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A machine learning framework 
for multi‑hazards modeling 
and mapping in a mountainous 
area
Saleh Yousefi1, Hamid Reza pourghasemi2*, Sayed naeim emami1, Soheila pouyan2, 

Saeedeh eskandari3 & John p. tiefenbacher4

this study sought to produce an accurate multi‑hazard risk map for a mountainous region of iran. the 

study area is in southwestern iran. the region has experienced numerous extreme natural events in 

recent decades. This study models the probabilities of snow avalanches, landslides, wildfires, land 
subsidence, and floods using machine learning models that include support vector machine (SVM), 
boosted regression tree (BRT), and generalized linear model (GLM). Climatic, topographic, geological, 
social, and morphological factors were the main input variables used. the data were obtained from 

several sources. The accuracies of GLM, SVM, and functional discriminant analysis (FDA) models 
indicate that SVM is the most accurate for predicting landslides, land subsidence, and flood hazards 
in the study area. GLM is the best algorithm for wildfire mapping, and FDA is the most accurate model 
for predicting snow avalanche risk. The values of AUC (area under curve) for all five hazards using the 
best models are greater than 0.8, demonstrating that the model’s predictive abilities are acceptable. 
A machine learning approach can prove to be very useful tool for hazard management and disaster 

mitigation, particularly for multi‑hazard modeling. the predictive maps produce valuable baselines 

for risk management in the study area, providing evidence to manage future human interaction with 

hazards.

Human interactions with natural extreme events, or hazards, are increasing  globally1. Natural disasters have 
a�ected people and natural environments generating vast economic losses around the world. However, in some 
developed counties disasters have been decreasing since  19002,3.

Hazard is the probability of occurrence in a speci�ed period and within a given area of a potentially damag-
ing of a given  magnitude4,5. �e de�nition incorporates the concepts of location (where?), time (when, or how 
frequently?) and magnitude (how large?). Total risk (R) means the expected number of lives lost, person injured, 
damage to property, or disruption of economic activity due to a particular natural phenomenon, and is therefore 
the product of speci�c risk (RS) and elements at risk (E)6. In addition, RS is the expected degree of loss due to 
a natural phenomenon.

Landscapes around the world are re�ections of diverse natural processes. �e probabilities of extreme natu-
ral events are typically greater in more natural areas and are, in fact, extensions of natural systems. Exposure 
of people to these extreme natural processes could be reduced and limited if predictive models based on new 
approaches and deeper knowledge of e�ective factors were  employed7. Mountainous areas are commonly sites 
of snow  avalanches8,9,  landslides4,10,  �oods11,12,  mud�ows13, ice  avalanches14, soil  erosion15–17, rock  falls18, and 
 wild�res19–24.

Most studies focus on a single hazard, even when there are multiple hazardous processes a�ecting the same 
 landscapes8,25–30. However, hazards sometimes interact with each other. Sometimes, the mitigation of one 
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hazardous process may intensify another’s frequency, duration, distribution, or  intensity31. Studying natural 
hazards separately, especially in mountainous regions, may produce miscalculations of risk (or the probability 
of occurrence of the speci�c extreme natural event) in those areas. Multi-hazard risk assessment (the collective 
likelihood of experiencing an extreme natural event among a set of hazards) could be useful for controlling the 
interactions of  hazards32.

Snow avalanches, landslides, wild�res, land subsidence, and �oods are the most important risks in many 
mountainous regions of the  world8,18,33,34. �ese �ve hazards can impact and interrupt systems (transportation, 
electrical power, water provisioning systems, and others), processes (trade, travel, extraction, shipping), places 
(residential areas, commercial districts, industrial areas, recreational sites), and people in risk-prone  areas33,34. 
Multi-hazard risk mapping is an important need for land use management at provincial and national  scales4,33–37. 
Multi-hazard mapping is receiving increasing  attention1,7,38–45. Multi-hazard analysis has been conducted in 
mountainous regions of Iceland, New Zealand, Iran, and Tajikistan. In Iceland, a general method was developed 
for analysis of snow avalanche, rock-fall, and debris-�ow  hazards7. Schmidt et al.46 developed an approach for 
multi-risk modeling in New Zealand, creating an adaptable so�ware prototype that allows researchers to ‘plug in” 
natural processes of interest. Pourghasemi et al.45 undertook a multi-hazard risk assessment based on machine 
learning methods in Fars Province, Iran. �ey considered �oods, forest �res, and landslides in their study area. 
In another study, multiple hazards (rockslides, ice avalanches, periglacial debris �ows, and lake-outburst �oods) 
were assessed in a mountainous region of Tajikistan to develop a comprehensive regional-scale map of hazards 
for the study  area47.

�ough these studies exemplify multi-hazard mapping, a comprehensive study on multi-hazard assessment 
by machine learning models is lacking for mountainous areas. �e development of multi-hazard risk mapping 
approaches using new methods is critical for e�ective management of hazards in some regions. Iran, in fact, 
is a country that has an extensive array of hazards (�ood, landslide, earthquake, drought, dust storm, soil ero-
sion, snow avalanche, etc.) due to the diverse geomorphological and climatic  zones28,12,48–50. Snow avalanches, 
landslides, subsidence, wild�res, and �oods occur annually in the Zagros and Alborz mountain chains in Iran; 
people are more numerous in these regions than in other parts of the  country51–54. In this study, �ve major natu-
ral events (�ood, landslides, land subsidence, snow avalanches, and wild�res) in Chaharmahal and Bakhtiari 
Province provide the basis for a multi-hazard risk assessment map. �e main objective is to evaluate machine 
learning models as useful, universal, and accurate multi-hazard mapping products that can be applied by land 
use managers and planners. Based on a review of the literature, we have selected a set of machine learning models 
including; generalized linear model (GLM)55–57, random forest (RF)17,58,59, a support vector machine (SVM)60–62, 
boosted regression trees (BRT)63–65, mixture discriminate analysis (MDA)66,56, multivariate adaptive regression 
splines (MARS)67,56,68, and functional discriminant analysis (FDA)17,66 for multi-hazard mapping. Finally, based 
on the accuracies of the models, available data, and the sources of models, the SVM, GLM and FDA algorithms 
were used to map hazards in the study area.

Study area. Chaharmahal and Bakhtiari Province is in southwestern Iran (Fig. 1). It is de�ned by a rectangle 
with sides at 31° 9′ and 32° 38′ N and 49°30′ and 51° 26′ E. �e province contains ten counties (Ardal, Borojen, 
Shahrekurd, Farsan, Lordegan, Kiar, Khanmirza, Kohhrang, Ben and Saman) and covers an area of 16,553  km2 
(1% of Iran). Elevation ranges from 778 m to 4,203 m above sea level and the mean elevation in the province is 
2,153 m, making it the highest province in Iran. �e population of the province is 947,000. Floods, mass move-
ments, land subsidence, wild�res, and snow avalanches occur here  regularly69.

Methodology.  �is study involved three main activities (Fig.  2): (1) Collection of extreme event data 
through extensive �eld work and assessments of government reports over a 42-year period (1977–2019); (2) 
Identi�cation of the most important e�ective factors for each hazard through a literature review; (3) Hazard 
modeling using a generalized linear model (GLM), a support vector machine (SVM) model, and a functional 
discriminant analysis (FDA) model and construction of multi-hazard risk maps (MHRM) using the models that 
were most accurate for each hazard.

Hazards data inventory. �is study identi�ed 3,455-point locations signifying the sites of �ve types of 
extreme hazardous events that occurred over a 42-year period in the Chaharmahal and Bakhtiari province 
through �eld surveys and examination of scienti�c reports (Fig. 3). �ese events included 246 snow avalanches, 
97 wild�res, 346 �oods, 868 landslides, and 1902 cases of land subsidence. �e machine learning models in this 
study required data from both hazard and non-hazard locations to conduct modeling. Equal numbers of non-
hazard locations were randomly sampled to balance the hazard  locations21–23,66,70. �e samples were divided into 
two groups for training (70%) and for validation (30%)21,23,24.

Data collection of the e�ective factors for �ve hazards. Based on both a review of previous studies and a com-
pilation of experts’ suggestions, e�ective factors for each hazard were measured and mapped in raster layers of 
10 × 10 m pixel size in ArcGIS 10.4.2. �e e�ective factors (Table 1) fell into �ve categories: topography (DEM, 
slope, topographic wetness index, plan curvature, aspect, and convergence index), geology (lithology and dis-
tance from a fault), hydrology and climatology (precipitation, distance from a river, groundwater depth, drain-
age density, absolute minimum temperature, wind exposure index, absolute maximum temperature, and snow 
depth), society (distance from a road and distance from an urban areas), and vegetation/land cover (land use 
and NDVI). �e topographic factors were extracted from 1:25,000 topographic maps obtained from the Iranian 
National Cartographic Center. �e geological factors were acquired from a geologic map at a scale of 1:100,000, 
acquired from the Iranian Geology Organization. Hydrological and climatic factors were measured using data 
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from 28 meteorological stations, digital stream layers, and 895 piezometric wells. �ese data were obtained from 
the Regional Water Company of Chaharmahal and Bakhtiari. �e social factors were extracted from road net-
works and residential areas mapped on 1:25,000 topographic maps. �e vegetation factors were discerned from 
Landsat 8 OLI images from June 2018. In addition, to evaluation of the importance of the e�ective factors for 
each hazard, speci�c factors were selected for modeling speci�c hazards: 12 for wild�res, 8 for snow avalanches, 
12 for landslides, 12 for land subsidence, and 12 for �oods.

Application of machine learning models. �ree state-of-the-art machine learning models were applied in pre-
sent study to construct the hazard risk maps. Each is explained below.

Functional discriminant analysis (FDA). FDA creates a statistical method to analyze e�ective factors. It can 
generally be said that models based on discrimination do unsupervised work so that each class is subdivided into 
its own subclass; each subclass is given a special  value71,72. �e FDA model is a special combination of regression 

Figure 1.  Location of the study area of Chaharmahal and Bakhtiari Province, Iran.
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models that implements a hidden process for each class in the modeling process, especially when conducting 
complex class  modelin73,74. �e FDA model is similar to other statistical methods, so it can perform just as  well75. 
But, since the FDA model is nonparametric, it has been used in a wide range of  �elds76. �e FDA model is new 
to analyses of data, but it has been convenient to use it as a replacement for functions. �erefore, more attention 
should be paid to this  method77.

Generalized linear model (GLM). �e GLM is regression-based so it can reveal di�erences between  variables78. 
�e GLM is created from several linear models, and it constructs a best regression model that can predict mul-
tiple  events79–81. Some researchers have reported that GLM is most o�en used for spatial  modeling55,82–85. In 
general, the GLM uses multiple regression to increase accuracy and quality of the results because it can establish 
a very clear relationship between the dependent and independent  variables86.

Support vector machine (SVM). SVM uses both classi�cation and regression, based on the concept of con-
trolled learning. Results have shown that it generates the smallest clustering  errors87. Since this model’s approach 
is based on statistical learning theory, it reduces errors and identi�es the optimal  response88. SVM indicates per-
formance estimation by answering a convex optimization  problem89,90. �e SVM model provides a very impor-
tant advantage: it identi�es and analyzes layers  e�ectively91.

Multi-hazards risk mapping. Snow-avalanche hazard (SAH), landslide hazard (LH), wild�re hazard (WFH), 
land-subsidence hazard (LSH), and �ood hazard (FH) maps were created from the e�ective factors with the 
three machine learning models (Fig. 4). First, susceptibility to each hazard was created according to the depend-
ent variables (locations of landslides, �oods, avalanches, etc.) and some e�ective factors (the independent 
variables) using machine learning techniques. Next, the models with the highest accuracies, determined from 
ROC-AUC values, were selected and used for multi-hazard mapping. �ese models were integrated using a 
Boolean algorithm based on four classes for each hazard—low, moderate, high, and very high. A review of the 
 literature44,45 indicated that susceptibility classes of low and moderate were low hazard (0) conditions and high 
and very high were deemed high hazard (1) conditions. To facilitate integration, the four-class maps produced 
for each hazard by the best models (from among the three algorithms) were reassigned these two classes: 0 and 
1. �e maps of the �ve natural events (�ood, landslides, land subsidence, snow avalanches, and wild�res) were 
combined to create an integrated multi-hazard (MH) map (i.e., MH = SAH + LH + LSH + WFH + FH) in ArcGIS 
and the result was reclassi�ed (Fig. 5).

Figure 2.  Flowchart of the study methodology.
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Accuracy assessment. �e accuracy of each of the MH maps was assessed with the training group data (for 
the goodness-of-�t test) and the validation group data (for the predictive-performance test) using area under 
the curve (AUC). AUC is a scalar measure that is a threshold-independent  method92,93. An area of 1 represents 
perfect classi�cation, while an area of 0.5 or less indicates poor classi�cation of locations by a  model45,94–96. In 
the present study, to produce multi-hazard susceptibility maps of snow avalanches, land subsidence, wild�res, 

Figure 3.  Distribution of the occurrence of the �ve hazards between 1977 and 2019 in Chaharmahal and 
Bakhtiari Province (a), and images of the �ve natural extreme events in the study area (b) taken by Saleh Youse� 
(First author).
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landslides, and �ood by GLM, FDA, and SVM models a special package was applied in the R so�ware version R 
3.5.3. �e packages used were "svm"60,97, "glm"55,63, and "fda"17,66.

Results
Accuracy assessments of the hazard maps using AUc . Assessing the accuracies of the three machine 
learning models (Table 2) demonstrated that FDA (for SAH), SVM (LSH), GLM (WH), SVM (LH), and SVM 
(FH) provided the most accurate models. �e values of AUC these �ve models were all greater than 0.8, indicat-
ing strong classi�cation success and con�rmed that the models were acceptably accurate.

Integrated multi‑hazard (MH) map.  �e results of the MH map show that the hazards do not overlap 
(Table 3 and Fig. 5). More than 1/6th (16.51%) of the province is free of all �ve hazards. Five sixths (83.49%) of 
Chaharmahal and Bakhtiari Province experiences at least one of the hazards.

Discussion
Arid and semi-arid regions of the world experience extreme natural events that threaten the structures and daily 
functions of  localities98. Natural hazards can cause a great deal of economic  damages99, interruptions, injuries, 
and loss of life. Mountainous regions are among the most disaster-prone parts of the world because of their 
geological, climatological, and hydrological  characteristics100,101.

An e�ective way to begin to manage natural disasters is to map hazards. �e information generated can be 
very useful for e�ective planning and management of people and activities. Most natural hazards studies have 
focused on single hazards. Single-hazard approaches focus on hazards as independent phenomena, ignoring 
the domain of relationships between the  hazards32 and this may lead to miscalculations of  risk102–107. A greater 
emphasis on the interactions between and combinations of hazards’ risks is  needed102. Studies that have focused 
on multi-hazard approaches have concluded that there is collectively greater risk from the interactions of multiple 
hazards than is yielded by simply combining the results of single-hazard studies. �e increasing use of GIS in 
natural resources management and the introduction of various algebraic, statistical, and empirical methods have 
enabled better assessments of natural hazards. �e methods have been developed in di�erent parts of the world 
based on di�erent conditions and with di�erent amounts of available data, but they have advanced the modeling 
process and have revealed the spatial distributions of the natural hazards in many study areas.

Several methods have been used to model and map di�erent natural hazards. For example, �ood risk has 
been assessed using support vector machine (SVM), frequency ratio (FR), multivariate statistical analysis, weight 
of evidence (WoE), analytic hierarchy process (AHP), and decision trees (DTs). �e analytic hierarchy pro-
cess (AHP) method is one of the most common ways to solve problems associated with the use of multiple 

Table 1.  �e e�ective factors for susceptibility mapping of �ve hazards.

E�ective factors Hazard

Full name Abbreviation Flood (F) Wild�re (WF) Snow avalanche (SA) Landslide (L) Land subsidence (LSu)

Rainfall R * *

Digital elevation model DEM * * * * *

Land use LU * * * *

Lithology Lit * * *

Fault distance FD * *

Slope S * * * * *

River distance RD * * * *

Groundwater level GL *

Normalized di�erence 
vegetation index

NDVI * * *

Road distance RoD * * * *

Topographic wetness 
index

TWI * * * *

Plan curvature PC * * * *

Aspect A * * * * *

Drainage density DD * *

Convergence Index CI *

Minimum temperature MinT *

Maximum temperature MaxT *

Urban area distance UD *

Wind exposition index WEI * *

Terrain ruggedness 
index

TRI *

Snow depth SD *
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 variables108,109 and it is o�en used in hazard  assessments110. However, mapping processes are very sensitive to 
changes in expert’s judgments and to changes in weighting the input variables at the assessment scale and are 
signi�cant  disadvantages109. �e most popular methods used in landslide risk assessments are neuro-fuzzy 
inference  systems111, logistic regression models, analytic hierarchy process, statistical  indices112, vector based 
 methods113, and arti�cial neural  networks114. For wild�re risk assessment, probabilistic models and maximum 
entropy  models115,116, neural network (NN)117–119, fuzzy logic 120–122, logistic regression (LR)21,123–125, decision 

Figure 4.  �e risk maps of the �ve hazards created from the three machine learning models for Chahaharmahal 
and Bakhtiari Province.
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tree (DT)126, the random forest (RF)127–129, and support vector machine (SVM)24,130 have been used. Numerous 
methods have also been used for mapping snow avalanche risk: multi-criteria decision making  approaches131–133, 
fuzzy–frequency ratio  models134–136, numerical methods, dynamic  models137, and remote sensing-based 
 methods138,139. �ough remote sensing can provide useful information about snow avalanches, the complex 
relationships between snow avalanches and geomorphometric variables are o�en overlooked, and most risk 
assessments are based on expert opinion. And prediction of land subsidence risk has used methods like arti�cial 
neural  networks140, frequency  ratio141, logistic  regression142, and di�erential radar  interferometry143.

Figure 5.  �e multi-hazard risk map based on a combination of the �ve best hazard risk maps for Chaharmahal 
and Bakhtiari Province (*L Landslide, LSu Land subsidence, F Flood, WF Wild�re, SA Snow avalanche).
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Machine learning is another modeling technique that is increasingly used to understand the complex rela-
tionships between a wide range of independent variables like meteorological factors (winds, air pressure, storm 
surge, and �oods) and a dependent  variable144. �erefore, these algorithms can aid forecasting of multiple hazards 
simultaneously, where the environmental conditions vary considerably across a  landscape145.

In this study, we assessed �ve hazards in a mountainous region of Iran. To comprehensively assess extreme 
natural events in the study area, multi-hazard mapping was conducted using three machine learning models. 
Evaluation of the accuracies of the SVM, GLM and FDA models showed that SVM is most accurate when pre-
dicting landslide, land subsidence, and �ood risks. GLM is most accurate for wild�re risk. And FDA is most 
accurate for snow-avalanche risk prediciton (Table 2). �e AUCs of the �ve best models were over 0.8, validat-
ing their strong  performances146 and demonstrating that they (more or less) accurately predicted the patterns 
of the hazards in the study area. �e SVM method also produced very good results for mapping landslide, land 
subsidence, and �ood risks. Li et al.147 applied SVM with univariate and multivariate statistical methods to 
investigate land subsidence. �eir results showed that SVM is more accurate than other algorithms they tested. 
Others have con�rmed the high performance of SVM for similar  purposes24,131,148,149. Studies of landslide risk 
have also revealed that highly accurate predictions were made with  SVM112,150. �e strong capacity of SVM to 

Table 2.  AUC values for three machine learning models in mapping natural hazards.

Model

Hazard

Flood (F) Wild�re (WF) Snow avalanche (SA) Landslide (L) Land subsidence (LSu)

SVM 0.975 0.835 0.894 0.841 0.943

FDA 0.962 0.825 0.912 0.779 0.920

GLM 0.965 0.837 0.909 0.777 0.923

Table 3.  Areas of di�erent classes of various hazards.

Multi-hazard Area (ha) Percent (%)

No hazard 269,093.34 16.511

SA 186,049.44 11.416

WF 180,470.97 11.074

WF + L 160,292.88 9.835

WF + F + LSu 136,861.83 8.398

L 133,069.95 8.165

WF + F + L 114,211.8 7.008

WF + LSu 101,536.92 6.230

SA + L 84,893.76 5.209

F + L 65,183.67 4.000

WF + F 55,212.84 3.388

F 45,086.31 2.766

WF + F + L + LSu 22,783.14 1.398

LSu 15,398.73 0.945

WF + L + LSu 12,496.86 0.767

SA + F 12,462.66 0.765

F + LSu 10,308.87 0.633

SA + F + L 7,746.75 0.475

SA + WF + L 6,630.3 0.407

SA + WF 3,918.69 0.240

F + L + LSu 2,751.12 0.169

L + LSu 1,112.31 0.068

SA + WF + F + L 1,084.86 0.067

SA + WF + F 353.25 0.022

SA + F + LSu 273.78 0.017

SA + F + L + LSu 140.67 0.009

SA + LSu 118.53 0.007

SA + WF + F + L 85.77 0.005

SA + L + LSu 48.51 0.003

SA + WF + L + LSu 27.72 0.002

SA + WF + LSu 21.78 0.001
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predict �ood risk has also been  demonstrated151–153. GLM has been used to predict wild�re  risk123,154–158. GLMs 
have proven to acceptably predict wild�re risks in  California155,159 and  Spain156,160.

�e MH risk map was developed by combining the results produced by the SVM, GLM and FDA approaches. 
Results demonstrate that using the best machine learning models to predict several hazards yields useful infor-
mation about their interactions. Multi-hazard relationships are very dependent upon the scale of analysis and 
the speci�c sets of hazards. Understanding the relationships and interactions between multiple hazards is an 
important  challenge103. �is study begins to �ll this gap. �e results show that all �ve hazards are absent from 
16.5% of the study area. �e rest of the study area, 83.5%, is likely to be impacted by at least one of the hazards, 
however. Pourghasemi et al.54 mapped both the individual and collective risks posed by three hazards (�oods, 
forest �res, and landslides) in a multi-hazard study using machine learning techniques. Others have conducted 
multi-hazard risk assessments, but separately for each  risk46,47,161.

conclusions
As mountainous areas are challenged with a wide array of natural hazards and sites within them are prone to 
exposures to multiple natural hazards, this study evaluated the spatial distribution of risk from multiple hazards 
in Chaharmahal and Bakhtiari Province, Iran, using three machine learning models (SVM, GLM and FDA). 
Identi�cation of high-risk areas is the most important issue for most decision makers and natural resource 
managers. In this regard, we presented a multi-hazard risk map for �ve natural hazards (�oods, landslides, land 
subsidence, snow avalanches, and forest �res) in the study area. Evaluation of the accuracies of the maps produced 
by the SVM, GLM, and FDA models showed that SVM is most accurate model for predicting landslide, land 
subsidence, and �ood risks. GLM is best for wild�re risk prediction. And FDA is best for snow avalanche risk 
assessment in the region. �e results indicate that 16.5% of the study area is not likely to experience any of the 
�ve natural hazards, but the rest of province (83.5%) is at risk from exposure to at least one of the �ve (or several 
or perhaps all): 11.41% is possesses snow avalanche risk, 11.07% wild�re risk, and 9.83% landslide risk. Each type 
of machine learning method achieved acceptable levels of accuracy in their predictions. �erefore, these results 
can be regarded with high con�dence and may be used in future studies to examine the spatial distributions of 
risks from multiple hazards and to provide useful information for proactive management and hazard mitigation.
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