when agreement drops to within 5 %. This is possibly due to

the RF model actively supressing high CO2 sensor signals,

as the sensor is prone to reading erroneously high concen-

trations during rain events. Additionally, the top decile of the

data spans a wide range of CO2 concentrations due to the log-

normal shape of the CO2 distribution. As with CO, the NO2

RF model agreement with the reference monitor plateaus

around the 50th percentile mark; however, the NO2 RF model

error exceeds 100 % for the lowest decile (< 5 ppb), suggest-

ing an effective sensitivity of the sensor of 5 ppb. For the

O3 RF model, the effective sensitivity is also around 5 ppb;

when the average reference monitor concentration increased

from 5 ppb to 10 ppb (from first to second decile), the nor-

malized residual decreased from over 100 % to about 20 %.

The US EPA limit of detection for federal regulatory moni-

tors is 10 ppb for both NO2 and O3, suggesting that, as with

CO, the RF model performance is within 20 % of regulatory

standards (United States Environmental Protection Agency,

2014).

Systematic underprediction at the highest concentrations

was also observed and is likely a consequence of the training

data set used to fit the RF model. Unless the range of concen-

trations in the training data encompasses the range of con-

centrations during model testing, there will be underpredic-

tions for concentrations in exceedance of the training range

due to the RF model’s inability to extrapolate. This is also

what causes the horizontal feature for some RAMP moni-

tors at high O3 concentrations in Fig. 5, as the model will

not predict beyond its training range. Additionally, the per-

formance of the RF model is sensitive to the number of data

points at a given concentration and the model performance.

To build a robust model, many data points are required at a

given concentration to probe the extent of the ambient air

pollutant matrix. In this study, the training windows were

dispersed throughout the collocation period to ensure good

agreement of gas species and meteorological conditions dur-

ing both the training and testing windows (see Supplement).

The RF model may not work well in cases where such a di-

verse collocation window is not possible or where concentra-
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Figure 10. Box plots from the 10–16 RAMP monitors of median concentrations measured by monitors (c) and median model residuals (b)

and model residuals normalized to the reference concentration (a) for each pollutant, divided into deciles. The box plots provide the range of

medians by the different RAMP monitors.

tions are routinely expected to exceed the training window. In

such situations, hybrid calibration models such as combined

RF–MLR, where MLR is used for concentrations higher than

the RF training window range, may be suitable as MLR tends

to perform better when concentrations are higher. An exam-

ple of this approach is provided by Hagan et al. (2017).

To illustrate the impact of the number of training data

points on the RF model, we binned the data for the repre-

sentative RAMP (RAMP #1) by concentration, and the av-

erage concentration measured by the reference monitors was

plotted against the average concentration from the calibrated

RAMP (Fig. 11). The uncertainty in the RF model was plot-

ted as the standard deviation of the model solutions from the

500 trees, and the bins were color-coded by the number of

data points within each bin. Figure 11 illustrates that, for

every pollutant, agreement with the reference monitor and

uncertainty in the model prediction were larger for concen-

tration bins containing fewer than 10 data points. This dis-

proportionately impacted the upper end of the pollutant dis-

tribution where fewer data points were collected due to the

intermittent and variable nature of high-pollution episodes.

This suggests that a minimum of 10 data points at a given

concentration are needed to adequately train the RF model,

which may inform future RF model building. At NO2 con-

centrations below 5 ppb, deviations from the 1 : 1 line were

also observed despite the training data set containing more

than 100 data points at these concentrations. As was con-

cluded from Fig. 10, 5 ppbv appears to be the sensitivity limit

of these low-cost sensors for NO2.
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Figure 11. Illustrating the range of predictions from the 500 trees for RAMP #1. The testing data were binned and averaged. The concentra-

tion measured by the calibrated RAMP monitors is then plotted against the average concentration from the reference monitor. The error bars

represent the standard deviation of the answers from the 500 trees, and the bins are color-coded by the number of data points within each bin.

The dashed black line is the 1 : 1 line.

4.4 Comparison of results to other published studies

In this section, we compare the performance of our RF mod-

els to results from other recent studies, including the EuNe-

tAir project in Portugal (Borrego et al., 2016) and EPA Com-

munity Air Sensor Network (CAIRSENSE) project (Jiao et

al., 2016). Additionally, a handful of studies have tested the

field performance of low-cost sensors both “out of the box”

with factory calibrations (Castell et al., 2017; Duvall et al.,

2016) and after a machine-learning-based calibration (Cross

et al., 2017; Esposito et al., 2016; Spinelle et al., 2015, 2017).

We compare the performance of our RF models to these

studies in Table 3. While several low-cost sensor calibration

studies have investigated calibration models within labora-

tory environments (Masson et al., 2015a; Mead et al., 2013;

Piedrahita et al., 2014; Williams et al., 2013), we have elected

to limit our comparison to field data.

There was not a substantial difference in performance of

the RF-model-calibrated vs. LAB-calibrated RAMP for CO,

and performance was best for this pollutant on the out-of-the-

box factory-calibrated performance assessments in EuNetAir

and CAIRSENSE, suggesting that rigorous calibration mod-

els may not be critical for CO. However, the RAMP CO RF

model did provide improved performance (smallest MAE,

38 ppb) at lower average concentrations compared to the Eu-

NetAir study. Similarly, the out-of-the-box performance of

the CO sensors tested as part of CAIRSENSE and by the

24 AQMesh sensors tested in Castell et al. (2017) was poorer

than the RF-model-calibrated RAMP. Of those studies that

used an advanced algorithm to calibrate the sensors (Cross et

al., 2017; Spinelle et al., 2017), the CO RF model resulted

in the highest R2 values and slightly lower slopes; the slope

closest to 1 was reported by Cross et al. (2017).

For NO2, the performance of out-of-the-box low-cost sen-

sors varied widely, and half the sensors in the EuNetAir study

(Borrego et al., 2016) reported errors larger than the average

ambient concentrations. While the quality of the baseline gas

sensing unit remains critical (in which case no calibration

should work), we suggest that advanced calibration models,

such as those using machine learning, may be critical for ac-

curate measurements of ambient NO2. Furthermore, sensor

performance was correlated with average ambient concentra-

tion; studies in areas with higher NO2 concentrations had the

best performance, consistent with our observations (Fig. 10).

For studies using advanced NO2 sensor calibration models

(Cross et al., 2017; Esposito et al., 2016; Spinelle et al.,

2015), Esposito et al. (2016) had the best performance, with

a MAE of < 2 ppb; however, this evaluation was done in a

location with high NO2 concentrations, 45 ppbv (Air Quality

England, 2015), more than 3 times higher than the 12 ppbv in

Pittsburgh. In addition, they only evaluated one sensor array,

so the robustness of the approach is unknown. In our study,

the MAEs across the NO2 RF model RAMP monitors ranged

from 2.6 to 3.8 ppb, which is almost as good as Esposito et

www.atmos-meas-tech.net/11/291/2018/ Atmos. Meas. Tech., 11, 291–313, 2018
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al. (2016), but at less than one-third the ambient concentra-

tions. The slope of the HDMR model for NO2 of Cross et

al. (2017) does exceed that of the RAMP RF model, but the

R2 and MAE values are similar between both studies. Sim-

ilarly, the annual average NO2 concentrations in 2015 were

15 ppb at the Massachusetts regulatory site used as a refer-

ence in Cross et al. (Massachusetts Department of Environ-

mental Protection, 2016), 3 ppb higher than the average con-

centration observed in our study. As shown in Fig. 10, an in-

crease of a few ppb of NO2 can result in almost 100 % reduc-

tions in relative residuals in our model, potentially explain-

ing discrepancies in the slope between our study and Cross et

al. (2017). Furthermore, for identical factory-calibrated sen-

sors out of the box, such as the Cairclip and AQMesh, a 5 ppb

increase in average NO2 concentration results in R2 values

more than doubling. As such, the excellent performance of

the RF model for NO2 at average ambient concentrations of

12 ppbv shows promise.

For O3, the RF model, the calibrated data from Spinelle et

al. (2015), and the measurements from the Aeroqual SM50

(Jiao et al., 2016) performed the best. Good performance

from the Aeroqual when measuring NO2 has also been pre-

viously observed (Delgado-Saborit, 2012). However, the re-

sults were the most consistent across the RAMP monitors

calibrated with RF models, with relative standard deviations

of < 20 % across the 16 RAMP monitors for all markers of

statistical performance. This performance consistency also

holds for the CO and NO2 RF models. The O3 RF models

were built in Pittsburgh, PA, which has historically had is-

sues with National Ambient Air Quality Standards (NAAQS)

ozone compliance; thus while our model was seemingly one

of the most accurate and robust, some of this performance

may be attributed to the higher ambient O3 concentrations.

From this comparison, we conclude that the RAMP monitor

calibrated with a RF model is unique in that it is more accu-

rate when considering the combined suite of pollutants (i.e.,

all pollutants were accurately measured), it is consistent be-

tween many units (< 20 % relative standard deviation in per-

formance metrics across 10–16 monitors), and it is precise

even at lower ambient concentrations.

4.5 RF-model-calibrated RAMP performance in a

monitoring context

We further assess the RAMP monitor performance against

three metrics: (1) comparison of a RAMP monitor calibrated

at Carnegie Mellon against an independent set of regulatory

reference monitors at the Allegheny County Health Depart-

ment, (2) NAAQS compliance, and (3) suitability for expo-

sure measurements as per the US EPA Air Sensor Guidebook

(Williams et al., 2014). We also demonstrate the benefit of

improved performance of the RF models in a real-world de-

ployment at two nearby sites in Pittsburgh, PA.

From February through May 2017, a RAMP monitor cal-

ibrated at the Carnegie Mellon campus was deployed at

Figure 12. Comparison of CO, NO2, and O3 hourly average

concentrations measured by a collocated RAMP monitor and the

reference monitors at the Allegheny County Health Department

(ACHD). The RAMP monitor was first calibrated on the Carnegie

Mellon campus prior to deployment.

ACHD to test the performance of the RAMP monitor relative

to an independent reference monitor (Fig. 12). The ACHD

site reports data hourly, so RAMP data were down-sampled

to hourly averages, and the CO, NO2, and O3 concentrations

were compared (no measurement of CO2 is made at ACHD).

For all pollutants, R2 was ≥ 0.75 (CO: 0.85; NO2: 0.75;

O3: 0.92) and points were clustered around the 1 : 1 line.

NO2 performed the most poorly, with a large cluster of points

in the 5–10 ppb range, where the model is known to un-

derperform. The MAE was 49 ppb (17 % CvMAE) for CO,

4.7 ppb for NO2 (39 % CvMAE), and 3.2 ppb for O3 (16 %

CvMAE), in line with the performance metrics in Fig. 6. At

the time of this submission, RAMP monitors have been col-

located with reference monitors at three additional ACHD

sites; these comparisons will be the subject of a forthcoming

publication.

Regulatory agencies must also report compliance with

NAAQS. In this study, the time resolution and methods used

to assess the effectiveness of the RF models (15 min) do

not match the metrics used for NAAQS. For example, the

NAAQS standard for O3 is based on the maximum daily

maximum 8 h average, and compliance for NO2 is based on

the 98th percentile of the daily maximum 1 h averages. While

acknowledging that the RAMP monitor collocation period

was shorter than typical NAAQS compliance periods (e.g.,

annually for O3 and across 3 years for NO2), it is still worth

characterizing the RAMP performance using the LAB, MLR,

and RF models (Fig. 13). For the representative RAMP mon-

Atmos. Meas. Tech., 11, 291–313, 2018 www.atmos-meas-tech.net/11/291/2018/



N. Zimmerman et al.: A machine learning calibration model to improve sensor performance 309

Figure 13. Performance of one representative RAMP monitor (RAMP #1) for NAAQS compliance metrics (O3: daily max 8 h; NO2: 98th

percentile of daily max 1 h averages). (b) Comparison of daily 8 h maximum reference monitor ozone concentrations (x axis) to MLR and RF

models. (a) Comparison of daily 1 h maximum reference monitor concentrations versus the LAB, MLR, and RF models. The NO2 standard

is the 98th percentile of the daily 1 h maximums.

itor used previously (RAMP #1), daily maximum 8 h O3 was

in good agreement between the RF-calibrated RAMP and the

reference monitor, with all data points falling roughly along

the 1 : 1 line (slope: 0.82; 95 % CI: 0.81–0.83), while for

the MLR model, concentrations were skewed slightly low

(slope: 0.65; 95 % CI: 0.63–0.67). For NO2, the 98th per-

centile of the daily maximum 1 h averages was 34 ppb for the

RF model versus 35 ppb measured using a reference moni-

tor compared to 25 ppb for the MLR model and 51 ppb for

the LAB model. The RF model was substantially closer to

the reference monitor estimate, and the underestimation was

only by 1 ppb. Other RF-model-calibrated RAMP monitors

performed similarly, all agreeing within 5 ppb.

Air sensor performance goals by application area are also

provided by the US EPA Air Sensor Guidebook (Williams et

al., 2014). The performance criteria include maximum preci-

sion and bias error rates for applications ranging from ed-

ucation and information (Tier I) to regulatory monitoring

(Tier V). The precision estimator is the upper bound of a

90 % confidence interval of the coefficient of variation (CV)

and the bias estimator is the upper bound of a 95 % confi-

dence interval of the mean absolute percent difference be-

tween the sensors and the reference (full equations in the

Supplement). An overarching goal of RAMP monitor de-

ployments is to use low-cost sensor networks to quantify

intra-urban exposure gradients; thus our benchmark perfor-

mance was Tier IV (personal exposure), which recommends

that low-cost sensors have precision and bias error rates of

less than 30 %. For the testing (withheld) periods, we com-

pared the performance of the RF, MLR and LAB models for

all the RAMP monitors used in this study to the precision and

bias estimators recommended by the US EPA (Fig. 14). The

performance across the RAMP monitors was summarized us-

ing box plots, and only the RF-model-calibrated RAMPs are

suitably precise and accurate for Tier IV (personal exposure)

monitoring across CO, NO2, and O3. Furthermore, both RF-

model-calibrated CO and O3 RAMP monitor measurements

were below the even more stringent Tier III (supplemen-

tal monitoring) standards, which recommends precision and

bias error rates of < 20 %. The RF model NO2 RAMP mea-

surements may reach Tier III in locations with higher NO2

concentrations.

To demonstrate the improved performance of the RF mod-

els in a real-world context, two of the RAMP monitors used

in the evaluation study were deployed for a 6-week period

at two nearby sites in Pittsburgh, PA. One RAMP moni-

tor was located on the roof of a building at the Pittsburgh

Zoo in a residential urban area, and another was placed ap-

proximately 1.5 km away at a near-road site located within

15 m of Highway 28 in Pittsburgh (Fig. 15). NO2 concen-

trations are known to be elevated up to 200 m away from a

major roadway compared to urban backgrounds due to the

reaction of fresh NO in vehicle exhaust with ambient O3

(Zhou and Levy, 2007). Figure 15 shows the diurnal pro-

files of the RAMP monitors at the two locations evaluated

using the RF and MLR models. The RF model indicates an

NO2 enhancement of approximately 6 ppb at the near-road

site (Fig. 15, red trace) compared to the nearby urban res-

idential site (Fig. 15, blue trace), and there are notable in-

creases in NO2 during morning and evening rush hour pe-

riods, as expected. However, applying the MLR model to

the RAMP data reveals no significant difference between the

two sites (Fig. 15, bottom diurnal). In fact, the MLR model

predicts negative concentrations during the day. The results

of this preliminary deployment suggest that the RF-model-

calibrated RAMP monitors could be suitable for quantifica-

tion of intra-urban pollutant gradients.
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Figure 14. Precision (a) and bias (b) estimates of RAMP monitors calibrated using LAB, MLR, and RF models compared to the suggested

performance goals by application as recommended in the EPA Air Sensor Guidebook. The precision estimator is the upper bound of the

coefficient of variation (upper bound of the relative standard deviation, RSD). The box plots are the range of performance across the calibrated

RAMP monitors (testing data only). The calibrated RAMP monitors meet the recommended error limits for exposure (Tier IV).

Figure 15. Diurnal NO2 patterns at two nearby sites (one urban, one near-road) measured by RAMP monitors calibrated using RF models

(a) or MLR models (b). (c) Satellite view of the two sites, which were ∼ 1.5 km apart. The urban site was at the Pittsburgh Zoo, and the

near-road site was within 15 m of Highway 28.
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5 Conclusions

This study demonstrates that the RF model applied to the

RAMP low-cost sensor package can accurately characterize

air pollution concentrations at the low levels typical of many

urban areas in the United States and Europe. The fractional

error of the models at a 15 min time resolution was < 5 %

for CO2, approximately 10–15 % for CO and O3, and ap-

proximately 30 % for NO2, corresponding to mean absolute

errors of 10 ppm, 38 ppb, 3.4 ppb, and 3.5 ppb, respectively.

This performance meets the recommended precision and ac-

curacy error metrics from the US EPA Air Sensor Guidebook

for personal exposure (Tier IV) monitoring. We demonstrate

that this degree of sensitivity allows quantification of intra-

urban gradients. Furthermore, the calibration models were

well constrained across 10–16 RAMP units (all performance

metrics < 20 % relative standard deviation) and showed min-

imal degradation over the duration of the collocation study

(August 2016 to February 2017),

While the iteration of the RAMP monitor used in this study

was equipped with an SO2 sensor, no calibration model was

possible due to SO2 concentrations at our supersite being be-

low reference instrument detection limits. One feature of the

RAMP monitor is that the sensors are modular and can be

readily replaced. The assessment of explanatory variable im-

portance combined with the sub-detection-limit levels of SO2

during the study suggests that the RAMP monitor did not

substantially benefit from the presence of the SO2 sensor in

this urban background environment. Future iterations of the

RAMP monitor will be equipped with NO sensors, which

may be more relevant in an urban context.

The RF models described here were built on 4 weeks of

training data equally distributed in 3.5-day periods through-

out the entire collocation (examples shown in Fig. S11).

This is nominally equivalent to 3–4 days of calibration ev-

ery 2 months. As previously mentioned, the low-cost sensor

modules within the RAMP monitors can be readily replaced,

and as such, we recommend for a large urban deployment to

prepare a set of sensors at a regulatory monitoring site and to

exchange sensors as they malfunction or as calibration mod-

els drift. Since the completion of this study, the sensors have

been deployed in Pittsburgh for over 4 months, and changes

in the calibration models over longer periods of deployment

(1 year or more) will be discussed in a future work. Addi-

tionally, the sensors were first opened in July 2016 and char-

acterized over the first 7 months of exposure to ambient envi-

ronments. During this period, no significant temporal drift or

sensor degradation was observed, but longer observational

studies are likely needed to characterize sensor decay and

end of life.

The calibration models were developed in Pittsburgh,

which had higher O3 and lower NO2 than several pub-

lished field-based calibrations and measurements with low-

cost sensors. Our results and those of other studies demon-

strate that low-cost sensor performance generally increases

with increasing ambient concentration, but despite this, the

RF models for NO2 had the second-lowest mean absolute

error (< 4 ppbv) even at low NO2 concentrations. The good

performance of the RF models across all pollutants can likely

be attributed to the ability of the RF models to account for

pollutant and meteorological cross-sensitivities, highlighting

the importance of building multipollutant sensor packages.

Overall, we conclude that, with careful data management

and calibration using advanced machine learning models,

low-cost sensing with the RAMP monitors may significantly

improve our ability to resolve spatial heterogeneity in air

pollutant concentrations. Developing highly resolved air pol-

lutant maps will assist researchers, policymakers, and com-

munities in developing new policies or mitigation strategies

to enhance human health. Going forward, a random-forest-

calibrated RAMP network of up to 50 nodes will be deployed

in Pittsburgh, PA. This robustly calibrated network will help

support better epidemiological models, aid in policy plan-

ning, and identify areas where more assessment is needed.

Data availability. Reference monitor data, RAMP raw signal data,

calibrated RAMP data for both training and testing windows, and

data needed to recreate Figs. 4 through 15 are provided online at

https://doi.org/10.5281/zenodo.1146109 (Zimmerman et al., 2018).

The random forest calibration models and associated R scripts are

not available online due to a provisional patent application.

The Supplement related to this article is available online

at https://doi.org/10.5194/amt-11-291-2018-supplement.
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