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A machine learning enabled hybrid optimization framework
for efficient coarse-graining of a model polymer
Zakiya Shireen1, Hansani Weeratunge1, Adrian Menzel 2, Andrew W. Phillips2, Ronald G. Larson3, Kate Smith-Miles4 and
Elnaz Hajizadeh 1✉

This work presents a framework governing the development of an efficient, accurate, and transferable coarse-grained (CG) model of
a polyether material. The framework combines bottom-up and top-down approaches of coarse-grained model parameters by
integrating machine learning (ML) with optimization algorithms. In the bottom-up approach, bonded interactions of the CG model
are optimized using deep neural networks (DNN), where atomistic bonded distributions are matched. In the top-down approach,
optimization of nonbonded parameters is accomplished by reproducing the temperature-dependent experimental density. We
demonstrate that developed framework addresses the thermodynamic consistency and transferability issues associated with the
classical coarse-graining approaches. The efficiency and transferability of the CG model is demonstrated through accurate
predictions of chain statistics, the limiting behavior of the glass transition temperature, diffusion, and stress relaxation, where none
were included in the parametrization process. The accuracy of the predicted properties are evaluated in context of molecular
theories and available experimental data.
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INTRODUCTION
Molecular dynamics (MD) simulation techniques provide a power-
ful route to establish the structure–property relationships in
materials through solving the coupled equations of motions of
interacting atoms and molecules in a material system1–3. Despite
the great success of this computational technique, modeling of
the macromolecules, such as proteins and polymers across
multiple lengths and time scales is restrained by computational
limitations. To overcome the challenges of modeling a macro-
molecular system such as polymers for longer time scales, coarse-
grained models (CG) are required. One of the key features of
coarse-graining is the ability to probe polymer behavior over large
spatiotemporal scales, which is otherwise difficult to achieve in
high-resolution models.
The central problem in coarse-graining polymeric materials is, to

retain the chain attributes of interest while constructing the
adequate representation of pseudo-atom or CG bead. One of the
defining characteristics of polymer materials is the long-time
dynamical response that occurs at multiple length scales. Coarse-
graining allows the combining of groups of atoms into fewer
interaction sites, thus, reducing the degrees of freedom in the
system. In addition, the accurate representation requires encoding
of finer details, i.e., the chemical specificity should be incorporated
into the CG bead descriptor. The CG model can be made to mimic
the atomistic structural features by optimizing the interaction
parameters by matching the atomistic distributions, the so-called
bottom-up approach. Contrary, in the top-down strategy the
chemical specificity is subsumed into the descriptor by matching
the macroscopic properties such as density (ρ), glass transition
temperature (Tg), elastic modulus (E), etc.4.
The classical methods such as iterative Boltzmann inversion

(IBI)5–8, inverse Monte Carlo9,10, and relative entropy11,12 typically
aim to map the structural distribution of the atomistic model.

However, these structure-based conventional methods have
limitations in capturing the correct thermodynamic properties
and free energy landscape. While the force-matching methods
such as the many-body potential of mean force (PMF) capture the
accurate dynamics, they represent the atomistic structural features
inaccurately13–15. Optimization of parameters defining nonbonded
interactions in a bottom-up manner i.e., by optimizing the radial
distribution functions (RDF), usually results in larger deviations of
the thermal expansion coefficient (α). Hence, a purely bottom-up
optimized CG model does not demonstrate thermomechanical
consistency, therefore, temperature-dependent density transfer-
ability cannot be guaranteed a priori5,16,17. Therefore, transfer-
ability is achieved when CG potentials are able to accurately
predict the structure, thermodynamics properties, and dynamics
of the material for temperatures and molecular weights not
originally included in the parametrization process. The hybrid
approach, i.e., combining the bottom-up and top-down strategies,
using conventional coarse-graining methodologies has been
developed for a couple of materials systems4,18. For instance,
the coarse-graining of polystyrene was studied by adopting the
top-down strategy, where nonbonded potential parameters were
optimized by increasing the pairwise potential energy well depth.
The increased well depth reintroduces a rough additive potential
energy landscape contrary to the usual smooth potential energy
landscape of CG models4. Furthermore, using liquid perturbation
theory, it has been demonstrated that for common polyethers the
nonbonded interactions in the coarse-grained models are
temperature-dependent18. Therefore, the temperature depen-
dency needs to be accounted for in the coarse-graining strategy.
Although the conventional CG models are straightforward and

allow much larger systems with reasonable computation
costs19,20, they still suffer from some important issues in terms
of thermomechanical consistency, representability, and
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transferability13,21. Despite the fact that the development of fully
transferable CG potentials that could capture all material proper-
ties of interest across the entire desired range of temperatures
remains a formidable challenge, significant efforts have been
made to better understand the various coarse-graining mechan-
isms. Prior research has proposed several strategies to develop
temperature-transferable CG models, including a multiscale CG
(MS-CG) approach14,22–24, optimization of nonbonded interactions
using multiple macroscopic properties4, an energy-
renormalization approach, etc.25–27. Noid and his co-worker’s
impressive “oeuvre” includes a spectrum of bottom-up strategies
of multiscale coarse graining14,22–24,28,29. In recent reports, the
state-point dependence of the CG potentials is examined for
molecular liquids30 and a dual approach has been considered that
combines structure-based and energy-based variational principles
to determine effective potentials31. Keten and his co-workers have
done extensive work, particularly focusing on reproducing the all-
atom (AA) dynamics from CG potentials over a wide range of
temperatures, using an energy-renormalization approach25–27 for
nonbonded optimization. Therefore, the classical hybrid approach
has improved the accuracy of the CG model predictions, but still
creates formidable challenges, such as the need for careful fine-
tuning of nonbonded LJ potential parameters (well depth ϵ) and
variations in auxiliary LJ potential terms. The fine-tuning of
pairwise interaction parameters can be very demanding and time-
consuming for complex block copolymers and biological macro-
molecules32–35 due to multiple pairwise interaction sites and the
inherent iterative process of the optimization.
To address the questions pertaining to generic coarse-graining

strategies of complex molecules and accelerate the process, data-
driven and machine-learned (ML) potentials are emerging as an
alternative approach. The machine-learned CG potentials have
been proposed to present the free-energy landscape of the all-
atom (AA) molecular model with enhanced efficiency and
accuracy36. Thus, the ML-enabled CG potentials are becoming a
tool to bridge the gap between accurate and computationally
expensive all-atom methods and enable the development of
approximate but computationally affordable CG methods37–45.
Since the accuracy of the machine learning model depends
intrinsically on the accuracy of the reference model, improved
accuracy has been sought by using ab-initio reference models to
obtain machine-learned CG potentials that can predict the
properties of complex molecules46–48.
To reduce the computational cost, machine learning and

optimization techniques such as particle swarm optimization
(PSO), genetic algorithm (GA), and simplex method39,49,50 were
previously integrated to enhance the efficiency of these methods.
Therefore, the emerging data-driven technique51,52 is promising
and is credible to achieve accuracy with enhanced efficiency
compared to the conventional approaches.
The potential of machine learning algorithms such as neural

networks lies in capturing the hidden representations of complex
data. They are proven to be capable of formulating complex
potentials using AA molecular dynamics simulation data as
reference or ground truth53. Similar to classical CG potentials,
the machine-learned CG (MLCG) methods are also categorized as
bottom-up MLCG methods39,40,49 and top-down MLCG meth-
ods54–58. Generally, in the bottom-up MLCG methods, a CG
potential that is related to representations of CG beads is
introduced through multi-layer neural networks53. Then the neural
network is trained and optimized by utilizing the reference system
i.e., data set from the all-atom molecular simulations. In the top-
down MLCG method, an empirical relation of the interactions
between CG beads (e.g. LJ potential for a simple fluid) is given as a
priori39,40,54. The interaction parameters in the empirical relation
are then optimized by a statistical learning technique to match
features such as radial distribution function and temperature-

dependent volumetric behavior with corresponding simulations/
experimental results.
In this work, we propose a framework by combining bottom-up

and top-down MLCG methods that enable thermodynamic
consistency and transferability, while maintaining structural
representability. Further, we demonstrate the application of the
proposed method by coarse-graining poly(tetramethylene oxide)
(PTMO), which is one of the major components of elastomeric
polyurethanes. The coarse-grained PTMO model represents the
soft segment of the polyurethane (PU) chain. The framework
involves the integration of MLCG methods with genetic algorithm
(GA) and molecular dynamics (MD) simulations. In the developed
protocol the bottom-up MLCG approach is used to establish the
bonded interactions by training deep neural networks (DNN) and
top-down MLCG is used by incorporating a GA optimization
scheme to obtain nonbonded interaction parameters by matching
temperature-dependent density. One of the key highlights of the
proposed framework is that the MD simulations are replaced by a
DNN that is trained to predict the temperature-dependent density
to further accelerate the optimization component. Therefore, we
avoid the need for a large number of simulations, where data are
generally not reused. Thus, DNNs are used as surrogate models,
which addresses the re-usability issue of the data59. Our focus is
on the working mechanism of the framework by demonstrating
the ability of the CG model to make accurate predictions, and the
validation of the trained model. The CG potentials developed in
this work provide a statistical mechanical description of the
system that is consistent with properties derived directly from a
high-resolution united-atom ensemble; however, they may not be
completely transferable across different thermodynamic condi-
tions, which we discuss in the conclusion section as a task for
future work.

RESULTS
CG model predictions and validations
The performance of DNN accelerated CG potentials is examined
by investigating universality and temperature-transferability in
two ways. The first way is to compute properties, which have not
been included in the training. Second is to demonstrate
transferability by the application of the potential parameters for
temperatures and molecular weights, which are outside the range
of the training set. The machine-learned coarse-grained systems
(where Nb is the number of beads/chains and Nc is the number of
chains) studied in this work are listed in Table 1 along with the
ground truth data.
We first study the structural and conformational properties of

the machine-learned coarse-grained model of PTMO melts
through MD simulations. The distribution of the radius of gyration
Rg of CG and UA models are compared in Fig. 1a for Nb= 50. It is
to underline that chain size with 50 beads was included in the

Table 1. Machine-learned coarse-grained (MLCG) PTMO systems
studied in this work at T= 453 K.

Model Mn (kDa) Nb (beads/chain) Chains (Nc) ρ (g/cm3)

MLCG 1.8 25 1000 0.868

MLCG 3.6 50 500 0.873

MLCG 7.2 100 250 0.875

MLCG 14.4 200 125 0.876

MLCG 25.2 350 72 0.877

MLCG 36 500 100 0.878

MLCG 72 1000 100 0.879

UA 3.6 50 50 0.875
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training data for potential parametrization. The estimated root
mean square of the radius of gyration hR2gi

1=2 ¼ 24:56 ± 1:50 and
25.86Å from CG and UA systems, respectively. The gyration
distributions from the two models are in good agreement. We also
analyzed the chain dimensions of the coarse-grained PTMO for all
the systems tabulated in Table 1. Figure 1b visualizes the
averaged-mean-squared radius of gyration hR2gi, as a function of
chain length Nb. Note that Nb= Nm with Nm being the number of
monomers (repeat units) in the UA system. It can be seen that
with an increasing chain length of PTMO in the melt, hR2gi is
approaching random coil hypothesis predictions (linear Nb

dependence, shown by dashed line). Figure 1b represents the
chain statistics well above and below the chain size (Nb= Nm=
50), which was included in training and testing. hR2gi for Nb= 200
is in good agreement with the chain size of the united atom
model at Nm= 200, which indicates that the MLCG potential
captures the structural features very well.
Figure 2 represents the temperature-dependent volumetric

behavior along with predicted limiting behavior in terms of glass
transition temperature (Tg) of the PTMO system. It is important to
note that the volumetric behavior shown in Fig. 2a is from the
temperature range 313–153 K, which was not included in the

nonbonded potential parametrization. The dotted arrow in Fig. 2a
indicates the predicted Tg= 233 K for chain length Nb= 500.
Figure 2b visualizes the limiting behavior of PTMO melt predicted
by MLCG potentials. The predicted glass transition temperatures
lie within the range of experimental estimates as tabulated in
Table 2. The limiting behavior is identified by fitting the Flory–Fox
relationship to the predicted Tg for the range of molecular weight.
The dashed line is to show the experimental observation60 and
the dotted line represents the Flory–Fox fit given by the equation:

TgðMnÞ ¼ Tg1ð1� K=MnÞ (1)

Fig. 1 Resulting chain statistics and structural comparison is shown. a Distribution of radius of gyration Rg is shown for MLCG and UA
system for the chain size Nb= Nm= 50. b The average-mean-squared radius of gyration hR2gi as a function of chain length Nb (T= 453 K). The
diamond symbols represent data from united-atom systems. The dashed line indicates a fit of the power law, hR2gi / Nb

2ν with ν= 1/2 for ideal
chains.

Fig. 2 Prediction of glass transition temperature (Tg) from MLCG model. a The glass transition temperature is estimated from the specific
volume at Nb= 500. b The limiting behavior of the PTMO is shown by fitting the Flory–Fox equation to the predicted Tg from the developed
MLCG potential and shown in a dotted line. The dashed line shows the experimental Tg.

Table 2. Glass transition temperature predicted by MLCG systems at
different molecular weights.

Mn (g/mol) Tg (K) References

1800−72,000 218.14−233 This work

3500−10,200 198−233 60

44,000−44,100 198−207 73
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where Tg∞ is the glass transition temperature for PTMO chains
approaching infinite length and K is an empirical constant and is
equal to 130.0 g/mol from Fig. 2b. We consider the model to be
“thermodynamically consistent” if it accurately predicts Tg at
higher molecular weights. Therefore, the results shown in Fig. 2
are an indication of the transferability of the developed potentials,
using our hybrid approach for different thermodynamic states.
To account for the faster dynamics in CG systems, Fritz et al.

proposed a dynamic scaling factor, SAACG to obtain the
quantitative agreement between dynamics in atomistic and CG
simulations for one component system. The time scaling factor is
the ratio of diffusion coefficients of CG and AA system such that
SAACG= DCG/DAA and can also be estimated using the mean
squared displacement of beads61. We estimate the dynamic
scaling factor SUA−CG from the linear part of the mean squared
displacement of the center of mass (hðRcmðtÞ � Rcmð0ÞÞ2i) as a
function of time using the Einstein equation:

D ¼ lim
t!1

1
6t

hðRcmðtÞ � Rcmð0ÞÞ2i (2)

The mean squared displacement of CG and UA system is
compared and the dynamic scaling factor (SUA−CG) is computed
for Nb= 50 at T= 453 K (chain length and temperature included in
training set) and T= 553 K. In Fig. 3a the mean squared
displacement from CG PTMO system, MSD(tCG) is shifted along
the time axis by a feasible time scaling factor SUA−CG= 3.35
resulting in an agreement with united-atom data, such that
MSD(tCGSUA−CG)=MSD(tUA). Figure 3b represents the dynamic
analysis at a higher temperature (T= 553 K). This is to underline
that the time-scaled MSD of the CG model is in good agreement
with UA, but the scaling factor has increased at a higher
temperature. The increased dynamic shift factor with increasing
temperature is consistent with earlier findings, where a classical
hybrid optimization approach was used to develop the CG model
of polymer4. Moreover, time-scaled CG curves follow the UA for
distances above a few Å and for a time above a few hundred
picoseconds. It is reported elsewhere that the agreement between
the motion of polymer chains at such a small length scale and a
short time scale indicates the inherence of atomistic features in
the coarse-grained model17,62. It is noteworthy to mention that
T= 553 K was not included in the parametrization process. Thus,
developed potentials show good temperature transferability.
However, it is important to note that dynamic scaling factors are
empirically derived from the MSD. These scaling factors are
effective at reproducing dynamics, particularly at high tempera-
tures, and may require recalibration for different temperatures.

Wenjie et al. demonstrated that temperature-transferability of the
polymer dynamics over a wide range of temperatures can be
achieved by correcting the deviations in activation-free energy25.
In their energy-renormalization approach, an inference has been
drawn from Adam–Gibbs (AG) theory of glass formation, which
allows the prediction of dynamic properties over the broad range
of temperatures (i.e., Arrhenius regime, the non-Arrhenius regime,
and the non-equilibrium glassy regime). The energy-normalization
approach achieves this by introducing temperature-dependent
rescaling factors for nonbonded parameters ϵ and σ25,27. A similar
approach could be adopted in a data-driven method, where the
ML-enabled framework in the present study provides the basis to
further expand its parametrization space which could allow the
training of the temperature-dependent LJ parameters to predict
dynamics over wider temperature ranges.
Figure 4 shows the relaxation spectrum G(t) for a machine-

learned coarse-grained system of PTMO along with united atom
simulation. Figure 4a and b show the long and short time
behavior of the CG system, respectively. The stress relaxation
spectrum is also computed for chain lengths Nb= 50 and 500 to
demonstrate the predictive power of the CG potentials beyond
the entanglement length (experimentally, effective entangle-
ment in polyether diol ≈ 10,500 g/mol corresponding to 145
PTMO repeating units or 181 propylene oxide repeating units63).
As shown in Fig. 4a the agreement between the UA model and
CG PTMO system is excellent from intermediate time scales to
long time scales (10 ps ≤ t ≤ 102 ns) for the chain length of 50
beads. Generally, for AA models sufficient sampling becomes
increasingly difficult beyond 1 ns and stress decays rapidly with
higher deviations in relaxation time predictions. However, in this
study, the multi-tau correlator method64 is employed to calculate
the stress auto-correlation function (SACF) in a canonical
ensemble (NVT). The simulation time is increased up to
102−103 ns, which provides sufficiently accurate estimates of
the relaxation spectrum of the UA model. Importantly, the
efficiency of the CG model allows for sufficient sampling well
beyond 103 ns, far from the achievable range of atomistic MD
simulations. The relaxation spectrum of chain length Nb= 500 is
an indication of this with the appearance of a plateau in G(t) up
to 104 ns. The comparison between two molecular weights also
underlines the consistency of the developed potentials in terms
of the good agreement from the short time scale (Fig. 4b) to the
intermediate time scale (Fig. 4a). The extended plateau for
Nb= 500 is due to entanglement.

Fig. 3 Dynamic scaling and diffusion comparison between UA and MLCG model is shown. The mean squared displacement (MSD) of the
center of mass of CG-PTMO and UA chains are computed at a T= 453 K and b T= 553 K. The dashed lines represent the time-scaled MSD of
the CG system with scaling factors SUACG= 3.35 and 3.55 at 453 and 553 K, respectively.
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DISCUSSION
We proposed a framework for the development of efficient,
accurate, and transferable coarse-grained (CG) potentials for a
model polymer by integrating bottom-up and top-down
approaches through machine learning and optimization algo-
rithms. We have demonstrated the versatility of the integrated
machine learning method for coarse-graining polyether polymers
such as poly(tetramethylene oxide). Using a simple one-bead
mapping mechanism, and introducing a deep neural network-
trained bottom-up optimization to match the atomistic target
bonded distributions, we were able to reproduce the structural
features of the polymer chain system. In addition, developing a
top-down optimization approach for the nonbonded LJ potential
parameters allowed us to match the local structure in terms of the
radial distribution function. We also demonstrated that optimizing
the nonbonded parameters by matching the specific volume at
multiple temperature points in the liquid state provides transfer-
ability of potentials to predict the accurate glass transition
temperature Tg consistent with experiments. The molecular
weight-dependent Tg allows the fitting of the Flory–Fox equation
to predict the limiting behavior of PTMO, which is found to be in
good agreement with experimental measurements. This indicates
that the developed framework may become a versatile approach
to enable the transferability of certain thermodynamic state-
dependent properties in CG systems. Calculated dynamic scaling
factor through comparison of the CG and UA mean squared
displacement of the center of mass indicates the accelerated
speed of CG systems. By comparing the actual computer wall-time
of the UA and CG simulations run for 50 monomer systems, we
found out that the performance of the UA system is 9.084 ns/day
and for CG system 1735.109 ns/day on a computer of 28 CPUs
with an average CPU speed of 98.9%. This means that the CG
model of PTMO provides a speed-up of over 200 times compared
to the UA model due to the lower degrees of freedom and larger
time step. The CG model enables prediction of the long-time
behavior, of particular importance for capturing the full stress
relaxation behavior of the polymeric systems. This is due to the
increased efficiency and faster dynamics of the CG chains.
Therefore, in the present work, we established the advantages

of using a hybrid MLCG method for polymer coarse-graining over
the classical coarse-graining methods. Using our method, first, we
are able to demonstrate simultaneous and accurate prediction of
structural, dynamics, and experimentally consistent glass transi-
tion along with limiting behavior, which has been elusive to
accomplish in traditional coarse-graining methods. Second, our
framework enables the transferability of the developed potentials

to ensure accurate thermomechanical predictive behavior by
including the polymer chain length well beyond the oligomers, in
the parametrization (training, testing, and optimization) process.
Third, by incorporating experimental data of temperature-
dependent density into nonbonded parametrization, the accuracy
is enhanced (i.e., experimentally consistent Tg and limiting
behavior are achieved) while ensuring the generalizability for
thermodynamic state-dependent properties of CG models. Finally,
the protocol has been shown to be robust and having been
applied to poly(tetramethylene oxide), it could potentially be
applied to other polymeric systems.
In closing, we recognize additional directions for future work. In

this work, we considered the top-down optimization using
temperature-dependent density from experiments, while primarily
focusing on establishing an entirely data-driven framework that
can capture a variety of material properties. Even though the
machine-learned potentials demonstrated that optimized para-
meters are transferable to predict the thermodynamic properties,
further study is necessary to assess the generality of the trends for
other properties as well. Of particular interest is to investigate the
temperature-transferability of dynamics at temperatures lower
than the glass transition by expanding the parametrization space
of the framework or amending a physics-informed learning
protocol. Future work, therefore, will aim to include
temperature-dependent cohesive interaction strength in training
and testing for nonbonded optimization, thus building on the
framework provided in this work.

METHOD
Characterization of the MLCG framework
We have established a framework through integrating machine
learning, optimization, and MD simulations as illustrated in Fig. 5
to develop a temperature-transferable coarse-grained (CG) model
that accurately represents poly(tetramethylene oxide). In the
present study, target averaged distributions (bonded interaction
parameters) are generated from the united-atom (UA) molecular
dynamics simulations. A single-bead CG model is utilized, where
each bead represents a repeating unit i.e., −(CH2CH2OCH2CH2)−
of PTMO along the polymer chain. The resulting CG bead chains
can therefore be denoted by chains of n beads, which
corresponds to the number of repeat units in the united-atom
resolution of PTMO (see section MD simulation details). Each CG
bead is assigned a mass equal to the sum of the atomistic masses
of its constituent elements, which is m= 72 g/mol. Both UA and

Fig. 4 Molecular-weight dependent relaxation behaviour from MLCG system is visualized. a The relaxation spectrum of CG-PTMO and UA
chains are computed at T= 453 K. b The short timescale relaxation behavior of PTMO chain lengths below and above the entanglement limit.
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CG molecular dynamics simulations were performed using the
LAMMPS software package65.
In order to capture the structure-property relation of CG-PTMO,

we use the “Prototype” coarse-grained (PCG) systems (Prototype is
called PCG throughout this paper) for data acquisition. Thousands
of independent MD simulations were run for PCG, to obtain the
data for training and testing purposes. These simulations were run
using the potential energy (Utotal) described by Eq. (3).

Utotal ¼ Ustretch þ Ubend þ Unonb (3)

The total potential energy of the PCG, Utotal is given by three
contributions for which the functional forms are given in Table 4.
Ustretch is the energy associated with stretching the bonds of
equilibrium bond length l0 between adjacent beads along the
polymer chain, Ubend is the energy associated with bending, i.e.,
the angles subtended by consecutive bonds with equilibrium
angle θ0, and Unonb is the energy of nonbonded interactions
between beads of inter chains or beads separated by more than
three bonds on the same chain. Thus, the target (CG-PTMO) model
demands optimization of a total of six potential parameters
(kl, l0, θ, kθ, σ, and ϵ) to fully describe the energetics and
conformational dynamics of the system. The potential parameters
of the target CG system are determined in two steps. In the first
step, the bottom-up approach is used to establish the bonded
interaction parameters. In the second step, the nonbonded
parameters are determined from the top-down approach invol-
ving the temperature-dependent volumetric behavior of the
system. To explore the parameter space, the bonded and
nonbonded potential parameters were randomly sampled over a
specific range based on the ground truth information, where ±Δ

defines the upper and lower bounds of the explored range from
the UA ground truth. The sampling range was defined by refining
the region in the search space based on initial 500 (out of 5000)
PCG simulations, which were run for wide ±Δ values of bonded
parameters by calculating the mean and variance of the bond and
angle distributions of the UA-PTMO. For nonbonded parameters,
the range for a sampling of ϵ and σ was narrowed down based on
the radial distance and magnitude of the first peak of RDF as well
as the literature. In particular, the ϵ range was further refined
based on an increased well-depth in the top-down optimization of
the CG model of various materials4,14,66.

Bottom-up MLCG: bonded interaction optimization. Multi-layer
feed-forward DNNs was developed to learn the relationship
between the bonded interaction parameters and local chain
structures. The expression of the complex relationship between
the underlying potential and structural features is given in Eqs. (4)
and (5).

ðkl ; l0Þ ¼ f ðPlðlÞÞ (4)

ðkθ; θ0Þ ¼ f ðPθðθÞÞ (5)

The extensive training data set of energies and structural
properties of PTMO are taken from 5000 independent PCG
systems with random sampling over a broad range of bond and
angle potential parameters. The data are normalized and
randomly split into two sets. 70% of the data was used to train
the model, which included a random split with the ratio 1:4 for
validation:training. A 5-fold cross-validation technique was used to
reduce the bias in the model as it ensures that every observation

Fig. 5 Schematic representation of the framework is shown. A hybrid optimization approach has been used to develop interaction
parameters for coarse-graining polymer molecules using machine learning techniques. The framework includes the bottom-up optimization
approach (detail given in MD simulation details section) for predicting bonded interaction parameters (kCG�PTMO

l ; lCG�PTMO
0 ; kCG�PTMO

θ ; θCG�PTMO
0 ) by

matching bond (PUA�PTMO
l ) and angle distributions (PUA�PTMO

θ ) from a united-atom model of PTMO as ground truth. In the bonded optimization
process, the DNN was trained using bond (PPCGl ðlÞ) and angle (PPCGθ ðθÞ) distribution data from prototype-coarse-grained (PCG) simulations. The
top-down approach (MD simulation details) was incorporated with a genetic algorithm and deep neural network for predicting the nonbonded
interaction parameters (σCG−PTMO, ϵCG−PTMO) of the CG model. The DNN was trained using parameters (kPCGl ; lPCG0 ; kPCGθ ; θPCG0 ; ϵPCG; σPCG, and T)
acquired from PCG simulations and was integrated into GA along with parameters obtained in the bottom-up step to predict the density.
Consecutively, nonbonded interaction parameters (ϵCG−PTMO, σCG−PTMO) were optimized by matching temperature-dependent experimental
density. The dashed green arrows indicate the optimal parameters i.e., machine-learned CG parameters, obtained using the bottom-up and top-
down portions of the strategy.
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from the data set has the chance of appearing in the training and
validation set. The remaining 30% of data is used for testing, i.e., to
evaluate the generality and the performance of the network for
unseen data. The accuracy of the network is assessed using the
mean absolute error (MAE) that calculates the deviation between
the predicted and target values. The calculated MAE values for

testing, training and 5-fold validations are tabulated in Table 3.
The network is optimized using the Adam optimizer, which is a
stochastic gradient descent algorithm based on adaptive esti-
mates of lower-order moments67. Multiple DNN architectures with
different activation functions, learning rates, and the number of
layers and nodes were evaluated, and the best architecture was

Fig. 6 Bottom-up approach is shown along with performance of the neural networks. a The architecture of the DNN used in obtaining the
bonded potential parameters. b The scatter plots represent the predictions of the DNN and the target of training and testing data for bond
length (l0) and stretching coefficient (kl) along with the performance analysis of the neural network during training, and corresponding
potential and bond distribution from MLCG predictions. c The target and the predictions from the DNN for angle (θ0) and bending coefficient
(kθ) along with the performance of the DNN during training and corresponding potential and angle distribution from MLCG and ground truth.

Table 3. Performance of the deep neural networks (DNNs).

DNN MAE (training) MAE (5-fold validation) MAE (resting) Training time (s)

Mean Standard deviation

Bonded potentiala 0.025 0.03 0.005 0.028 1539

Angle potentiala 0.026 0.034 0.004 0.030 963

Density 0.029 0.033 0.002 0.036 1952

aThe DNNs of bonded and angle potentials present the aggregated mean absolute errors.
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then selected based on the lowest MAE and the least over-fitting.
By adopting the bottom-up machine-learned coarse-graining

(MLCG) approach, the data acquired from PCG simulations are fed
into the network. The architecture of the developed DNN is shown
in Fig. 6a. The input vector xi is the distribution of the ith PCG
system, which is discretized between its minimum and maximum
range, i.e., xil ¼ Pðlmin < l < lmaxÞ, and xiθ ¼ PðθÞ where θmin < θ <
θmax. Two distinct DNNs with densely connected layers were
trained to predict the bonded potential parameters of the CG-
PTMO from the bond and angle distributions as shown in Fig. 6b
and c. The DNN for the bond distribution has four hidden layers
with 80 nodes for each layer, with a sigmoid activation function at
each layer. The output layer consists of two nodes for kl, and l0.
The DNN developed for the angle potential consists of three
hidden layers, with 60 nodes and a sigmoid activation function at
each layer. The two nodes in the output layer correspond to kθ
and θ0.
Once the training of the neural networks is accomplished, the

bond and angle distributions from the united-atom MD simula-
tions, i.e., “the ground truth” are fed into the networks to predict
the corresponding bonded potential parameters. This way, the
DNN provides the bonded interaction parameters of the CG-PTMO
model that represents the same bond distributions as the UA-
PTMO model.
As shown in Fig. 6b and c the bond and angle distributions of

the CG system exhibit a good match with reference values from
the UA system, suggesting that the developed stretching and
bending potentials, using the deep neural networks successfully
represent the PTMO chains. The dashed lines represent the
developed potentials obtained via equations listed in Table 4 for
bonded contributions. In Table 4, we have also listed the readily
available potential parameters for PTMO from the literature. Please
note parameters taken from the literature for PTMO are for the
soft segment of the polyurea5. The CG predictions of the current
study are not directly comparable with the CG model by using
these potentials due to the unavailability of the nonbonded
interaction parameters.

Top-down MLCG: nonbonded interaction optimization. In the
conventional CG MD simulations, developing transferable force
field parameters have been a long-standing challenge, particularly
for complex macromolecules. The traditional approaches involve
the optimization of the radial distribution function, which often
requires an additional correction term to include pressure
fluctuations for accurate prediction of the thermodynamical
behavior. In our framework, to predict the accurate thermody-
namics across broad temperature ranges, the nonbonded inter-
action parameters are determined using the density of
poly(tetramethylene oxide) from the experiments68, while bonded
potential parameters are obtained in the bottom-up approach
using UA data as ground truth.
A genetic algorithm (GA)-based optimization scheme is

introduced to map the density of the CG model at different
thermodynamic states. The objective function of the algorithm is
given as Eq. (6), where Ti is the ith temperature state, ρCG and ρGT

are the densities of the CG systems and ground truth (GT),
respectively. The objective function evaluates the error between
the supplemented density data (experimental data) and the
predicted density from the CG model.

Objective function : min
X

i

ρCGðT iÞ
ρGTðT iÞ � 1

� �2

(6)

Since the GA is a meta-heuristic search algorithm based on the
natural selection of a population with the process of adaptation
for survival, it is a robust and efficient technique to explore
complex nonlinear solution space. Compared to other algorithms,
such as swarm intelligence-based optimization techniques, GA is
less likely to have a premature convergence to a local optimal
solution69.
Due to the iterative process of optimization algorithms,

generally, several hundred thousand MD simulations are
required to capture the reasonable range in the data. Therefore,
approximations or surrogate models with less computational
costs can be constructed to replace the MD simulations. In our
framework, we have constructed a DNN as a surrogate model to
establish the relationship between the CG potential parameters
and the temperature-dependent density of the CG model. As a
result, the need for further data acquisition for density from
computationally expensive MD simulations has been avoided.
To train the deep neural network, bonded potential

parameters of the PCG-MD simulations are fed along with
temperatures to learn the multiplex relation between density
and potential parameters. The multiplex expression is given in
Eq. (7), where ρ is the density, and σ, ϵ, kl, l0, kθ, θ0 are the
potential parameters.

ρðTÞ ¼ f ðσ; ϵ; kl ; l0; kθ; θ0Þ (7)

This DNN consists of three hidden layers, each with 40 nodes
and rectified linear unit (Relu) activation function. The trained DNN
is then integrated into the GA optimization algorithm to expedite
the exploration of the optimal LJ potential parameters of the CG
system. This ML-based optimization aims to achieve the desired
temperature-dependent density, which is consistent with the
ground truth (i.e., supplemented experimental data). The average
prediction time for the trained DNN to predict the density at one
temperature state from a 2.3 GHz core i7 processor is ~0.01 s,
whereas the PCG-MD simulation takes an average of 60 s. This
pinpoints the speed increment by a factor of 6.2 × 103 compared
to MD simulations, and therefore, significantly accelerates the
optimization process.
From the predicted nonbonded interaction parameters, the

resulting local structure i.e., radial distribution function g(r) is
shown in Fig. 7c along with RDF from the united atom model and
LJ potential (dashed line). The radial distribution functions g(r) of
the UA-PTMO and CG-PTMO are calculated at 453 K. The initial
peak for both the UA and CG systems is found to correspond to
the same radial distance; however, the CG peak value is relatively
higher than that of the UA system. This is the result of an
increased well-depth as predicted by the DNN in the top-down

Table 4. Summary of predicted interaction parameters from machine-learned coarse-grained (MLCG) model of PTMO.

Functional form CG parameters Present work (MLCG) Literature (IBI)

Bonded (bottom-up) UstretchðrÞ ¼ kl � ðl � l0Þ2 l0 (Å) 5.07 4.98

kl (kcal/molÅ2) 35.95 3.03

UbendðθÞ ¼ kθ � ðθ� θ0Þ2 θ0 (deg) 146.11 169.5

kθ (kcal/mol rad2) 1.21 0.64

Nonbonded (top-down) UnonbðrijÞ ¼ 4ϵij
σij
rij

� �12
� σij

rij

� �6
� �

σ 4.82 −

ϵ 0.73 −
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optimization of the nonbonded parameters. In bottom-up coarse-
graining (classical or machine learning), the local structures are
optimized, and the resulting RDF almost always matches perfectly
with atomistic models5,40. However, in top-down approach, where
the nonbonded interactions are tuned by incorporating
temperature-dependent density (ρT), glass transition temperature
(Tg), or elastic modulus (E), the resulting radial distribution
function has a larger peak value than that from atomistic
simulations, as was also found earlier in a top-down optimization
of a coarse-grained model of polystyrene4.

MD SIMULATION DETAILS
We performed united-atom (UA) molecular dynamics simulations
to generate reference (the ground truth) structural distributions of
PTMO chains in the melt state for the purpose of parametrizing
the potential parameters of the CG bead-chain model. Generally,
for polymeric materials, the CG potentials are derived from
simulations of shorter chains or oligomers with the assumption
that the derived potentials are transferable to longer chains5. In
this study, we use UA chains of PTMO containing 50 repeating
units, equivalent to 250 atoms and united atoms along the chain
for generating the structural distributions. Considering the
computational limitations of the UA-PTMO MD simulations we
selected the system of 50 such chains for collecting data as a
reference. UA-MD simulations were performed using the LAMMPS
software package65.
The repeat unit −(CH2CH2OCH2CH2)− of the UA-PTMO chain is

defined in such a way that every oxygen and every methylene
group is treated as an atom and united atom, respectively. The UA
potential used in the reference system is the Transferable
Potentials for Phase Equilibria-UA (TraPPE-UA) for the intra
(bonded) and inter-molecular (nonbonded) interactions initially
developed by Lempesis et al.3. Shireen et al. further validated and
established the TraPPE-UA potentials to study shear and bulk
relaxation behavior of melt PTMO70. Before collecting data, the
system was equilibrated at T= 453 K for 5 ns in a canonical
ensemble using the deterministic Nose–Hoover thermostat71,72.
Subsequently, the equilibrated system was quenched in the NPT

ensemble at P= 1 atm, from 453 to 313 K in decrements of 20 K).
While quenching, isothermal and isobaric conditions were
maintained with constants 0.1 and 1 ps, where at each tempera-
ture the simulation ran for 5 ns.
We measure two types of structural distributions as well as the

temperature-dependent density of the melt PTMO from our UA
simulations. First, we collect the bond length l0 distribution data,
i.e., the distances between “virtual” bead centers along the UA-
PTMO chain, representing centers of the adjacent beads in the CG-
PTMO model. Given that all the beads in the CG chains are of the
same type, there is only one type of chemical bond in the CG
system, thus, only one set of bond length distribution data is
recorded. This distribution is used to parameterize the bond
stretching potential (the functional form of the potential is given
in Table 4). Second, we collect bond angle θ0 data and its
distribution between three consecutive CG beads, and this
distribution is used to parameterize the CG-PTMO bending
potential (the functional form of the potential is given in Table 4).
We also measured the temperature-dependent density of melt

PTMO at P= 1 atm from 453 to 313 K. The measured temperature-
dependent density data is shown in Fig. 7d along with MLCG and
experimental values. UA-PTMO chains used for ground truth data
has repeat units Nm= 50, which is below the value at which
density becomes insensitive to chain length, therefore, density
values are slightly different, and calculated deviations are
within 1%.
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Fig. 7 Top-Down approach is shown. a The schematic of top-down optimization protocol. b The scatter plots represent the predictions from
the DNN and the target for training and testing data for density (ρCG), along with the performance of the DNN during training. c From the
predicted parameters (σ and ϵ) the resulting radial distribution function (g(r)) of the CG system is accompanying the corresponding potential
and RDF of the UA system. d The specific volume of the MLCG system is shown along with ground truth, i.e., experiment (dashed line) and UA
PTMO simulations. e Snapshot of the CG PTMO system with equilibrated density, ρ= 0.875 g/cm3 at T= 453 K.
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