
Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47

http://jwcn.eurasipjournals.com/content/2014/1/47

RESEARCH Open Access

Amachine learning framework for TCP
round-trip time estimation
Bruno Astuto Arouche Nunes1*, Kerry Veenstra1, William Ballenthin2, Stephanie Lukin3 and Katia Obraczka1

Abstract

In this paper, we explore a novel approach to end-to-end round-trip time (RTT) estimation using a machine-learning

technique known as the experts framework. In our proposal, each of several ‘experts’ guesses a fixed value. The

weighted average of these guesses estimates the RTT, with the weights updated after every RTT measurement based

on the difference between the estimated and actual RTT.

Through extensive simulations, we show that the proposed machine-learning algorithm adapts very quickly to

changes in the RTT. Our results show a considerable reduction in the number of retransmitted packets and an

increase in goodput, especially in more heavily congested scenarios. We corroborate our results through ‘live’

experiments using an implementation of the proposed algorithm in the Linux kernel. These experiments confirm the

higher RTT estimation accuracy of the machine learning approach which yields over 40% improvement when

compared against both standard transmission control protocol (TCP) as well as the well known Eifel RTT estimator. To

the best of our knowledge, our work is the first attempt to use on-line learning algorithms to predict network

performance and, given the promising results reported here, creates the opportunity of applying on-line learning to

estimate other important network variables.

1 Introduction
Latency is an important parameter when designing, man-

aging, and evaluating computer networks, their protocols,

and applications. One metric that is commonly used to

capture network latency is the end-to-end round-trip

time (RTT) which measures the time between data trans-

mission and the receipt of a positive acknowledgment.

Depending on how the RTT is measured (e.g., at which

layer of the protocol stack), besides the time it takes for the

data to be serviced by the network, the RTT also accounts

for the ‘service time’ at the communication end points.

In some cases, RTT measurement can be done implicitly

by using existing messages; however, in several instances,

explicit ‘probe’ messages have to be used. Such explicit

measurement techniques can render the RTT estimation

process quite expensive in terms of their communication

and computational burden.

Several network applications and protocols use the RTT

to estimate network load or congestion and therefore need

*Correspondence: bastuto@gmail.com
1Department of Computer Engineering, Baskin School of Engineering,

University of California, Santa Cruz, CA 95064, USA

Full list of author information is available at the end of the article

to measure it frequently. The transmission control proto-

col, TCP, is one of the best known examples. TCP bases

its error, flow, and congestion control functions on the

estimated RTT instead of relying on feedback from the

network. This pure end-to-end approach to network con-

trol is consistent with the original design philosophy of

the Internet which keeps only the bare minimum func-

tionality in the network core, pushing everything else to

the edges. Overlays such as content distribution networks

(CDNs) (e.g., Akamai [1]) and peer-to-peer networks also

make use of RTT as a ‘network proximity’ metric, e.g., to

help decide where to re-direct client requests. There has

also been increasing interest in network proximity infor-

mation from applications that run on mobile devices (e.g.,

smart phones) in order to improve the user’s experience.

In this paper, we propose a novel RTT estimation

technique that uses a machine-learning based approach

called the experts framework [2]. As described in detail

in Section 3, the experts frameworka uses ‘on-line’ learn-

ing, where the learning process happens in trials. At every

trial, a number of experts contribute to an overall predic-

tion, which is compared to the actual value of the RTT

(e.g., obtained by measurement). The algorithm uses the

© 2014 Nunes et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 2 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

prediction error to refine the weights of each expert’s con-

tribution to the prediction; the updated weights are used

in the next iteration of the algorithm. We contend that

by employing the proposed prediction technique, network

applications, and protocols that make use of the RTT do

not have to measure it as frequently.

As an example application for the proposed RTT esti-

mation approach, we use it to predict TCP’s RTT. Through

extensive simulations and live experiments, we show that

our machine learning technique can adapt to changes in

the RTT faster and thus predict its value more accurately

than the current exponential weighted moving average

(EWMA) technique employed by most versions of TCP.

As described in Section 2, TCP uses the RTT estimates

to compute its retransmission time-out (RTO) timer [3],

which is one of the main timers involved in TCP’s error

and congestion control. When the RTO expires, the TCP

sender considers the corresponding packet to be lost and

therefore retransmits it. TCP relies on RTT predictions

and measurements in order to set the RTO value properly.

In TCP, the RTT is defined as the time interval between

when a packet leaves the sender and until the reception, at

the sender, of a positive acknowledgment for that packet.

If the RTO is too long, it can lead to long idle waits

before the sender reacts to the presumably lost packet. On

the other hand, if the RTO is set to be too aggressive (too

short), it might expire too often leading to unnecessary

retransmissions. Needless to say that setting the RTO is

critical for TCP’s performance.

We can split the problem of setting TCP’s RTO into

two parts. The first part is how to predict the RTT of the

next packet to be transmitted, and the second is how the

predicted RTT can be used to compute the RTO. In this

paper, we focus on the first part of the problem, i.e., the

prediction of the RTT; the second part of the problem, i.e.,

setting the RTO, is the focus of future work.

To estimate the RTT, we propose a new approach based

on machine learning which will be described in detail in

Section 3. Our experimental results show that RTT pre-

dictions using the proposed technique are considerably

more accurate when compared to TCP’s original RTT esti-

mation algorithm and the well-known Eifel [4] timer. We

then evaluate how this increased accuracy affects network

performance. We do so by running network simulations

as well as live experiments. For the latter, we have imple-

mented both our machine learning as well as the Eifel

mechanism in the Linux kernel.

The remainder of this paper is organized as follows.

Section 2 presents related work, including a brief

overview of TCP’s original RTT estimation technique. In

Section 3, we describe our RTT prediction algorithm.

Section 4 presents our experimental methodology, where

we describe the scenarios conceived for our simulation

studies, discuss simulation parameters, and definemetrics

for performing evaluations. Sections 5 and 6, respec-

tively, present our results from both simulation and live

experiments. Finally, Section 7 concludes the paper and

highlights directions for future work.

2 Related work
In this section, we present a brief overview of previous

work on RTT estimation and later discuss some relevant

machine learning applications.

2.1 TCP RTT estimation

TCP uses a time-out/retransmission mechanism to

recover from lost segments. This time-out value needs

to be greater than the current RTT to avoid unneces-

sary retransmissions; on the other hand, if it is too high,

it will cause TCP to wait too long to react to losses and

congestion. In Jacobson’s well-known work [3], two state

variables EstimatedRTT and RTTVAR keep the estimate of the

next RTT measurement (SampleRTT) and the RTT variation,

respectively. RTTVAR is defined as an estimate of how much

EstimatedRTT typically deviates from SampleRTT. EstimatedRTT is

updated according to an EWMA given by Equation 1,

where α = 1
8 . RTTVAR is calculated using Equation 2 which

is also an EWMA; this time of the difference between

SampleRTT and EstimatedRTT with gain β typically set to 1
4 .

Equation 3 sets the new value for the RTO as a function of

EstimatedRTT and RTTVAR, where K is usually 4.

EstimatedRTT=(1−α)·EstimatedRTT+α·SampleRTT (1)

RTTVAR=(1−β)·RTTVAR+β·|SampleRTT−EstimatedRTT| (2)

RTO=max(EstimatedRTT+K ·RTTVAR, 2·ticks) (3)

Most current variants of TCP also implement Karn’s

Algorithm [5], which ignores the SampleRTT corresponding

to retransmissions. Another consideration is TCP’s clock

granularity. In several TCP implementations, and also in

the simulation tool used in this work, the clock advances

in increments of ticks commonly set to 500 ms, and the

RTO is bounded by RTOmin = 2 · ticks and RTOmax = 64 · ticksb.

In prior work, a number of approaches have been pro-

posed to estimate TCP’s RTT. Trace-driven simulations

reported in [6] to evaluate different RTT estimation algo-

rithms show that the performance of the estimators is

dominated by their minimum values and is not influenced

by the RTT sample rate [6]. This last conclusion was chal-

lenged by the Eifel estimation mechanism [4], one of the

most cited alternatives to TCP’s original RTT estimator;

Eifel can be used to estimate the RTT and set the RTO.

Eifel’s proponents identify several problems with TCP’s

original RTT estimation algorithm, including the obser-

vation that a sudden decrease in RTT causes RTTVAR and

consequently the RTO to increase unexpectedlyc. As it

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 3 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

will become clear from the experimental results presented

in Subsection 6.3, our approach is able to follow quite

closely any abrupt changes in the RTT and outperforms

both TCP’s original RTT estimator as well as that of Eifel’s.

Another notable adaptive TCP RTT estimator was pro-

posed in [7]. It uses the ratio of previous and current

bandwidth to adjust the RTT. In [8], a TCP retrans-

mission time-out algorithm based on recursive weighted

median filtering is proposed. Their simulation results

show that for Internet traffic with heavy tailed statistics,

their method yields tighter RTT bounds than TCP’s origi-

nal RTT computation algorithm. Leung et al. present work

that focuses on changing RTO computation and retrans-

mission polices, rather than improving RTT predictions

[9].

2.2 Selected machine learning applications

Machine learning has been used in a number of other

applications. Helmbold et al. use an experts framework

algorithm to predict hard-disk drive’s idle time and decide

when to attempt to save energy by spinning down the disk

[10]. For this problem, the cost of making a bad decision

(i.e., when spinning the disk down and back up costs more

than simply leaving it on) is very well defined since the

decision of spinning down the disk does not affect the

length of the next idle time.

Unlike the spin-down example, when predicting the

RTT, every prediction causes the next RTT to be set to a

different value and that influences every event that hap-

pens thereafter. Thus, the problem of defining the cost

of a bad RTT prediction is not as straightforward. Our

solution to this problem is discussed in Section 3.

Moreover, in the spin-down cost problem, the traces

used in the evaluation were ‘off-line’ traces, i.e., traces cap-

tured from live runs and later on used as input to the

algorithms being evaluated. In the case of the spin-down

problem, there is no problem in using off-line traces since

the algorithm’s estimations do not influence the outcome

of the next measurement. In the case of TCP RTT esti-

mation, however, as previously discussed, since the RTT

estimations influence TCP timers and these timers affect

the outcome of the next RTTmeasurement, off-line traces

can be used to set and tune parameters of the algorithm,

but they are not suitable for evaluating the performance

of the system. The work presented in [8,9,11,12] on RTT

estimation compares their solution against TCP’s original

RTT estimation algorithm, but they base their evaluation

on off-line traces.

Machine learning techniques have not been commonly

employed to address network performance issues. The

work described in [13] is a notable exception and proposes

the use of the stochastic estimator learning algorithm

(SELA) to address the call admission control (CAC) prob-

lem in the context of asynchronous transfer mode (ATM)

networks. Their goal was to predict in ‘real time’ if a call

request should be accepted or not for various types of

traffic sources. Simulation results show the statistical gain

exhibited by the proposed approach compared to other

CAC schemes. Another SELA-based approach, this time,

applied to QoS routing in hierarchical ATM networks was

proposed in [14]. In this approach, learning algorithms

operating at various network switches determine how the

traffic should be routed based on current network con-

ditions. In the context of WiMax networks, a cross-layer

design approach between the transport and physical lay-

ers for TCP throughput adaptation was introduced in

[15]. The proposed approach uses adaptive coding and

modulation (ACM) schemes.

Mirza et al. propose a throughput estimation tool based

on support vector regression modeling [16]. It predicts

throughput based on multiple real-value input features.

However, to the best of our knowledge, to date, no attempt

to use on-line learning algorithms to predict network

conditions has been reported.

3 Proposed approach
In this section, we present the fixed-share experts algo-

rithm as a generic solution for on-line prediction. Later,

we describe its application to the problem of predicting

the RTT of a TCP connection.

3.1 The fixed-share experts algorithm

Our RTT prediction algorithm is based on the fixed-

share experts algorithm [2] which uses ‘on-line learning’

based on the predictions of a set of fixed experts denoted

by {x1, . . . , xN }. In on-line learning, the learning process

happens in trials. Figure 1 illustrates these trials and the

algorithm itself. Under the fixed-share experts algorithm,

at every trial t, the algorithm receives the predictions

xi∀i ∈ {1, . . . ,N} from a total of N experts and uses them

to output a master prediction ŷt . After trial t is completed,

the ‘ground truth’ value yt becomes known and is used to

compute the estimation error based on a loss function, L.

The estimation error computed at trial t for every expert

i is thus given by Li,t(xi, yt) which is used to update a set

of weights. The next prediction for trial t + 1 is calcu-

lated using this new set of weights denoted by Wt+1,i =

{wt+1,1, . . . ,wt+1,i, . . . ,wt+1,N }.

The weight wt,i should be interpreted as a measure-

ment of the confidence in the quality of the ith expert’s

prediction at the start of trial t. In the initialization of

the algorithm, we make w1,i = 1
N ,∀i ∈ {1, . . . ,N}. The

algorithm updates the experts’ weights at every trial after

computing the loss at trial t by multiplying the weight of

the ith expert by e−ηLi,t(xi,yt). The learning rate η is used

to determine how fast the updates will take effect, dictat-

ing how rapidly the weights of misleading experts will be

reduced.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 4 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

Figure 1 Graphical representation of the general fixed-share experts algorithm for RTT estimation.

After updating the weights, the algorithm also ‘shares’

some of the weight of each expert among other experts.

Thus, an expert who is performing poorly and had its

weight severely compromised can quickly regain influ-

ence in the master prediction once it starts predicting

well again. The amount of sharing can be changed by

using the α parameter, called the sharing rate. This allows

the algorithm to adapt to ‘bursty’ behavior. Indeed, in

Section 5, we use, among others, bursty traffic scenarios

to evaluate the performance of our algorithm.

Algorithm 1 summarizes the steps involved in our fixed-

share experts algorithm. The first line in the algorithm

summarizes the algorithm’s parameters, namely: (1) the

learning rate η, which we define as a positive real num-

ber, and (2) the sharing rate α, a real number between

zero and one that dictates the percentage of the weights

shared at every trial. In our approach, expert weights are

initialized uniformly, which is what is described in the

‘Initialization’ step of Algorithm 1. The basic four steps

of our fixed-share experts algorithm are also summarized

in Algorithm 1 (and in Figure 1). In step 1, the predic-

tion defined as a the weighted average over the individual

predictions xi of every ith expert is computed. The loss

function is computed in step 2 and is used in step 3 to

penalize and decrease the weights of the experts that are

not performing well, and in step 4, experts share their

weight based on the sharing rate α.

In [2], the basic version of the experts framework is

presented along with bounds for different loss functions.

The algorithm is also analyzed for different prediction

functions, including the weighted averaging we use. The

implementation described in this paper, with the interme-

diate pool variable, costs O(1) time per expert per trial.

3.2 Applying experts to TCP’s RTT prediction

To apply the proposed algorithm to TCP’s RTT-prediction

problem, the experts predictions xi shown in Algorithm 1

serve as predictions for the next RTT measured. yt is

the RTT value at the present trial, equivalent to the Sam-

pleRTT in the original TCP RTT estimator. ŷt is the output

of the algorithm, or in other words, the RTT prediction

itself, equivalent to the EstimatedRTT in the original TCP RTT

predictor, mentioned in Section 2.

Algorithm 1 Fixed-share experts algorithm

Parameters: η > 0 and 0 ≤ α ≤ 1

Initialization: w1,1 = . . . = w1,N = 1
N

1) Prediction:

ŷt =
∑N

i=1 wt,i·xi
∑N

i=1 wt,i

2) Computing the loss: ∀i : 1, . . . ,N

Li,t(xi, yt) =

{

(xi − yt)
2 , xi ≥ yt

2 · yt , xi < yt
3) Exponential updates: ∀i : 1, . . . ,N

w′
t,i = wt,i · e

−ηLi,t(yt ,xi)

4) Sharing weights: ∀i : 1, . . . ,N

pool =
∑N

i=1 α · w′
t,i

wt+1,i = (1 − α) · w′
t,i +

1
N · pool

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 5 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

We want the loss function Li,t(xi, yt) to reflect the real

cost of making wrong predictions. In our implementation

(see Algorithm 1), the loss function has different penalties

for overshooting and undershooting the RTT estimate as

they have different impact on the system’s behavior and

performance. An underestimate of the RTT will result in

an RTO computation that is less than the next measured

RTT, causing unnecessary timeouts and retransmissions.

We thus employ the following policies: if the measured

RTT yt is higher than the expert’s prediction xi, then it

means that this expert is contributing to a spurious time-

out and should be penalized more than other experts that

overshoot within a given threshold. Big over-shooters are

more severely penalized. The challenge here is identify-

ing the appropriate cost for miss-predicting the RTT. The

cost could be simply the difference between prediction

and measurement, or a factor thereof. Exploring other

loss functions for the TCP RTT estimation problem is the

subject of future work.
Setting the value xi of the experts is referred to as setting

the experts spacing. To space the experts is to deter-

mine the experts’ values and their distribution within the

prediction domain. When predicting RTTs, the experts

should be spaced between RTTmin and RTTmax, defined in

some TCP implementations (including the one in the net-

work simulator we used in our experimental evaluation)

to be 1 and 128 ticks, respectively. Based on observations

of several RTT datasets, we concluded that the majority of

the RTTmeasurements are concentrated in the lower part

of this interval. For that reason, we found that spacing the

experts exponentially in that interval, instead of uniformly

(or linearly), leads to better predictions. The exponential

function used in our implementation of the Fixed-Share

Experts approach is xi = RTTmin + RTTmax · 2
(i−N)

4 . The 1
4

multiplicative factor in the exponent of the spacing func-

tion was experimentally chosen to smooth out its growth.

This increases the difference between the experts and gen-

erates diversity among them, which increases predictions’

granularity and accuracy.
Another consideration is that the algorithm, as stated in

Algorithm 1, will continually reduce the experts’ weights

towards zero. Thus, in order to avoid underflow issues in

our implementation, we periodically rescale the weights.

Different versions of the multiplicative weight algorithmic

family, including a mixing past approach that also mixes

weights from past trials are discussed in [17]. However,

the mixing past approach incurs higher space and time

costs and thus was not considered in our work. Another

sharing scheme known as variable-sharing was also con-

sidered in preliminary experiments, where the amount of

shared weights to each expert was dependent of their indi-

vidual losses. However, the additional complexity and cost

of this scheme outweighed its benefits in terms of RTT

estimation accuracy.

4 Experimental methodology
We conduct simulations using the QualNet [18] network

simulation platform. In all experiments, unless stated oth-

erwise, the simulation area is 1,500 m × 1,000 m and the

simulated time is 25 min. The routing protocol used was

AODV [19], and the medium access and physical layers

defined at the IEEE 802.11.b [20] standard was used. The

transmission radius was set to 100 m for all the nodes,

which are initially placed in the simulation area uniformly

distributed. On mobile scenarios, nodes move according

to the random way point (RWP) mobility regime with 0 s

of pause time and speed ranging between [1, 50] m/s. All

nodes run file transmission protocol (FTP) applications

to generate the TCP flows; TCP buffer size is the default

TCP buffer size set to 16,384 bytes, and packet size is fixed

at 512 bytes. For the reader convenience, we summarize

the simulation parameters for all simulation scenarios in

Table 1. The value na is attributed to a given parameter in

this table when it is not applicable. These and other simu-

lation parameters, such as traffic patterns and number of

flows will be discussed further in the following sections in

a per-scenario basis.

In Section 5, we present results for a total of five simu-

lation scenarios, which are summarized, along with their

parameters, in Table 1. The goal of having a variety

of scenarios is to subject the proposed RTT estimation

approach to a wide range of network conditions. Scenar-

ios I and II represent ad hoc mobile networks composed

of 20 and 10 nodes, respectively. These two scenarios

differ from each other only in terms of node density. Sce-

nario III is a static wireless network composed of 20 nodes

uniformly distributed over the simulated network area.

Scenario IV is also a 20-nodemobile network, but the traf-

fic pattern is different from scenarios I and II. In scenario

IV, we also vary the mobility of the network by varying

the nodes’ average speed. Finally, scenario V is a wired

network composed of eight nodes, four on each side of a

bottleneck link.

It is important to highlight that the mobile scenarios

employed in our evaluation were used to evaluate the pro-

posed RTT estimation technique under conditions that

cause high variability and randomness in the network

and thus in the RTT values. Following the RWP mobil-

ity regime, nodes move randomly causing data paths to

break and new ones to be created which then results in

high variability of the RTT. Our goal was then to ensure

that our RTT estimator is able to adjust to high variability

conditions and yield accurate RTT estimates.

We present our results in Section 5 using a number of

performance metrics defined as follows:

• Mean error on RTT prediction : absolute difference
between the RTT prediction ŷt and the measured

RTT yt at trial t, averaged over all trials, defined as:

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 6 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

Table 1 Simulation parameters for each simulation scenario

Parameter Scenario I Scenario II Scenario III Scenario IV Scenario V

Routing AODV AODV AODV AODV fixed

Mobility RWP RWP none RWP na

MAC/PHY 802.11.b 802.11.b 802.11.b 802.11.b 802.3

Speed [min,max](m/s) [1,50] [1,50] 0 [1,10], [20,30], [40,50] na

Pause (sec) 0 0 0 0 na

Area (meters × meters) 1,500 × 1,000 1,500 × 1,000 1,500 × 1,000 1,500 × 1,000 na

Duration (min) 25 25 25 90 90

Number of nodes 20 10 20 20 8

1
T

∑T
t=1 |ŷt − yt|. In the simulations, RTT is

measured in ‘ticks’ of 500 ms. This value is equal to 4

ms in the real live experiments described in Section 6.

The mean RTT prediction error metric is thus, also

given in ‘ticks’.
• Average congestion window size (cwnd) : the size in

bytes of the congestion window at the TCP sender,

averaged over all prediction trials, defined as:
1
T

∑T
t=1 cwndt , where cwndt is the congestion

window size measured at trial t.
• Delivery ratio : ratio between total data packets

received by the destination and data packets sent at

the source, computed for every flow and averaged

over all flows.
• Percentage of retransmitted packets : ratio between

retransmitted data packets and total data packets sent

at every flow, averaged over all flows.
• Goodput : total number of useful (data) packets

received at the application layer divided by the total

duration of the flow and averaged for every flow,

giving a ratio of packets per second.

Following, we discuss the impact of the parameters in

the accuracy of the proposed RTT prediction algorithm

and justify the choice of values set to these parameters in

our simulation evaluations.

4.1 Impact of experts framework parameters (N , η,α)

We experimented with several combinations of the fixed-

share algorithm parameters. The number N of experts

affects the granularity over the range of values the RTT

can assume. In our experiments, N > 100 had no major

impact on the prediction accuracy.

The learning rate η is responsible for how fast the

experts are penalized for a given loss. We want to avoid

values of η that are too low since it increases the algo-

rithm’s convergence time; conversely, if η is too high, it

forces the expert’s weights toward zero too quickly. If this

is the case, then as weight rescaling kicks in, the algorithm

assigns similar weights to all experts, making the algo-

rithm’s master prediction fluctuate undesirably around

the mean value of the experts’ guesses. We chose a learn-

ing rate in the interval 1.7 < η < 2.5 as it provides good

prediction results for all the scenarios tested.

When sharing is not enabled, i.e., α = 0, the outcome

of the algorithm is given only by decreasing exponen-

tial updates, making it harder for the algorithm to follow

abrupt changes in the RTT measurements: experts that

experience prolonged poor performance lack influence

because their weights have become too depreciated. In

this case, it would take more trials so that these experts

start gaining greater importance in the master prediction.

Enabling full sharing (α = 1), similar weights are assigned

to every expert, and the master prediction fluctuates close

to a mean value among the experts guesses.

We present in more detail the simulation scenarios in

the next section, highlighting the goals for every evalua-

tion and discussing obtained results. Following our obser-

vations, in all results reported hereafter concerning our

proposed approach, we use N = 100, η = 2 and α = 0.08.

5 Simulation results
In this section, we discuss simulation results obtained by

applying the fixed-share experts framework to estimate

TCP’s RTT and help set TCP’s RTO timer. We com-

pare our results against TCP’s original RTT and RTO

computation algorithm by Jacobson [3]. We evaluate the

RTT prediction quality and how it impacts the previously

defined performance metrics. We consider different sce-

narios by varying network density, mobility, and traffic

load. Both wireless as well as wired networks are used in

our evaluation.

In all graphs presented below, each data point is com-

puted as the average over 24 simulation runs with a

confidence level of 90%.

5.1 Scenario I - mobile scenario (20 nodes)

First, we considered a mobile ad hoc network (MANET)

composed of 20 nodes. The goal of this scenario is to

evaluate the performance of the RTT prediction algo-

rithms when routes in the network change widely. In

other words, we want to show the algorithm’s response

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 7 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

to RTT fluctuations. For that reason, we also varied the

number of TCP flows during the simulations to change

network load and congestion levels. We evaluated scenar-

ios with number of concurrent flows equal to 3, 7, 17, 34,

68, 100, and 130. Although flows were evenly distributed

among nodes, they started at random times during the

experiments and their sizes varied from 1,000 to 100,000

packets.

Figure 2 shows the mean differences between the pre-

dictions of the experts framework and Jacobson’s algo-

rithms when compared to the real RTT measurements.

We observe that the experts framework improves RTT

estimation accuracy considerably as the load in the net-

work increases. This leads to more accurate setting of the

RTO timer, which, in turn, reduces the relative number of

packets retransmitted significantly, especially under heavy

traffic conditions. As shown in Figure 3, retransmissions

are reduced substantially (by as much as over 30%) with-

out decreasing the number of packets sent. Note also the

improvement in the goodput, i.e., total number of packets

received (Figure 4).

Our use of the experts framework not only improved the

RTT predictions, thereby avoiding unnecessary retrans-

missions, but also avoided unnecessary triggering of

congestion-control mechanisms. Consequently, TCP’s

congestion window (cwnd) is higher on average; this

behavior is shown in Figure 5, which plots the average

cwnd for the experts framework and Jacobson’s algo-

rithms over the duration of the whole simulation for

different congestion scenarios, i.e., different number of

TCP flows. We can observe how the gap between the two

approaches increases with increasing congestion condi-

tions. This indicates that the experts framework is able

to better shield TCP’s congestion control from wide RTT

fluctuations.

Figure 6 plots the average cwnd over the whole simula-

tion time for 3, 34, and 130 flows. Each point in this plot

is the mean cwnd over 24 simulation runs considering all

nodes averaged over a 20-s time window. These plots cor-

roborate the results shown in Figure 5, i.e., that the experts

framework yields, on average, higher cwnd. We observe

from Figures 7 and 4 that the proposed experts framework

is also able to improve both the delivery ratio and goodput,

which we define here as the absolute number of packets

successfully delivered at the destination over the course of

the simulation.

5.2 Scenario II - mobile scenario (10 nodes)

In this scenario, we try to subject the network to vary-

ing network conditions in order to produce higher RTT

variations. We accomplish that by running the same sce-

nario, but now decreasing the density of the network,

which includes only ten mobile nodes. The objective is

to cause more frequent route changes which would result

in more frequent and wider RTT variations. For exam-

ple, in scenario I, the mean RTT variance for 34 and 100

flows are 0.4763 and 0.5501 ticks, respectively. For sce-

nario II, with only ten nodes, the mean RTT variance for

the same congestion scenarios are 0.7878 and 0.9315 ticks,

respectively. Except for the reduced number of nodes, all

the other parameters for this scenario are the same as

before.

Figure 2Mean absolute difference between predicted andmeasured RTT on a MANET with 20 nodes.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 8 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

Figure 3 Number of retransmitted packets in relation to the total number of packets transmitted on a 20-node MANET.

In Figure 8, we can compare the accuracy of the predic-

tions for both algorithms. Similar to the previous scenario,

as congestion increases with the number of flows, so does

the variability of the RTT measurements, also increasing

the mean error in the prediction. For the same num-

ber of flows, we observe how the mean error increases

from scenario I (Figure 2) to scenario II (Figure 8) due

to the increase in the variation of the RTT. Network

performance metrics, such as number of retransmitted

packets (Figure 9) and delivery ratio (Figure 10) exhibit

trends similar to scenario I. Similar behavior is also

observed for cwnd (Figure 11), delivery ratio (Figure 10),

ratio of packets retransmitted (Figure 9), and goodput in

(Figure 12). As in scenario I, we also observe that, as traf-

fic load increases, the difference between the algorithms

also increases for all the metrics.

Figure 4 Total number of packets delivered over the duration of the simulation for a 20-node MANET.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 9 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

Figure 5 TCP’s cwnd for a 20-node MANET for different traffic loads.

5.3 Scenario III - stationary network

Our goal in this experiment is to isolate the effect of traffic

load on the performance of the proposed RTT estima-

tor. Therefore, we factor out node mobility and consider

a wireless ad hoc network where all nodes are stationary.

We varied traffic load the same way we did for scenario I.

Figure 13 shows the accuracy of the prediction algo-

rithms. Like in previous scenarios, increasing traffic load

degrades the performance of the algorithms, although this

degradation ismuchmore pronounced for Jacobson’s RTT

predictor. This figure shows that the error of the original

TCP RTT predictor can get up to around 130% larger than

when using our proposed machine learning approach. For

example, in Figure 13, we report an average error of 0.63

ticks for the experts framework, against 1.54 ticks for the

original TCP estimator.

Moreover, when comparing the accuracy results for

the stationary scenario with the mobile scenario with 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

Time (minutes)

C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 (
b
y
te

s
)

Average Network Congestion Window Over Time (flows:130)

Jacobson

Experts

3 flows

34 flows

130 flows

Figure 6 TCP’s cwnd over time for 3, 34, and 130 concurrent flows in a 20-node MANET.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 10 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

3 7 17 34 68 100 130
0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

Number of TCP Flows

D
e
liv

e
ry

 R
a
ti
o

Delivary Ratio

Experts Fixed Sharing

Jacobson

Figure 7 Packet delivery ratio in a 20-node MANET.

nodes (Figure 2), it is possible to notice that the stationary

scenario exhibits higher average estimation error for both

algorithms. Figure 14 shows the average queue length in

bytes for both mobile and stationary scenarios, for differ-

ent number of flows. We observe that the average queue

length for the mobile scenario is much lower. This can

be explained by the fact that, in the static scenario, since

routes between source and destination are less volatile,

queues build up as the traffic load increases and result

in larger RTT fluctuations. This is especially the case of

nodes that are carrying traffic that belong to multiple flows.

In the stationary scenario, the number of retransmit-

ted packets is lower when using the proposed experts

framework approach when compared against the number

of retransmissions resulting from Jacobson’s algorithm, as

we can see in Figure 15. When compared to the mobile

3 7 17 34 68 100 130
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of TCP Flows

M
e
a
n
 D

if
fe

re
n
c
e
 (

ti
c
k
s
 o

f
5
0
0
m

s
)

Mean Error on RTT Prediction.

Jacobson

Experts FW

Figure 8Mean absolute error between the predictions and the measured RTT for a 10-node MANET.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 11 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

3 7 17 34 68 100 130
0.5

1

1.5

2

2.5

3

3.5

Number of TCP Flows

P
e

rc
e

n
ta

g
e

 o
f

R
e

tr
a

n
s
m

it
te

d
 P

a
c
k
e

ts
 (

#
R

e
x
m

it
/#

D
a

ta
 P

k
ts

 S
e

n
t)

Percentage of Retransmitted Packets

Experts Fixed Sharing

Jacobson

Figure 9 Number of retransmitted packets in relation to the total number of packets transmitted for a 10-node MANET.

scenario, the number of retransmissions is lower for both

algorithms since, in the stationary scenario, there are

fewer losses due to route failure. Figure 16 shows the

average cwnd size for different congestion levels. Once

again, it is possible to see improvement in this metric

when applying our proposed approach. However, with the

increase in the RTT fluctuations in this scenario, as men-

tioned before, the occurrence of spurious timeouts may

also occur. Thus, we experienced in this scenario a higher

variability of the cwnd as seen by the larger confidence

interval exhibited when comparing it to the cwnd results

in Scenario I (Figure 5).

5.4 Scenario IV - bursty traffic

In this scenario, we subject the network to bursty traffic

loads as a way to evaluate the performance of the proposed

3 7 17 34 68 100 130
0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

Number of TCP Flows

D
e
liv

e
ry

 R
a
ti
o

Delivary Ratio

Experts Fixed Sharing

Jacobson

Figure 10 Packet delivery ratio for a 10-node MANET.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 12 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

3 7 17 34 68 100 130
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

4

Number of TCP Flows

c
w

n
d

 (
b

y
te

s
)

Congestions Window Size

Experts Fixed Sharing

Jacobson

Figure 11 TCP cwnd for a 10-node MANET with different traffic loads.

RTT estimation strategy as traffic load fluctuates. The

results shown here reflect the simulation of a network

with 20 mobile nodes in which every node starts a TCP

flow of 1,000 packets every 200 s; this happens through-

out the 90 min of simulation. Thus, nodes would transmit

for a while and then remain silent until the next cycle of

200 s. We also vary the speed of the nodes between (1, 10),

(20, 30), and (40, 50) m/s, which allows average speeds of

5, 25, and 45 m/s, respectively.

In relation to previous scenarios, the experts framework

yields higher performance improvement when compared

to Jacobson’s algorithm due to the fact that it is able to

adapt to RTT fluctuations faster. This is attributed to the

weight sharing feature of the experts. This performance

3 7 17 34 68 100 130
50

100

150

200

250

300

Number of TCP Flows

P
k
ts

 R
e
c
e
iv

e
d
 p

e
r

S
e
c
o
n
d

Packets Successfully Received at the Destination per Second

Experts Fixed Sharing

Jacobson

Figure 12 Total number of packets delivered over the duration of the simulation for a 10-node MANET.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 13 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

Figure 13Mean error between the predictions and the measured RTT for the stationary network.

improvement becomes evident when looking at the plot

of the mean absolute error in Figure 17. In this figure,

the difference between the algorithms prediction errors

can vary from 100% for 25 m/s average speed, up to 200%

for 5 m/s average speed. We can also observe that the

impact of different levels of mobility are also different for

both algorithms. While Jacobson’s RTT predictor appears

to present strong variation with the mobility level, the

proposed experts algorithm presents little variation when

changing the speed of the nodes. This behavior can be

also explained by the fact that the experts framework is

able to adapt quickly to abrupt RTT variations because

of the sharing mechanism. The moving average applied

in Jacobson’s algorithm, on the other hand, is not able to

respond as fast.

Since the measured RTT fluctuations for this scenario

are much greater, the mean prediction error in this case

is larger than in the previous scenarios. We also report

Figure 14 Average queue length in bytes for both mobile and stationary scenarios.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 14 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

Figure 15 The number of retransmitted packets in relation to the total number of packets transmitted for both algorithms for the

stationary scenario.

for this scenario a much lower number of retransmit-

ted packets (Figure 18). It is also possible to observe an

improvement in the other performance parameters, i.e.,

TCP’s cwnd, yielding higher goodput (Figure 19) when

using our experts framework approach. Finally, Figure 20

shows the improvement in delivery ratio for this scenario.

It is also worth noting the interesting behavior present

in the plots for all the reported network performance met-

rics, where for lower speeds, these metrics reflect better

network performance (i.e., lower number of retransmitted

packets, higher goodput and higher delivery ratio), since

the routing paths do not change as frequently. This incur

3 7 17 34 68 100 130
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

4

Number of TCP Flows

c
w

n
d

 (
b

y
te

s
)

Congestions Window Size

Experts Fixed Sharing

Jacobson

Figure 16 TCP’s cwnd over different congestion levels for the stationary scenario.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 15 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

5 25 45
0.5

1

1.5

2

2.5

3

Average speed (m/s)

M
e
a
n
 D

if
fe

re
n
c
e
 (

ti
c
k
s
 o

f
5
0
0
m

s
)

Mean Error on RTT Prediction.

Jacobson

Experts FW

Figure 17Mean absolute error between predicted andmeasured RTT for different node speeds in bursty traffic scenario.

in fewer losses and lower routing overhead. For the aver-

age speed of 25 m/s, the situation changes and the metrics

reflect the worst performance. However, when further

increasing the average speed to 45 m/s, the network met-

rics start to improve again. This behavior is consistent

with the results presented in [21], which shows that, when

topology changes happen at packet delivery time scales,

network capacity can improve when nodes are mobile

rather than stationary.

5.5 Scenario V - wired network

Here, we simulate an eight-node wired network whose

topology can be seen in Figure 21. In this scenario, we

vary the traffic load by using 30, 70, and 100 concurrent

5 25 45
3

3.5

4

4.5

5

5.5

6

P
e

rc
e

n
ta

g
e

 o
f

R
e

tr
a

n
s
m

it
te

d
 P

a
c
k
e

ts
 (

#
R

e
x
m

it
/#

D
a

ta
 P

k
ts

 S
e

n
t)

Average speed (m/s)

Percentage of Retransmitted Packets

Experts Fixed Sharing

Jacobson

Figure 18 Percentage of retransmitted packets for different node mean speeds in the bursty traffic scenario.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 16 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

5 25 45
1.1

1.15

1.2

1.25

1.3

1.35
x 10

6

P
k
ts

 R
e

c
e

iv
e

d
 p

e
r

S
e

c
o

n
d

Average speed (m/s)

Packets Successfully Received at the Destination per Second

Experts
Jacobson

Figure 19 Goodput for different node mean speeds in the bursty traffic scenario.

flows. Flows were evenly distributed among nodes but

start at random times throughout the 90-min duration of

the simulation. The size of a flow is uniformly distributed

between 1,000 and 10,0000 packets.

As shown in Figure 22, the mean prediction error for

Jacobson’s algorithm is almost four times higher than

when using the experts framework. The benefits of the

more accurate RTT estimates yielded by our approach is

illustrated in Figures 23,24,25 which show lower number

of retransmitted packets, higher delivery ratio, and higher

goodput as the number of TCP flows increases.

6 Linux implementation and experiments
In this section, we present our implementation of the

fixed-share experts algorithm for the Linux kernel and

report on the experiments we conducted and their results.

5 25 45
0.95

0.955

0.96

0.965

0.97

0.975

0.98

D
e
liv

e
ry

 R
a
ti
o

Average speed (m/s)

Delivary Ratio

Experts Fixed Sharing

Jacobson

Figure 20 Packet delivery ratio for different node mean speeds in the bursty traffic scenario.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 17 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

1

2

3

4 5

6

7

8

Figure 21 Simulated network topology for the wired scenario.

6.1 Fixed-point arithmetic

The simulation results reported in Section 5 refer to the

implementation of the fixed-share experts algorithm (as

described in Section 3) as implemented on the Qual-

Net network simulator. This implementation uses real

numbers. Thus, a straightforward Linux implementation

would use floating point arithmetic [22] along with float-

ing point functions of the gcc compiler’s libc library [23].

Unfortunately, while floating point numbers support both

a wide range of values and high precision, the Linux oper-

ating system lacks support for floating point manipulation

in the kerneld.

An alternative is to use fixed point arithmetic in which

the location of the radix point within a string of digits is

predetermined [24]. In our implementation, we define a

fixed point arithmetic type with a 16-bit integral part and

a 16-bit fractional part as shown below.

s b31 · · · b16 . b15 · · · b0

In our Linux implementation we used a sign magnitude

representation in which a 33rd bit records the sign (an

alternate implementation of the data type would reduce

the integer part to 15 bits so that the resulting type would

fit entirely within a single 32-bit processor register.)

Our fixed point numeric type has the following char-

acteristics: range = −65535.99998to+65535.99998 and

precision = 0.000015. We consider these characteristics

adequate for the range of numeric values expected.

6.2 Linux implementation

We implemented both the fixed share experts algo-

rithm and the Eifel algorithm [4] in the Linux

kernel version 2.6.28.3. We modified the function

tcp_rtt_estimator() to return the output of the

RTT as evaluated by either of the RTT prediction algo-

rithms. Our implementation of the Eifel algorithm, to

the best of our knowledge, is faithful to the algorithm

described in [4] for predicting the RTT and setting the

RTO.

Our Linux implementation of the fixed share experts

algorithm differs from ourQualNet implementation of the

algorithm in two areas. First, the implementation scales

RTTmeasurements. Ameasured RTT of 1 tick in the sim-

ulator means 500 ms, while a measured RTT of 1 tick in

the Linux implementation means 4 ms. Consequently, our

Linux implementation scales RTT measurements from

the operating system by 1
125 before passing them to the

fixed share experts algorithm, and it scales RTT predic-

tions from the experts algorithm by 125 before returning

30 70 100
1

2

3

4

5

6

7

Number of TCP Flows

M
e

a
n

 D
if
fe

re
n

c
e

 (
ti
c
k
s
 o

f
5

0
0

m
s
)

Mean Error on RTT Prediction.

Jacobson

Experts FW

Figure 22Mean absolute error between the predictions and the measured RTT for the wired scenario.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 18 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

30 70 100
3

4

5

6

7

8

9

10

11

12

Number of TCP Flows

P
e

rc
e

n
ta

g
e

 o
f

R
e

tr
a

n
s
m

it
te

d
 P

a
c
k
e

ts
 (

#
R

e
x
m

it
/#

D
a

ta
 P

k
ts

 S
e

n
t)

Experts Fixed Sharing

Jacobson

Figure 23 Number of retransmitted packets in relation to the total number of packets transmitted for the wired scenario.

them to the operating system. Such scaling prevents the

implemented algorithm from misinterpreting the greater

precision of the Linux RTT measurements as larger pre-

diction errors.

The second difference in the Linux implementation of

algorithm is inspired by the algorithm’s response to large

and abrupt reductions in the measured RTTs. Large RTT

reductions cause the weights of formerly correct experts

to experience greater losses in extreme cases immedi-

ately underflowing to 0. In these cases, if the weights of

the newly correct experts already have decayed to zero,

then all experts’ weights will be zero simultaneously, and

the machine learning algorithm will be unable to make

a prediction. Normally, the fixed-sharing feature of the

experts algorithm helps increase the weights of newly

correct experts, but sharing cannot compensate for this

30 70 100
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Number of TCP Flows

D
e

liv
e

ry
 R

a
ti
o

Experts Fixed Sharing

Jacobson

Figure 24 Packet delivery ratio for the wired scenario.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 19 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

30 70 100
6.5

6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9
x 10

4

Number of TCP Flows

P
k
ts

 R
e

c
e

iv
e

d
 p

e
r

S
e

c
o

n
d

Experts Fixed Sharing

Jacobson

Figure 25 Total number of packets delivered for the wired scenario.

situation since sharing a total weight of zero among the

experts has no effect on the experts’ individual weights. To

compensate for this occasional situation, we modified the

algorithm in the Linux implementation to detect the case

and to reinitialize the experts’ weights with values from

a uniform distribution whose mean matches the most

recently measured RTT. This change to the algorithm

does not affect the simulation results because the sim-

ulated RTT changes were sufficient to cause all experts’

weights to go to zero.

6.3 Experimental results

We acquired data from live file transfer runs using our

modified TCP kernel modules that implement the Eifel

and the experts algorithms. Data collection happened over

30 file transfers of a 16-MB file. To help filter out the

effects of gradual network changes, we interleaved the

transfers controlled by our experts approach, the Eifel

retransmission timer, and Jacobson’s algorithm. In total,

there were 10 runs of each algorithm for each of the three

conceived scenarios.

The live experiments used a different set of scenarios

than the simulations. In Scenario 1, the source of the

file transfer was a Linux machine containing the mod-

ified modules for the experts and Eifel algorithms and

the original Kernel code and TCP timer. This machine

was connected to the wired campus network at the Uni-

versity of California, Santa Cruz. The destination was

another Linux machine connected to the Internet, physi-

cally located in the state of Utah in the USA. Scenario 2

was similar to Scenario 1, except that the source was now

connected wirelessly to a 802.11 access point, which was

connected to the Internet through the UCSC campus net-

work. Scenario 3 was a full wireless scenario, where both

source and destination were connected to the same 802.11

access point. All the measurements were collected at the

source of the file transfer.

Figure 26 shows around 200 prediction trials of one of

the file transfers. It is possible to notice how much faster

the machine learning algorithm can respond to sudden

changes in the RTT value and how much closer it can

follow the real measurements.

Tables 2, 3, 4 summarize results from live experiments

for the three scenarios studied. These tables shows an

improvement on the RTT prediction from 40% in Sce-

nario 1 up to 51% in Scenario 3 when comparing the

accuracy between the experts algorithm and the stan-

dard TCP predictor. This difference is even higher when

comparing to Eifel. The other performance metrics -

average number of retransmissions and cwnd - also

improved considerably when applying our machine learn-

ing approach. On the other hand, Eifel has the advan-

tage of not requiring any parameters to be set since

gains are computed ‘on-the-fly’. In the case of Jacob-

son’s algorithm, even though a couple of parameters have

to be set in advance, it is a much simpler and easier

to implement algorithm. However, trading-off complexity

to achieve significantly higher performance is consistent

with the steady increase of processing and storage capabil-

ities available in computing and communication devices.

Thus, given the superior performance illustrated by our

results, we can conclude that our approach yields a good

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 20 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

Figure 26 RTTmeasurements on the Linux kernel and predictions made by Jacobson’s and the proposed experts algorithms.

trade-off between higher complexity and performance

improvement.

6.3.1 RTO computation

In the preliminary experiments, we notice a considerable

improvement on the RTT predictions as expected and as

seen previously in the simulated results. However, curi-

ously, we experienced a higher number of retransmissions

and a lower cwnd. The reason for that was the fact that,

when computing the RTTVAR in Equation 2, the difference

between the estimation and the RTT sample (|SampleRTT −

EstimatedRTT|) is used. With a better predictor, this differ-

ence is much smaller on the average, which makes the

timer much more aggressive. During the simulations, it

was not a problem because the RTT values fluctuate over

a range that was 125 times smaller, as mentioned in the

previous section. In order to fix this problem, we made a

simple change in the way the RTTVAR is computed. Before,

Table 2 Prediction error, cwnd, and number of

retransmissions averaged over 10 runs of the same

experiment

Scenario1

Metric Eifel Jacobson Experts

Error 11.21(1.02) 8.19(0.97) 5.10(0.61)

cwnd 61.55(10.42) 69.82(6.32) 74.87(9.73)

rexmits 26.40(13.83) 31.12(17.72) 13.02(8.24)

Prediction error (in ticks), cwnd (in packets), and number of retransmissions

averaged over 10 runs of the same experiment, computed for Scenario 1. Values

between parenthesis depict the standard deviation σ over the 10 runs. Italicized

values indicate the smalest error, largest cwnd, and lowest number of

retrasmission.

when using Jacobson’s algorithm, it made sense to use the

difference between sample and estimation since the esti-

mation was a smoothed tracking of the RTT sample, and

the RTTVAR would indicate how much variation around that

smoothed value the RTT measurements experience. Now

with the new predictor tracking the RTT measurements

much faster, we used the difference between the current

and last RTT sample to compute the RTTVAR, as indicated

in Equation 4.

RTTVAR=(1−β)·RTTVAR+β·|SampleRTTt−SampleRTTt-1|

(4)

7 Conclusions
In the present work, we proposed a novel approach to

end-to-end RTT estimation using a machine learning

technique known as the fixed-share experts framework.

Table 3 Prediction error, cwnd, and number of

retransmissions averaged over 10 runs of the same

experiment for Scenario 2

Scenario2

Metric Eifel Jacobson Experts

Error 114.52(9.15) 74.11(6.23) 67.64(4.64)

cwnd 55.38(8.34) 66.71(5.35) 74.89(7.03)

rexmits 314.20(36.25) 367.70(42.10) 250.80(20.07)

Prediction error (in ticks), cwnd (in packets), and number of retransmissions

averaged over 10 runs of the same experiment, computed for Scenario 2. Values

between parenthesis depict the standard deviation σ over the 10 runs. Italicized

values indicate the smalest error, largest cwnd, and lowest number of

retrasmission.

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 21 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

Table 4 Prediction error, cwnd, and number of

retransmissions averaged over 10 runs of the same

experiment for Scenario 3

Scenario3

Metric Eifel Jacobson Experts

Error 298.24(21.41) 199.23(12.32) 131.65(7.58)

cwnd 18.91(6.68) 31.08(7.38) 38.11(5.91)

rexmits 204.62(32.43) 363.21(39.86) 159.61(24.18)

Prediction error (in ticks), cwnd (in packets), and number of retransmissions

averaged over 10 runs of the same experiment, computed for Scenario 3. Values

between parenthesis depict the standard deviation σ over the 10 runs. Italicized

values indicate the smalest error, largest cwnd and lowest number of

retrasmission.

We employ our approach as an alternative to TCP’s RTT

estimator and show that it yields higher accuracy in

predicting the RTT than the standard algorithm used

in most TCP implementations. The proposed machine

learning algorithm is able to adapt very quickly to changes

in the RTT. Our simulation results show a consider-

able reduction in the number of retransmitted packets,

while increasing goodput, particularly in more heavily

congested scenarios. We corroborate our results by run-

ning ‘live’ experiments on a Linux implementation of our

algorithm. These experiments confirm the higher accu-

racy of the machine learning approach with more than

40% improvement, not only over the standard TCP pre-

dictor but also when comparing to another well know

solution, the Eifel retransmission timer [4]. Nevertheless,

work is still needed in the case of this particular applica-

tion in order to learn how to take better advantage of the

improved estimations and change the way we set the RTO

timer.

Moreover, the task of determining the appropriate loss

function for RTT prediction in the case of setting retrans-

mission timers is not trivial. Further work to understand

the cost of making wrong decisions regarding the RTT

prediction problem, under the context of TCP, is needed.

Finally, we believe our work opens the possibility of apply-

ing on-line learning algorithms to predict other important

network variables.

Endnotes
aIn this paper, we use the terms experts framework,

experts FW, experts fixed sharing, fixed-share experts, or

simply the experts algorithm, interchangeably, referring

to the proposed machine learning algorithm.
bThese values were used in our simulations; however,

on real implementations, they can vary. That was the

case for the TCP implementation on the Linux

distribution used in our experiments, and we comment

on that in Section 6.
cThe solution proposed by Eifel for this problem (not

the algorithm itself) made it to recent TCP kernel

implementations and were used in our experiments

reported in Section 6.
dWithin the Linux kernel, one can surround in-line

floating point code with the Linux macros

kernel_fpu_begin and kernel_fpu_end, but the

code must avoid function calls and must avoid using any

routines of the libc library.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Financial support was granted by the CAPES Foundation Ministry of Education

of Brazil, Caixa Postal 250, Brasilia - DF 70040-020 Brazil. This work was also

partially supported by NSF grant CCF-091694 and a US Army-ARO MURI grant.

Author details
1Department of Computer Engineering, Baskin School of Engineering,

University of California, Santa Cruz, CA 95064, USA. 2Department of Computer

Science, Columbia University, New York, NY 10027, USA. 3Department of

Computer Science, Loyola University Maryland, Baltimore, MD 21210, USA.

Received: 5 June 2013 Accepted: 12 March 2014

Published: 26 March 2014

References

1. Akamai Technologies, Inc. http://www.akamai.com. Last accessed,

Dec. 1st 2013

2. M Herbster, MK Warmuth, Tracking the best expert. Mach. Learn.

32(2), 151–178 (1998)

3. V Jacobson, Congestion avoidance and control. SIGCOMM Comput.

Commun. Rev. 25, 157–187 (1995)

4. R Ludwig, K Sklower, The Eifel retransmission timer. SIGCOMM Comput.

Commun. Rev. 30(3), 17–27 (2000)

5. P Karn, C Partridge, Improving round-trip time estimates in reliable

transport protocols. ACM Trans. Comput. Syst. 9, 2–7 (2001)

6. M Allman, V Paxson, On estimating end-to-end network path properties,

in SIGCOMM ‘99: Proceedings of the Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication

(ACM New York, 1999), pp. 263–274

7. W Lou, C Huang, Adaptive timer-based TCP control algorithm for wireless

system, inWireless Networks, Communications andMobile Computing, IEEE

International Conference on, Volume 2 (Maui, HI, USA, 2005), pp. 935–939

8. L Ma, G Arce, K Barner, TCP retransmission timeout algorithm using

weighted medians. Signal Process. Lett. IEEE. 11(6), 569–572 (2004)

9. K Leung, T Klein, T Mooney, T Haner, Methods to improve TCP

throughput in wireless networks with high delay variability [3G network

example], in Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE

60th, Volume 4 (Los Angeles, CA, USA, 2004), pp. 3015–3019

10. DP Helmbold, DDE Long, B Sherrod, A dynamic disk spin-down technique

for mobile computing, inMobiCom ‘96: Proceedings of the 2nd Annual

International Conference onMobile Computing and Networking

(ACM New York, 1996), pp. 130–142

11. M Haeri, A Rad, TCP retransmission timer adjustment mechanism using

model-based RTT predictor, in Control Conference, 5th IEEE Asian, Volume 1

(Melbourne, Australia, 2004), pp. 686–693

12. D Ngwenya, G Hancke, Estimation of SRTT using techniques from the

practice of SPC and change detection algorithms, in AFRICON, 2004.

IEEE 7th AFRICON Conference in Africa, Volume 1 (Gaborone, Botswana,

2004), pp. 397–402

13. AF Atlasis, NH Loukas, AV Vasilakos, The use of learning algorithms in ATM

networks call admission control problem: a methodology. Comput. Netw.

34(3), 341–353 (2000)

14. A Vasilakos, M Saltouros, AF Atlassis, W Pedrycz, Optimizing QoS routing in

hierarchical ATM networks using computational intelligence techniques.

Syst. Man Cybernet. Part C: Appl. Rev. IEEE Trans. 33(3), 297–312 (2003)

15. M Anastasopoulos, D Petraki, R Kannan, A Vasilakos, TCP throughput

adaptation in WiMax networks using replicator dynamics. Syst. Man

Cybernet. Part B: Cybernet. IEEE Trans. 40(3), 647–655 (2010)

http://www.akamai.com

Nunes et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:47 Page 22 of 22

http://jwcn.eurasipjournals.com/content/2014/1/47

16. M Mirza, M Sommers, P Barford, X Zhu, A machine learning approach to

TCP throughput prediction. SIGMETRICS Perform. Eval. Rev.

35, 97–108 (2007)

17. O Bousquet, MK Warmuth, Tracking a small set of experts by mixing past

posteriors. J. Mach. Learn. Res. 3, 363–396 (2003)

18. QualNet. http://www.scalable-networks.com. 6100 Center Drive, Suite

1250, Los Angeles, CA 90045. Last accessed, Dec. 1st 2013

19. C Perkins, E Royer, Ad-hoc On-Demand Distance Vector Routing, in

Proceedings of the 2nd IEEEWorkshop onMobile Computing Systems and

Applications (New Orleans, LA, USA, 1997), pp. 90–100

20. IW Group,Wireless LANMedium Access Control (MAC) and Physical Layer

(PHY) Specification. IEEE Std. 802.11, 345 E. 47th St, New York, NY 10017.

(IEEE Computer Society, USA, 1997)

21. M Grossglauser, D Tse, Mobility increases the capacity of ad hoc wireless

networks. Netw. IEEE/ACM Trans. 10(4), 477–486 (2002)

22. IEEE Computer Society Standards Committee Working group of the

Microprocessor Standards Subcommittee, American National Standards

Institute, IEEE Standard for Binary Floating-point Arithmetic. (IEEE Computer

Society, ANSI/IEEE Std 754–1985., 345 E. 47th St, New York, NY, 10017,

USA, 1985)

23. The GNU C Library. http://www.gnu.org/software/libc/manual.

(51 Franklin Street, Fifth Floor, Boston, MA 02111, USA 2009). Last

accessed, Dec. 1st 2013

24. AR Omondi, Computer Arithmetic Systems: Algorithms, Architecture,

and Implementation. (Prentice Hall International (UK) Limited, 1994)

doi:10.1186/1687-1499-2014-47

Cite this article as: Nunes et al.: A machine learning framework for TCP
round-trip time estimation. EURASIP Journal onWireless Communications and
Networking 2014 2014:47.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.scalable-networks.com
http://www.gnu.org/software/libc/manual

	Abstract
	1 Introduction
	2 Related work
	2.1 TCP RTT estimation
	2.2 Selected machine learning applications

	3 Proposed approach
	3.1 The fixed-share experts algorithm
	3.2 Applying experts to TCP's RTT prediction

	4 Experimental methodology
	4.1 Impact of experts framework parameters (N, η, α)

	5 Simulation results
	5.1 Scenario I - mobile scenario (20 nodes)
	5.2 Scenario II - mobile scenario (10 nodes)
	5.3 Scenario III - stationary network
	5.4 Scenario IV - bursty traffic
	5.5 Scenario V - wired network

	6 Linux implementation and experiments
	6.1 Fixed-point arithmetic
	6.2 Linux implementation
	6.3 Experimental results
	6.3.1 RTO computation

	7 Conclusions
	Endnotes
	Competing interests
	Acknowledgements
	Author details
	References

