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ABSTRACT
Many school districts have developed successful interven-
tion programs to help students graduate high school on time.
However, identifying and prioritizing students who need those
interventions the most remains challenging. This paper de-
scribes a machine learning framework to identify such stu-
dents, describes features that are useful for this task, applies
several classification algorithms, and evaluates them using
metrics important to school administrators. To help test
this framework and make it practically useful, we partnered
with two U.S. school districts with a combined enrollment
of approximately of 200,000 students. We together designed
metrics to evaluate the framework’s performance and tools
such as interactive dashboards to help match at risk students
with appropriate supports. This paper focuses on students
at risk of not finishing high school on time, but our frame-
work lays a foundation for future work on other adverse
academic outcomes.

1. INTRODUCTION
One of the perennial challenges faced by school districts

is to improve student graduation rates. Though the mag-
nitude of this problem has reduced due to a steady rise in
high school graduation rates over the past few years, nearly
730,000 students in the United States (U.S.) do not finish
high school on time every year [24]. A myriad of reasons
ranging from economic problems, lack of motivation, and
unexpected life changes can delay students’ graduation or
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cause them to drop out [6, 10, 20]. Studies have shown
that not graduating high school on time impacts a student’s
future career prospects immensely [1, 15]. In addition, stu-
dents who do not graduate on time can strain school dis-
tricts’ resources. To address this issue, school districts have
been heavily investing in the construction and deployment
of intervention programs to better support at risk students
and their individual needs.

The success of these individualized intervention programs
depends on schools’ ability to accurately identify and pri-
oritize students who need help. Traditionally, schools re-
lied on feedback from instructors and used heuristic rules
based on metrics such as GPAs, absence rates, and tardi-
ness to identify at-risk students [7]. Though human judg-
ment and heuristics can often be accurate, they serve as
rules of thumb, are static, expensive to maintain, and often
error prone [21]. Further, the set of heuristics which might
help in identifying at-risk students for a particular cohort of
students within one school district might not generalize or
transfer to other cohorts and schools.

As alternatives to manually created rule-based systems,
recent research has indicated the potential value of machine
learning approaches such as Logistic Regression, Decision
Trees, and Random Forests [7, 22, 2]. Trained using tra-
ditional academic data, these machine learning approaches
can often identify at risk students earlier and more accu-
rately than prior rule-based approaches [2].

Nevertheless, the application of such methods to this par-
ticular context is still in its early stages, even for schools with
state-of-art technology and analytics teams. To build more
robust and comprehensive early warning systems, we part-
nered with two large U.S. school districts with a combined
enrollment of approximately of 200,000 students. Following
a number of discussions with the district officials who oversee
the implementation of early warning systems, we developed
an outline of their expectations:

• Using historical data: Schools have historical data
that describe current and past student performances,
and would like to use that to identify students at risk
in future cohorts.

• Ranking students using risk estimates: School



districts have limited resources for intervention pro-
grams, and their exact allocation can fluctuate over
time, directly affecting the number of students that
can be enrolled to such programs. For that reason,
school officials need the ability to pick the top k% stu-
dents who are at risk at any given point (where k is
a variable). This requirement calls for the use of al-
gorithms which can rank students according to their
probability of not graduating on time.

• Interpretability: It is important to understand the
student-level features and how they are being used by
each algorithm. In fact, school officials consistently
ranked interpretability as a very important factor for
any approach. Frequently, simple rule based systems
are preferred to intelligent algorithms mainly because
they can be easily understood and acted upon.

• Early predictions: Students who are at risk of not
graduating should be identified as early as possible so
that appropriate help can reach them in a timely man-
ner. This requirement favors algorithms which can
identify at-risk students early on.

• Identifying risk before off-track: It is ideal to iden-
tify students who are at risk even before they start fail-
ing or repeating grades. School officials acknowledge
that it considerably more difficult to help a student
who is already off-track.

• Visualizing risk scores for each student: All of
the above information needs to presented in a way
that is clear and understandable by professional ed-
ucators who are not familiar with machine learning.
We are currently developing web-based software that
can display model predictions on each student, helping
teachers and administrators gauge how much support
each student needs.

Our interactions with educators revealed that there were
several deeper and interesting challenges in this setting, and
helped us quickly understand that evaluating algorithms
simply using AUC and precision/recall metrics would not
be sufficient. In this work, our goal is to investigate how to
evaluate the suitability of any given algorithm for the prob-
lem at hand so as to ensure that it meets the expectations
of educators and school officials. To this end, we apply sev-
eral off-the-shelf machine learning algorithms to identify at-
risk students and analyze their behavior according to several
evaluation techniques. To summarize, our major contribu-
tions are:

• We present a novel framework for evaluating algorithms
which identify students at risk of not graduating high
school on time. The evaluation process is designed to
cater to the needs of educators instead of only being
focused on commonly used machine learning metrics.

• We present a rigorous qualitative and quantitative com-
parison of several well known machine learning algo-
rithms using the proposed evaluation process.

• We carry out all our experimentation using data from
multiple student cohorts in collaboration with two ma-
jor school districts in the United States. Unlike recent

work where evaluation is carried out via cross vali-
dation on a single cohort, we use disjoint cohorts for
training and testing, thus validating the system’s per-
formance in a more realistic manner and making it
directly applicable for deployment in all the school dis-
tricts in the US.

2. RELATED WORK
Our interdisciplinary work benefited from prior research

at the intersection of educational research and data min-
ing. Educational research provided a basis for selecting and
understanding features important to adverse academic out-
comes, and data mining research helped us use these fea-
tures and machine learning algorithms to develop robust
early warning systems.

Educational research has found that some specific features
such as students’ grades and attendance are especially rel-
evant to predicting on-time high school graduation [20, 7].
Bowers et al. [7] systematically reviewed this vast litera-
ture, finding that these commonly recorded student features
can robustly predict later student outcomes. However, these
studies widely varied in how they combined individual stu-
dent features when developing rule based models (e.g., a
rule based on the intersection or union of having low grades
and low attendance). Consequently, predictive performance
widely varied. Moreover, many studies focused on develop-
ing high precision rules, but at the cost of low recall. Such
rule-based models are also limited because they might work
well for a specific district and cohort, but result in poor
performance when applied elsewhere.

Recent research in data mining addresses the limitations
of such rule based models by advocating the usage of au-
tomated learning methods while leveraging the indicators
prescribed by education research. Several well-known ma-
chine learning algorithms such as Random Forests, Logistic
Regression, Decision Trees etc. were used to predict student
outcomes [22, 2]. These models consistently outperformed
rule based models on traditional metrics such as precision,
recall, and AUC. In addition, models such as Bayesian net-
works were employed to identify students who were likely to
fail in mathematics courses [25]. Further, machine learning
models were also employed to predict trajectories of future
learning performance using past history [12].

Though machine learning models are very useful in prac-
tice, they may look like black boxes from an educator’s per-
spective. Furthermore, traditional model evaluation meth-
ods such as AUC are both difficult to interpret for educators
and not well suited to address all the issues at hand. We
therefore worked closely with both school districts to iden-
tify how to best interpret and evaluate the machine learn-
ing methods so that they address the districts’ educational
goals.

3. DATASET DESCRIPTION
The work we describe in this paper is being done in col-

laboration with two school districts in the United States,
one of which (District A) is among the largest districts in
the mid-Atlantic region with over 150,000 students enrolled
across 40 schools. The other is a medium-sized district on
the East Coast with an enrollment of approximately 30,000
students across 39 schools (District B). Both of these dis-
tricts are instituting several measures to help students and



Figure 1: Student enrollment flow over time

had already recognized the importance of early warning in-
dicator systems for identifying at-risk students. District A
had a rule-based early warning indicator system in place,
using several important indicators such as academic perfor-
mance, behavior, mobility and few demographic attributes.
Our partnership with these school districts has been criti-
cal in developing a machine learning system that is not only
based on real data but also designed for the needs and pri-
orities of educators.

We obtained data from each of these school districts. The
dataset provided by District A comprises of two cohorts of
10884 and 10829 students, expected to graduate in 2012 and
2013 respectively. Most of the students in these cohorts were
tracked from 6th - 12th grade, while some arrived through-
out the study. Students belonging to the latter group have
missing data fields for all the years prior to their enroll-
ment in the school district (which is normal since the school
only starts collecting data when students enroll). The data
contains several attributes for each of these students such
as their GPAs, absence rates, tardiness, gender etc. About
90% of the students in each of these cohorts graduated high
school within 4 years of enrollment. The flow of student en-
rollment in District A is depicted in Figure 1. This figure
shows that the majority of the students in the dataset were
enrolled in the school district right from 6th grade and grad-
uated within the stipulated time (blue region). The set of
incoming students who enrolled at time stamps later than
6th grade is illustrated by the green region. The red portion
of the figure represents students who either dropped out or
continued in high school beyond 4 years. This work (and
other early warning indicator systems) targets students in
this region.

The dataset obtained from District B comprises of two
cohorts of 1499 and 1575 students, with expected graduation
dates in 2012 and 2013 respectively. In this dataset, most of
the students were tracked from 8th - 12th grade and several
academic and behavioral attributes of these students were
recorded. However, some arrived throughout the study and
subsequently have missing data fields for years prior to their
enrollment. About 95% of the students in each of these
cohorts completed high school on time. The remaining 5%
of the students either dropped out of school or took more
than 4 years to graduate high school.

Student Attributes
District

A
District

B

Gender X X
Age X X
Ethnicity X X
City X X
Street X X
School Code X X
Absence Rates X X
Tardiness Rates X X
# of Suspensions X X
# of Unexpected Entries/Withdrawals X X
Quarterly GPA X X
Cumulative GPA X X
Cumulative Math GPA X X
Cumulative Science GPA X X
Cumulative Social Science GPA X X
Cumulative English GPA X X
MAP-R National Percentile Ranks X X
Math Proficiency Scores (MPS) X X
PSAT Critical Reading X X
PSAT Math X X
Limited English Proficiency X X
Economically Disadvantaged (EDS) X X
Is student new to the school district? X X
Is student disabled? X X
Was student ever retained? X X
Did student graduate on time? X X

Table 1: List of student attributes and their avail-
ability in Districts A and B.

While there could be a variety of reasons for academic
difficulties ranging from lack of motivation to economic con-
cerns, recent research has demonstrated that these diverse
causes often manifest themselves through a common set of
indicators such as academic performance, behavior, and at-
tendance[3, 5]. The data used for this analysis captured
most of these indicators. Table 1 provides an exhaustive list
of all attributes that we used in the analysis. The availabil-
ity of each of these attributes in a given dataset is indicated
by the two rightmost columns of the table. It can be seen
that there are minor variations in the ways data is recorded
for the two districts. For instance, GPA is recorded on a
quarterly basis for District A and on an yearly basis for Dis-
trict B. Our analysis is not sensitive to such representational
variations. In fact, the framework proposed in this paper is
generic enough to be applicable to any given set of features.

4. FRAMEWORK OVERVIEW
In this section, we present an overview of the models that

we will be using through out this study. In addition, we
also describe in detail the experimental setup that we use
for all our prediction tasks and our evaluation choices that
are designed to match the real world setting as closely as
possible.

Problem Setting: In order to provide assistance to stu-
dents who are at risk of not graduating on time, we first need
to accurately identify such students. This can be achieved
by using algorithms that can learn from the outcomes of stu-
dents in the earlier cohorts. Schools have records on which
of the students from prior cohorts failed to graduate high
school within 4 years. From Table 1, it can be seen that the
flag Did the student graduate high school on time? captures



this aspect and hence can serve as the outcome variable. We
compute the complement of this flag which takes the value
1 if the student failed to graduate on time and 0 otherwise.
We use the term no_grad to refer to this complement vari-
able and use it as the response variable for all our prediction
tasks. The problem of identifying students who are at risk of
not graduating on time can thus be formulated as a binary
classification task with no_grad as the outcome variable. All
the other variables in Table 1 can be used as predictors.

Models: To predict if a student is at risk of not gradu-
ating on time, we experiment with Random Forests (RF),
Adaboost (AB), Logistic Regression (LR), Support Vector
Machines (SVM), and Decision Trees (DT).

Experimental Setup: Our datasets comprise of cohorts
of students graduating in 2012 and 2013. Recent research
that deals with the problem of predicting student perfor-
mance evaluated the models via cross validation on a single
cohort [22, 2]. Though this is an acceptable way of estimat-
ing any algorithm’s performance in general, it is not ideal for
the current setting. To illustrate, school districts often have
access to outcomes and other features from previous cohorts.
The goal here is to predict the future outcomes accurately
by training on data from previous cohorts. Thus, an apt
way of evaluating an algorithm in this setting is to train a
model using data from previous cohorts and use a later co-
hort as the test set. We carry out all the evaluations in this
manner, using the cohort of students graduating in 2012 as
the training set and the later cohort of students graduating
in 2013 as the test set.

Some of the models that we employ such as Random
Forests involve sampling random subsets of data. This cre-
ates a certain degree of non-determinism in the estimated
outcomes. In order to account for this, we carry out 100
runs with each of these models and average the predictions
(and/or probabilities) to compute the final estimates. Dur-
ing our analysis, we also experimented with the leave-k-out
strategy. As a part of this approach, we executed 100 iter-
ations for each classification model. During each iteration,
every model is trained on (N - k) randomly chosen data
points, where N is the size of the entire dataset and k =
0.01*N.

With this framework in place, we now proceed to present
how we evaluate each of the models while taking into account
educators’ requirements.

5. ANALYSIS OF PREDICTIVE MODELS
School districts are interested in identifying those students

who are at risk of not graduating high school on time before
they reach the end of middle school. This helps them plan
their resource allocation ahead of time. In this section, we
focus on this setting by predicting if a student is at risk of
not graduating high school on time using the data available
prior to the end of middle school. More specifically, we use
GPAs, absence rates, tardiness, other scores and flags (listed
in Table 1) up until grade 8 along with other demographic
attributes and predict the outcome variable no_grad. In this
section, we address the following questions:

• How well do each of the models perform when evalu-
ated using traditional metrics such as precision, recall,
and AUC ?

• How do we ensure that the probabilities / confidence
score estimates produced by various algorithms are

good in order for schools to reliably deploy interven-
tions ?

• How do we compare the goodness of such estimates
and show robustness of the results ?

5.1 Evaluation using traditional metrics
Our goal here is to evaluate the performance of various

models on the task of predicting if a student is likely to grad-
uate high school on time. Since we are dealing with the pre-
diction of a binary outcome, several standard metrics such as
accuracy, precision, recall, and AUC can be readily used. We
evaluate the performance of all the models using these stan-
dard metrics. Figure 2 shows the ROC curves corresponding
to various classification models for districts A and B. It can
be seen that the Random Forest model outperforms all the
other models for both school districts, with AdaBoost and
Logistic Regression being the next best performing solutions
for both datasets. SVMs and Decision Trees exhibit varying
performance across the two datasets. While SVM performs
on par with Logistic Regression and AdaBoost models on
District A, it performs much more poorly when applied to
District B.
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Figure 2: ROC Curves

Usage of metrics such as AUC for a binary classification
task is relatively common in machine learning. Educators
on the other hand think about the performance of an al-
gorithm in this context slightly differently. The educators
perspective stems from the fact that school districts often
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Figure 3: Empirical Risk Curves. The ranking qual-
ity of an algorithm is good if this curve is monoton-
ically non-decreasing.

have limited resources for assisting students. Furthermore,
the availability of these resources varies with time. Due to
factors such as the number of students enrolled and budget
allocated, the availability of these resources widely varies
across districts. For example, District A might have the re-
sources to support 100 students in 2012, however they might
be able to target only 75 students in 2013. Further, District
B might be able to assist 300 students in 2012 and 500 stu-
dents in 2013. Building algorithms that can cater to these
settings is extremely crucial to address the problem at hand.

After various discussions with our school district partners,
we understood that an algorithm that can cater to their
needs must provide them with a list of students ranked ac-
cording to some measure of risk such that students at the
top of the list are verifiably at higher risk. Once educa-
tors have such ranked list available, they can then simply
choose the top k students from it and provide assistance to
them. For instance, if District A can only support 75 stu-
dents in 2013, educators in that district can just choose the
top 75 students from this rank ordered list and assist them.
Furthermore, as more resources become available, they can
choose more students from this list according to the rank
ordering and provide support to those students too.

The challenge associate with ranking students is that the
data available to school districts only has binary ground
truth labels (i.e., graduated/not-graduated). This effectively
means that we are restricted to using binary classification
models because other powerful learning to ranking tech-
niques[17] require ground truth that captures the notion of
ranking. Fortunately, most of the classification models as-
sign confidence/probability estimates to each of the data
points and we can use these estimates to rank students.
However, before we begin using these estimates to rank stu-
dents, we need to ensure that these estimates are indeed
correct.

5.2 Ensuring the quality of risk estimates
We begin this section by understanding how to use the

confidence scores or probability estimates output by algo-
rithms in order to rank order students. Then, we discuss
how to evaluate the goodness of such estimates produced by
various algorithms.

From models to risk estimates: Binary classification
approaches output a 0/1 value for each data point. However,
most of the classification algorithms involve computation of
some form of confidence scores for each data point before
the algorithm even assigns a label to it. In this work, we
use the probability of not graduating on time as a proxy for
estimating risk. While Logistic Regression estimates these
probabilities as a part of its functional form, all the other
algorithms output proxies to these probabilities. We obtain
these proxy scores and convert them into probabilities.

Decision tree assigns each data point to one of its leaf
nodes and the probability of not graduating on time for any
given data point is equivalent to the fraction of those stu-
dents assigned to the corresponding leaf node who do not
graduate on time[9]. Random Forests involve training a for-
est of trees on data points and the probability of not gradu-
ating on time for a particular data point is computed as the
mean of the predicted class probabilities of the trees in the
forest [8]. The class probability assigned by any single tree
is computed in the same manner as that of a decision tree.
Similarly, in the case of AdaBoost which involves multiple
learners, the probability assigned to a particular student is
computed as the weighted mean of the predicted class prob-
abilities of the classifiers in the ensemble[18]. Support Vec-
tor Machines estimate the signed distance of a data point
from the nearest hyperplane and Platt scaling can be used
to convert these distances into probability estimates[16].

Next, we describe the process of evaluating the goodness
of these probabilistic estimates of risk. We use the term risk
scores to refer to these probabilities from here on.

Measuring the goodness of risk scores: In order to
understand the accuracy of the risk scores estimated by var-
ious algorithms for ranking students, we propose a simple
solution. We first rank students in descending order of their
estimated risk scores. We then group students into bins
based on the percentiles they fall into when categorized using
risk scores. For example, if we choose to create 10 bins, the
bottom 10% of students who have the least risk are grouped
into a single bin. Students who rank between 10thand 20th

percentile are grouped into the next bin and so on. For
each such bin, we compute the mean empirical risk, which
is the fraction of the students from that bin who actually (as
per ground truth) failed to graduate on time. We then plot
a curve where values on the X-axis denote the upper per-
centile limit of a bin and values on the Y-axis correspond to
the mean empirical risk of the corresponding bins. We call
this curve an empirical risk curve.

An algorithm is considered to be producing good risk
scores and consequently ranking students correctly if and
only if the empirical risk curve is monotonically non-decreasing.
If the empirical risk curve is non-monotonic for some algo-
rithm, it implies that the ranking using the algorithm’s risk
scores may result in scenarios where students with lower risk
scores are more likely to not graduate on time compared to
students with higher risk scores. Figure 3 shows these curves
with 10 student bins for districts A and B respectively. It
can be seen that most algorithms exhibit monotonically non-
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decreasing empirical curves in the case of District A. How-
ever, decision tree exhibits some degree of non-monotonicity.
On the other hand, for District B, all the models except
for Random Forest exhibit non-monotonicity consistently.
Therefore, students should be ranked using the scores pro-
vided by Random Forest model for District B.

5.3 Comparative evaluation of risk estimates
In the previous section, we discussed how to evaluate the

goodness of rankings produced by various models. Here, we
continue the discussion and present two metrics which are
far more informative to educators than traditional precision
recall curves. We already emphasized on the fact that school
districts have limited resources and can assist only a certain
number of students every year. Consequently, there is a
strong need for algorithms which can produce good proba-
bility estimates / risk scores to rank students. Given this
setting, it would be much more informative to provide preci-
sion and recall values of various algorithms at different val-
ues of K. We call these curves precision at top K curve
and recall at top K curve respectively. These curves help
educators in readily inferring the precision and recall of var-
ious algorithms at a threshold K of their choice.

Figure 4 illustrates the precision at top K curves for dis-
tricts A and B respectively. It can be seen that there are
huge differences in the precision of algorithms at smaller
values of K. Note that resource constraints often force edu-
cators to set K to small values. Random Forests consistently
outperform their counterparts across all K for both districts
A and B. The precision of other algorithms, however, varies
with K. For instance, we can observe that Logistic Regres-
sion has lower precision compared to the decision tree when
K <= 150 on District B. Beyond this threshold, Logistic
Regression has a higher precision than the decision tree.

Figure 5 shows the recall at top K curves for both dis-
tricts. Again, random forest outperforms all other models
at all values of K. It can be seen that there is a higher varia-
tion in the recall values of algorithms in District B compared
to District A. Further, Support Vector Machines exhibit con-
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sistently low recall in District B. The performance of other
algorithms depends on the threshold K.

6. INTERPRETING CLASSIFIER OUTPUT
While the construction of models that can precisely iden-

tify students at risk is an important step to the design of
early warning systems, it is equally important to analyze the
output produced by these algorithms to make sure it aligns
with the prior knowledge and/or findings of educators. In
this section, we study in detail:

• How to identify features which are heavily used by al-
gorithms ?

• How to characterize patterns of mistakes made by al-
gorithms ?

• How can we compare and contrast algorithms based
on the risk score estimates they produce ?

Each of these aspects allow us to obtain a better understand-
ing of the model behavior.

6.1 Feature Importances
In order to ensure that the output of the prediction mod-

els can be converted into actionable insights, it is essential
to understand which factors contribute most heavily to the
predictions. To answer this question, we make use of a vari-
ety of feature selection techniques that can be used to rank
features according to their level of importance.

The setup we use to evaluate feature importances is simi-
lar to that previously described in section 5. We specifically
chose to threshold our datasets at the end of 8th grade, as
that time stamp marks the students’ transition into high
school, and has been shown to be an especially opportune
moment for targeted interventions [4].

The process of computing feature importances is strictly
dependent on the algorithms being used. We compute fea-
ture importances using both Gini Index and Information
Gain for Decision Trees[19]. In the case of Random Forest,



Rank RF AB LR SVM GI IG
D
is
tr
ic
t
A 1 Q4GPA 08 Q4GPA 08 Gender 07=Male Gender 07=Male Q4GPA 08 Q4GPA 08

2 Q3GPA 08 MPS 08 Gender 07=Female Gender 07=T MAPR 08 Abs Rate 08
3 Q1GPA 08 MAPR 08 Gender 06=Female Gender 06=Female Abs Rate 08 MAPR 08
4 MAPR 08 Abs Rate 08 Abs Rate 08 Abs Rate 08 Q1GPA 08 Abs Rate 07
5 MPS 08 Q4GPA 06 Q2GPA 06 Gender 06=Male MPS 08 MAPR 06

D
is
tr
ic
t
B 1 GPA 08 GPA 08 GPA Science 08 School Code=317 GPA 08 GPA 08

2 GPA ENG 08 Days Abs 08 Math Credits 08 GPA SocSci 08 GPA Science 08 GPA SocSci 08
3 GPA SocSci 08 Num Marks 08 GPA SocSci 08 GPA Math 08 Exc Abs 08 Exc Abs 08
4 GPA Math 08 GPA Science 08 School Code=317 GPA Science 08 Num Marks 08 GPA ENG 08
5 GPA Science 08 Has Disability 08=N Has Disability 08=Y School Code 08=315 EDS 08=T School Code 08=320

Table 2: List of top 5 features in districts A and B.

we consider feature importance to be the ratio of instances
routed to any decision tree in the ensemble that contains
that feature, over the total number of instances in the train-
ing set. AdaBoost simply averages the feature importances
provided by its base-level classifier – CART decision tree
with maximum depth of 1 – over all iterations. For our
Logistic Regression and SVM models, feature importances
were simply considered to be the absolute values of each
feature’s coefficient.
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Figure 6: Feature ranking by various algorithms.
GPA 08 is ranked consistently high in both the dis-
tricts by most of the models.

As before, we ran each classification model 100 times and
subsequently averaged the importance scores given for each
feature at each iteration. Based on the absolute values of
these final importance scores, we then ranked all n features
such that a rank of 1 corresponded to the feature with high-
est importance based on that particular classifier or metric.
Figure 6 illustrates how features are ranked by various algo-
rithms. Due to space constraints, we only present a subset
of 5 features in Figure 6. Table 2 lists the top 5 features
used by each of the algorithms.

It can be inferred from Table 2 and Figure 6 that GPA
at 8th grade is highly ranked across the majority of the ap-
proaches, indicating that academic performance at that par-

ticular time stamp is indeed a very important predictor of
on-time high school graduation. The same can’t be said
for 6th and 7th grade GPA, which ranked consistently low.
Curiously, gender was highly ranked by our Logistic Regres-
sion and SVM methods for one of the cohorts. In addition
to GPA, absence rates at 8th grade also show up as predomi-
nant features for both districts A and B. It is also interesting
to note that some of the algorithms rank features such as
economically disadvantaged (EDS) and disability flags high.

6.2 Characterizing prediction mistakes
School district administrators and educators are often in-

terested in understanding the patterns of mistakes made by
algorithms, which in turn helps them decide whether to use
that model. For instance, if an algorithm is misclassify-
ing certain kinds of students and educators consider such
patterns of misclassifications unacceptable, then they can
choose not to use it in spite of the fact that the algorithm
might be achieving a high precision and recall.

In order to identify such patterns for any given classifi-
cation model, we use a simple technique involving frequent
itemset extraction. Below is a description of the technique:

1. Identify all frequent patterns in the data using the FP-
growth technique[11]. A frequent pattern is a combi-
nation of (attribute, relation, value) tuples which occur
very frequently in the entire dataset. For example, if
the pattern GPA 08 > 2.0 and Abs Rate 08 <= 0.1
holds true for about 80% of the students, then it can
be considered a frequent pattern.

2. Rank students based on the risk score estimates from
the classification model. The predicted value of no_grad
is 1 for the top K students from this list and 0 for oth-
ers.

3. Create a new field called mistake. Set the value of this
field to 1 for those data points where the prediction of
the classification model does not match ground truth,
otherwise set it to 0.

4. For each frequent pattern detected in Step 1, compute
the probability of mistake. This can be done by iterat-
ing over all the datapoints for which the pattern holds
true and computing the fraction of these datapoints
where mistake field is set to 1.

5. Sort the patterns based on their probability of mistake
(high to low) and pick the top R patterns as mistake
patterns.



The above procedure helped us identify several interest-
ing mistake patterns for various algorithms. Due to space
constraints, we present the patterns for just two of these -
Random Forest and Decision Trees in Table 3. It can be
seen that the models are making mistakes when a student
has a high GPA and a high absence rate/tardiness or when
a student has a low GPA and low absence rate/tardiness. It
is also interesting to note that the Adaboost model is less
accurate with respect to students who are economically dis-
advantaged but do well in Math and Science. This demon-
strates that classification models are prone to making mis-
takes particularly on those data points where certain aspects
of students are positive and others are negative. We found
similar patterns with most other algorithms.

6.3 Comparing classifier predictions
Our discussions with school districts revealed that edu-

cators placed a lot of importance on exploratory aspects
of models. When we present educators with a suite of al-
gorithms, they are keen on understanding the differences
in rank orderings produced by each of these algorithms.
Here, we address the question: How similar or dissimilar
are the rank orderings produced by any two given models ?
This question can be answered by computing rank correla-
tion metrics such as Spearman rank correlation coefficient,
Kendall’s Tau and, Goodman and Kruskal’s gamma [14] for
every pair of algorithms. While this is a perfectly reasonable
strategy, recall that educators are typically interested in un-
derstanding all the metrics as a function of K (the number of
students that can be targeted using the available resources).

In order to measure the similarity of rank orderings for
various values of K, we use Jaccard similarity metric. Given
two sets A and B, Jaccard similarity is the ratio of the num-
ber of elements in the intersection of A and B to the number
of elements in the union of A and B. The higher the value
of Jaccard similarity, the more similar the sets. For a given
K, all the algorithms return a set of K students who are
likely to not graduate on time based on the risk scores they
produce. Similarity between rank orderings of algorithms
can now be estimated by computing the Jaccard similarity
metric between the set of K students returned by various
algorithms (for multiple values of K).

Figure 7 shows the Jaccard similarity values that we com-
puted for every pair of algorithms at various values of K
for Districts A and B respectively. It can be seen that Lo-
gistic Regression and SVM are highly similar for all values
of K in District A. Furthermore, the ranking produced by
most models is not similar to Decision Trees (RF-DT, AB-
DT, LR-DT, SVM-DT curves). In the case of District B,
there are interesting variations in the similarity between al-
gorithms as K changes. For small values of K, AdaBoost
and Decision Trees produce similar sets. However, as K
increases, Random Forest and AdaBoost appear to be the
most similar algorithms. Random Forest and Logistic Re-
gression also produce similar sets of students for various
values of K. Lastly, we see that SVM is the most dissim-
ilar algorithm in District B (RF-SVM, AB-SVM, LR-SVM,
SVM-DT curves).

This analysis helps school districts in understanding which
algorithms to retain in their suite and which ones to discard.
For instance, if they find that two algorithms are consistently
similar in the rankings they produce, they may choose to
retain just one of these algorithms based on parameters such
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Figure 7: Jaccard Similarity of students at-risk for
various algorithms

as ease-of-use, computational efficiency, etc.
Next, we focus on the importance of predicting risk at

early stages. We describe in detail an evaluation procedure
that helps us determine if an algorithm is able to predict
student risk at early stages.

7. EVALUATING CLASSIFIERS FOR EARLY
PREDICTIONS

Beyond being able to accurately identify students who are
at risk of not graduating on time, it is important to make
these predictions early so that educators and administrators
have enough time to intervene and guide students back on
track. In addition, our interactions with school districts re-
vealed that once a student is retained in a grade, it becomes
much harder to ensure timely graduation. Therefore, it is
important to identify a student who is at risk before he/she
starts failing grades and/or drops out. In this section, we
discuss evaluation procedures which help us determine if an
algorithm is making timely predictions.

Predicting risk early: Here, we address the questions:
How precise is any given model at the earliest grade for which
we have data? How does this performance change over time?
These questions can be answered by examining the perfor-
mance of the models across all grades. The metrics that we
use to evaluate the performance of our models are: preci-
sion at top K and recall at top K. Working with our school
district partners revealed that a majority of school districts
can afford resources to assist at least 5% of their student
population. Therefore, we set K to 5% of the student pop-
ulation for each of the districts.

We evaluate the performance of the models across all
grades. Figure 8 depicts the precision at top 5% for each of
the algorithms on districts A and B respectively. Random
Forest consistently outperforms all other models in both the
districts. In the case of District A, the performance im-
proves steadily from 6th to 11th grade and then plateaus.



Model Mistake Patterns

Random
Forests

(District A)

If Q4GPA 08 > 3.0 and Abs Rate 08 > 0.3 and Tardy 08 > 0.4, then Mistake
If Q4GPA 07 > 3.0 and Abs Rate 07 > 0.4 and Tardy 07 > 0.3, then Mistake

Logistic
Regression
(District A)

If Q4GPA 08 ≤ 2.0 and Q1GPA 08 ≤ 2.0 and Abs Rate 08 > 0.2 and Abs Rate 07 > 0.4, then Mistake
If Gender 07 = Female and Q4GPA 08 ≤ 2.0 and Abs Rate 08 ≤ -0.1, then Mistake

Decision Tree
(District B)

If GPA 08 ≤ 2.0 and Tardy 08 ≤ -0.1 and Days Abs 08 ≤ -0.2, then Mistake
If EDS 08 = True and GPA Math 08 > 3.0 and GPA Science 08 > 2.0, then Mistake

Adaboost
(District B)

If Days Abs 08 > 0.5 and GPA Science 08 > 3.0, then Mistake
If Has Disability 08 = True and GPA Science 08 > 3.0 and Days Abs 08 > 0.2, then Mistake

Table 3: Classifier Mistake Patterns. All the continuous variables except GPAs are standardized to unit
normal distribution. A positive value for such variables indicates above average and a negative value indicates
below average.
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Figure 8: Precision by grade at top K

AdaBoost and Decision Tree algorithms exhibit poor per-
formance compared to other models across all grade levels
for district A. The performance of SVM is consistently poor
through out all grades for district B. The corresponding re-
call curves (omitted due to space constraints) show similar
patterns.

Identifying risk before off-track: Another important
requirement in this setting is for a model to be able to iden-
tify students who are at risk of not graduating on time even
before the student begins to fail grades and/or drops out. It
is ideal to provide interventions to students before either of
these undesired outcomes materialize, as opposed to taking
a more reactive approach. A student can be categorized as
off-track if he or she is retained (or drops out) at the end of
a given grade. An ideal algorithm should be able to predict
risk even before students go off-track.

Here, we investigate if our models succeed in identifying
students before they go off-track. In order to do determine
this, we use a metric called identification before off-track.
This metric is a ratio of the number of students who were
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Figure 9: Identification before Off-track

identified to be at risk before off-track to the total number
of students who failed to graduate on time. For instance,
if there are 100 students in the entire dataset who failed
to graduate on time, and if the algorithm identifies 70 of
these students as at-risk before they fail a grade or drop
out, then the value of identification before off-track is 0.7.
The higher the value of this metric, the better the algorithm
at diagnosing risk before any undesirable outcome occurs.
Note that we exclude all those students who graduate in a
timely manner from this calculation.

Figure 9 show the identification to off-track metric values
across varying K for district A and B respectively. The find-
ings here match our earlier results in that Random Forest
model outperforms all the other models for both districts.
While Decision Tree turns exhibits poor performance on dis-
trict A, SVM turns out to the weaker model for district B.

8. CONCLUSION
In this paper, we outlined an extensive framework that

uses machine learning approaches to identify students who



are at risk of not graduating high school on time. The
work described in this paper was done in collaboration with
two school districts in the US (with combined enrollment of
around 200,000 students) and is aimed at giving them (as
well as other schools) proactive tools that are designed for
their needs, and to help them identify and prioritize students
who are at risk of adverse academic outcomes. Although the
work in this paper is limited to predicting students who are
likely to not finish high school on time, we believe that the
framework (problem formulation, feature extraction process,
classifiers, and evaluation criteria) applies and generalizes to
other adverse academic outcomes as well, such as not apply-
ing to college, or undermatching [13]. Our hope is that as
school districts see examples of work such as this coming
from their peer institutions, they become more knowledge-
able, motivated and trained to use data-driven approaches
and are able to use their resources more effectively to im-
prove educational outcomes for their students.
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