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It is of great signi�cance to improve the driving range prediction accuracy to provide battery electric vehicle users with reliable
information. A model built by the conventional multiple linear regression method is feasible to predict the driving range, but the
residual errors between -3.6975 km and 3.3865 km are relatively unfaithful for real-world driving. �e study is innovative in its
application of machine learning method, the gradient boosting decision tree algorithm, on the driving range prediction which
includes a very large number of factors that cannot be considered by conventional regression methods. �e result of the machine
learning method shows that the maximum prediction error is 1.58 km, the minimum prediction error is -1.41 km, and the average
prediction error is about 0.7 km. �e predictive accuracy of the gradient boosting decision tree is compared against that of the
conventional approaches.

1. Introduction

With the rapid development of automobile industry and
the continuous improvement of people’s living standard, car
ownership and sales continue to rise, which brings a series of
energy and environment problems. In the face of increasing
energy and environmental problems, the development of new
energy vehicles has become a new trend in the automobile
industry [1], and the battery electric vehicle (BEV) is the
main force of new energy vehicles. However, BEVs havemany
disadvantages compared with conventional fuel vehicles; for
example, the charging station has a sparse distribution, the
charging time is too long, and the energy stored per unit
of mass is lower in electrochemical batteries with respect to
fossil fuels [2]. Besides, users of BEVs have a range anxiety
problem that the residual power will be worried about not
ensuring to reach the destination. All of these restrict the
promotion and development of BEVs. �e range anxiety
is an easier case to be �gured out than other issues in
real-world application of BEVs [3]. �erefore, it is of great
signi�cance to increase the practicability and reliability of

BEVs by improving the driving range prediction accuracy to
provide users with reliable information [4].

�erefore, various mathematic methods have been used
in the driving range prediction to improve the accuracy
and the credibility of it. �e driving mode was incorporated
into the study of driving range; it indicates that the stable
driving habit plays an important role in saving the battery
power and extending the driving range [5]. Fuzzy Transform,
a model-free method, was adapted to online use for the
prediction of remaining range of an electric vehicle [6]. A
simple feature-based linear regression framework modeling
the distribution parameters was proved to be an e�cient
approach to compute probabilistic attainability maps and
model a driver’s route preferences for electric vehicles [4].
A multiobjective problem, the driving range prediction, with
maximized electric motor e�ciency and minimized energy
consumption, was solved to get the optimal speeds, along
with the total trip time corresponding to a predicted driving
range [7]. In another study, the energy consumption was ana-
lyzed and it was found that the electric vehicle has the lower
energy consumption in the lower speed and more frequent
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Table 1: Statistical comparison of SOC before and a�er deletion operations.

Interval Original frequency number Frequency number a�er deletion Original frequency Frequency a�er deletion

(0,10] 40 10 0.0003 0.0001

(10,20] 134 54 0.0009 0.0004

(20,30] 1920 1438 0.0127 0.0113

(30,40] 7168 6130 0.0475 0.0481

(40,50] 14914 12638 0.0988 0.0992

(50,60] 18916 15854 0.1253 0.1244

(60,70] 23028 18954 0.1526 0.1487

(70,80] 27148 22468 0.1799 0.1763

(80,90] 24066 21354 0.1595 0.1676

(90,100] 33584 28528 0.2225 0.2239

Total 150918 127428 1 1

stops [1]. In addition, basing on the LR (linear regression)
and SVR (support vector regression) and the neural network,
genetic algorithm and fuzzy logic intelligent optimization
methods were fused into driving range prediction model of
energy consumption to improve the prediction accuracy [8].
A real-time method was proposed to estimate the continuous
driving range, considering both the driving behavior and the
steepness of the driving route [9]. In another research, the
relationship between the energy consumption and the load
(air conditioning, heating, etc.) was studied to put forward
the prediction model in di�erent load and di�erent driving
mode [10, 11].

Many studies used to take less factors into account when
establishing the prediction model of driving range, which
might lead to the poor applicability and prediction accuracy
of the model. A series of energy equations based on linear
models and Dijkstra’s graph search algorithm were derived to
calculate the driving range and the route minimizing energy
consumption available to EVs based on the real-world tra�c
condition and topology of the road.However, weight, temper-
ature, andmany other parameterswere not be included in this
work [12].�e battery remaining discharge energy prediction
technique was studied by an energy prediction method based
on the coupled prediction of future energy-related variables,
but the future temperature variation was not be considered
[13].

In a word, there are many methods that can predict
the driving range and many factors that a�ect the driving
range prediction, but the current studies cannot take both the
accuracy and comprehensiveness of them into account [14].

For the problem existing in the previous studies, basing
on the gradient boosting decision tree (GBDT), a new driving
range predictionmethod, themachine learningmethodnovel
in including a large number of feature variables [15], has been
presented to improve both the applicability and the accuracy,
considering the real-world working condition, the battery
status, and the tra�c environment. �e organization of the
study is as follows. �e collecting and processing of data is
simply introduced in Section 2. �e conventional multiple
linear regression model of driving range is established and
veri�ed in Section 3. �e machine learning method for the
prediction problem is presented in Section 4. To investigate

the prediction performance of the proposed method, a com-
parative study is conducted in Section 5. Finally, conclusions
are drawn in Section 6. �e nomenclature of symbols and
abbreviations in this study is shown in Nomenclature.

2. Data Collecting and Processing

2.1. Data Collecting. To begin with we will provide a brief
introduction on the data collection. �e real-time data of
travel status and battery status, collected by vehicle-mounted
information collection equipment, was sent to the remote
data monitoring center every 5∼10 seconds by GPRS wireless
transmission network, and for storage. �e research in this
paper is based on the historical operation data of BEV, of
which the type is E150EV produced by Baic New Energy
Automobile Co., Ltd., rented and managed by a car-sharing
company in Beijing. Of all the rented BEVs, No. 25 BEV,
which has the longest running time and the largest data
volume, is selected as the main research object. �e discharge
data, including 596 discharge process and 523,678 original
data from March 1, 2015, to March 1, 2016, is extracted from
the database, �ltered, and processed.

2.2. Data Processing. �e information about vehicle state
and battery status transmits through the wireless network.
In the process, the transmission can be a�ected by many
factors, such as weather, building density, channel con�ict,
data stability, and so on. �erefore, there will be data losses
and errors in the collected data.

For subsequent analysis and modeling, deletion has been
operated on the attributes (SOC, current, voltage, speed, etc.)
of repeated and error data. Table 1, for example, shows the
results of frequency number and frequency before and a�er
the deletion operation of SOC.

It can be seen from Table 1 that frequency number a�er
the deletion operation is reduced, while frequency a�er
the deletion operation is basically the same as the original
frequency. �e result proves that the error is generated with
the random in�uence of the driving environment and the
data acquisition device, rather than deliberately. As shown
above, the frequency number of SOC between 0 and 20 is rel-
atively scarce. Besides, previous studies �nd that the battery
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Table 2: Analysis of the performance index of interpolation.

Index SOC VTotal MaxV MinV MaxT MinT Speed TotalMile

RMSE 0.178 3.2 0.0262 0.0251 3.2E-15 0.2331 15.21 0.381

RMSRE 0.0021 0.0098 0.0079 0.0067 1.12E-16 0.012 54.23 0.0001

Table 3: Correlation test result between parameters and driving range.

No. 25 BEV No. 15 BEV No. 12 BEV

R Sig. R Sig. R Sig.

SOC -0.998 .000 -0.999 .000 -0.998 .000

Speed 0.029 .775 -0.172 .089 0.021 .791

VTotal -0.946 .000 -0.826 .000 -0.861 .000

ITotal 0.145 .149 -0.241 .153 0.137 .159

MaxV -0.827 .000 -0.789 .000 -0.830 .000

MinV -0.850 .000 -0.808 .000 -0.858 .000

MaxT 0.816 .000 0.970 .000 0.826 .000

MinT 0.889 .000 0.963 .000 0.899 .000

EVD 0.063 .534 0.092 .377 0.081 .517

ETD -0.163 .104 -0.159 .115 -0.173 .109

R represents Pearson’s simple correlation coe�cient between parameters and the distance range; Sig. represents the probability value � of � test statistics, and
� = 0.05.

performance is unstable when the SOC of the battery is less
than 10%, which is easy to cause irreversible damage to the
physical properties of the battery [11]. Battery performance is
relatively stable only when SOC is above 15%. �erefore, the
SOC should be greater than or equal to 20% in the calculation
of the driving range prediction in this study.

To facilitate subsequent analysis and modeling, Lagrange
interpolationmethod has been used tomake up the data gaps,
making sure each discharge process complete. To accurately
determine the interpolation e�ect, the rootmean square error
and the relative error of root mean square are calculated, as
shown in Table 2.

In addition, the processed data has been averaged, which
conforms to the requirements of modeling for accuracy and
standard.

3. Multiple Linear Regression Modeling

3.1. Correlation Analysis. Generally, there are many factors
a�ecting the driving range of BEV under the actual working
conditions, including the driver’s own characteristics, the
vehicle’s own parameters, and the road environment, etc.
However, only several items of data can be collected and
used.�erefore, the performance parameters of battery (SOC,
voltage, current, and temperature) and state parameters of the
vehicle (speed) are chosen to be researched [5].

Considering that the data used in this paper is distance-
dependent, Pearson’s simple correlation coe�cient is used to
measure the strength of the correlation degree between the
driving range and another variable. �e de�nition of Pear-
son’s simple correlation coe�cient is shown in the following:

� = ∑��=1 (�� − �̂) (	� − 	̂)
√∑��=1 (�� − �̂)2∑��=1 (	� − 	̂)2 (1)

where � is the number of samples, �� and 	� are the variable
values of two variables, respectively, and �̂ and 	̂ are the
corresponding mean values, respectively. When |�| > 0.8,
there is a strong linear correlation between the two variables;
when |�| < 0.3, the linear correlation between the two vari-
ables is weak. Corresponding to Pearson’s simple correlation
coe�cient are t test statistics, and its mathematical de�nition
is as follows:

� = �√� − 2√1 − �2 (2)

when the probability value � of �-test statistics is less than the
signi�cance level�, the two variables are generally considered
to have signi�cant linear correlation. Otherwise, there is
no signi�cant linear correlation between the two varia-
bles.

No. 25 BEVdischarge process data, from 09:45 to 14:30 on
September 1, 2015, No. 15 BEV discharge process data, from
10:05 to 15:30 on August 11, 2015, and No. 12 BEV discharge
process data, from 09:23 to 13:45 on July 20, 2015, are
selected to calculate Pearson’s simple correlation coe�cient
and the probability value�, re�ecting the correlation between
parameters and driving range in a numerical way, as shown
in Table 3.

From Table 3, the driving range has a strongly linear
relationship with SOC, total voltage, maximum cell voltage,
minimum cell voltage, maximum cell temperature, and min-

imum cell temperature (|�|25,15,12��	,
����,��
,���
,���,���� >
0.8, �25,15,12��	,
����,��
,���
,���,���� ≪ 0.01), respectively.
�ere is no signi�cant linear relationship between speed, total
current, extreme voltage di�erence, extreme temperature

di�erence, and driving range (|�|25,15,12�����,�����,�
�,��� < 0.8,
�25,15,12�����,�����,�
�,��� > 0.05), respectively.
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Table 4: Partial correlation test results under SOC is controlled.

No. 25 BEV No. 15 BEV No. 12 BEV

R Sig. R Sig. R Sig.

VTotal -0.172 .088 -0.251 .067 -0.209 .045

MaxV -0.100 .322 -0.214 .388 -0.301 .276

MinV -0.267 .007 -0.321 .012 -0.491 .034

MaxT 0.408 .000 0.517 .000 0.559 .000

MinT 0.487 .000 0.629 .000 0.537 .000

R represents partial correlation coe�cient between parameters and the distance range; Sig. represents the probability value � of � test statistics, and � = 0.05.

3.2. Partial Correlation Analysis. In multivariate correlation
analysis, Pearson’s simple correlation coe�cient, however,
generally cannot truly re�ect the correlation between vari-
ables. Because the relationship between variables is more
complex at this time, it may be a�ected by more than one
variable respectively. Currently, partial correlation coe�cient
is a better choice. Partial correlation coe�cient re�ects the
degree of net correlation between variables.

When analyzing the partial correlation between variables�1 and 	, under the condition of controlling the linear action
of �2, the �rst-order partial correlation coe�cient between �1
and y is de�ned as follows:

��1,2 = ��1 − ��2�12
√(1 − ��22) (1 − �122) (3)

where ��1, ��2, and �12 is the correlation coe�cient of 	 and�1, is the correlation coe�cient of 	 and �2, and is the simple
correlation coe�cient of �1 and �2. �e basic steps of partial
correlation analysis are as follows: �rstly, the null hypothesis
is proposed; that is, the partial correlation coe�cient between
two populations is not signi�cantly di�erent from zero.
Secondly, the test statistic of partial correlation analysis is� statistic, whose mathematical de�nition is shown in the
following:

� = �√� − � − 2
1 − �2 (4)

where � is the partial correlation coe�cient, � is the sample
number, � is the order number, and �-�-2 is the degree of
freedom.�irdly, calculate the observation value of the �-test
statistic and the corresponding probability value �. Lastly,
if the probability value p of the �-test statistic is less than
the given signi�cance level �, the null hypothesis should be
rejected and the partial correlation coe�cient of the two pop-
ulations is signi�cantly di�erent from zero. Otherwise, it is
considered that there is no signi�cant di�erence between the
partial correlation coe�cient and zero of the twopopulations.

No. 25 BEV discharge process data, from 09:45 to 14:30
on September 1, 2015, No. 15 BEV discharge process data,
from 10:05 to 15:30 on August 11, 2015, and No. 12 BEV
discharge process data, from 09:23 to 13:45 on July 20, 2015,
are selected to calculate the partial correlation coe�cient and
the probability value �, determining whether the correlation
between each parameter and the driving distance is a�ected
by other parameters.

From Table 3, SOC has the highest absolute value of
the simple correlation coe�cient, while total current, speed,
extremum voltage di�erence, and extreme temperature dif-
ference have no signi�cant linear relationship with the driv-
ing range, respectively. �erefore, SOC is selected as control
variable, and partial correlation coe�cients of total voltage,
maximum cell voltage, minimum cell voltage, maximum cell
temperature, and minimum cell temperature are calculat-
ed.

As can be seen from Table 4, the linear relationship be-
tween total voltage, maximum cell voltage and minimum cell
voltage, and the driving distance is a�ected by SOC. �ere-
fore, a�er controlling the variable SOC, total voltage, maxi-
mum cell voltage, and minimum cell voltage have no signif-

icant linear e�ect on the driving range (|�|25,15,12
����,��
,���
 <
0.5, �25,15,12
����,��
,���
 > 0.05). Correspondingly, there is a

signi�cant linear correlation between maximum cell temper-
ature, minimum cell temperature, and the driving distance

(|�|25,15,12���,���� > 0.4, �25,15,12���,���� ≪ 0.01).
According to the above correlation analysis and partial

correlation analysis, minimum cell temperature has the sec-
ond highest correlationwith the driving range, so it is selected
as the control variable for the partial correlation test of
maximum cell temperature and the driving range. From the
partial correlation test results, the relationship between the
driving distance and maximum cell temperature is a�ected
by minimum cell temperature, and there is no signi�cant

linear correlation between them (�25��� = −0.066, �25��� =0.519 > 0.05; �15��� = −0.129, �15��� = 0.351 > 0.05;�12��� = −0.218, �12��� = 0.229 > 0.05).
3.3. Variable Selection and Modeling. In multivariate linear
regression analysis, it is very important to choose the right
independent variables to enter the regression model to make
it have better generalization ability and higher prediction
accuracy. It is necessary that only independent variables that
play a major role are retained and the average variation
of the dependent variable is described with fewer indepen-
dent variables. It can avoid the problem of over�tting and
generalization ability reducing caused by the entry of all
relevant variables into the model. �erefore, based on the
correlation analysis and partial correlation analysis results,
some parameters that have greater impact on the dependent
variable can be considered and selected as the independent
variables. On the contrary, other parameters that have little
in�uence on the dependent variable can be ignored.
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Figure 1: �e statistical tests of standardized residuals.

In view of the above result of the correlation analysis
and partial correlation analysis, SOC and minimum cell
temperature have been selected into the variables of the
model. �e multiple linear regression model is as follows:

� = �0 + �1� + �2� + � (5)

where � represents the driving range, the unit being km; s
represents SOC, the value ranges from 20 to 100; � represents
minimum cell temperature; �0, �1, �2 are parameters to be
measured; � is the residual error.
3.4. Parameter Identi�cation and Statistical Test. When the
regression model is determined, it is necessary to use the
collected data to identify unknown parameters in the model
according to certain estimation criteria. �e least square
method is widely used to identify parameters because of its
excellent properties. No. 25 BEV discharge process data, from
09:45 to 14:30 on September 1, 2015, are used as input, and
the least square parameter identi�cation has been performed.
�e parameter identi�cation results (�0 = 126.960,�1 = -1.719,�2 = 1.627) are introduced into (3), and the driving range
prediction model is as follows:

� = 126.960 − 1.719� + 1.627� + � (6)

A variety of statistical tests are conducted to ensure that
the model has good stability and generalization ability, and
the results are obtained as shown in Figure 1.

As can be seen from Figure 1(a), the residual sequence
of the model is basically normal distribution, with the mean
value of 4.19E-14, which approximates 0, and the standard
deviation is 0.98. Figure 1(b) shows that the residual distri-
bution of the observed value is compared with the normal
distribution, standardized residual distribution scatter is very
close to the straight line, so that standardized residuals
obey normal distribution with mean zero. According to the

statistical test results, the goodness of �t is high (�2 = 0.996);

the linear relationship between the driving range and the
explained variables is signi�cant (F = 14095.605, p<0.01); the
linear relationship between the driving range and each of the
explained variables (SOC,MinT) is signi�cant (t1 = 12.328, t2
= -76.532, t3 = 5.525, p1,2,3 <0.01); there is no autocorrelation
between residuals; the residual sequence is independent (DW
= 2.23).

To sum up, the multiple regression model satis�es a series
of requirements of statistical test, and the model can be used
to predict and analyze.

3.5. Model Establishment and Veri�cation. No. 25 BEV total
10 discharge process data, from September 2 to September
22, 2015, have been chosen to conduct the pretreatment and
the least squares parameter identi�cation, making the model
have higher prediction precision and applicability. �en, the
�nal model parameters were obtained in order: �0 = 126.527,�1 = -1.579, �2 = 1.564. �e �nal driving range prediction
model is as follows:

� = 126.527 − 1.579� + 1.564� (7)

where the value range of � is [20, 100].
No. 15 BEV discharge process data, on September 11,

September 19, and September 28, 2015, have been selected to
further verify the reliability and practicability of the model.
�e results of the residual error sequence are shown in
Figure 2, and the statistical residual errors are shown in
Table 6.

It can be seen from Table 5 that the residual error is
between -3.6975 km and 3.3865 km, the mean absolute error
is about 1.5 km, the root-mean-square error is less than
2 km, and the root-mean-square relative error is less than
0.5 km. Although it is feasible to predict the driving range by
the multiple linear regression model, the residual errors are
relatively large for real-world driving condition.
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Figure 2: �e residual error sequence chart of No. 15 BEV.

Table 5: Statistical error results of prediction.

Date Maximum error Minimum error MAE RMSE RMSPE

2015/9/11 3.3865 -3.1664 1.6260 1.8575 0.229

2015/9/19 0.8749 -3.6975 1.5701 1.8523 0.418

2015/9/28 2.5925 -3.6078 1.4612 1.3026 0.377

4. Machine Learning Methods

4.1. Classi�cation and Regression Tree. Decision tree is a kind
of classi�cation and regressionmethod.Decision treemethod
generally includes three processes: the feature selection,
the tree creation, and the tree pruning (remove �tting). It
can summarize some good performance classi�cation rules
from training set, which not only can well �t the training
data, but also can make well predictions to the unknown
data.

Table 6: Prediction error of the GBDT model.

Date Minimum error Maximum error MAE

2015/3/10 -0.72 1.49 0.61

2015/8/21 -0.59 1.58 0.82

2016/1/9 -1.41 1.52 0.76

Classi�cation and Regression Tree (CART) was put for-
ward by Breiman et al. in 1984, di�erent with ID3 and
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C4.5 classi�cation tree whose none-leaf nodes have multiple
branches, CART’s none-leaf nodes only have two branches,
and its output values of a leaf node are the mean of the sample
label [16].�erefore, the generation process is to construct the
binary decision tree based on the training set recursively, and
to prune the generated trees by using the loss function and
validation set.

4.1.1. CART Generation. First, a training set � is given as
follows:

� = {(�1, 	1) , (�2, 	2) , . . . , (��, 	�)} (8)

where 	 is a continuous variable. CART model generated
under� is de�ned as follows:

� (�) = �∑
�=1

�� (� ∈ ��) (9)

From (9), CART divides its eigenspace into M units�1�2 . . . , ��, and each unit corresponds to a �xed output
value ��. �e generation process of CART can be expressed
as follows.

Algorithm Framework 1: CART Generation

Input: A training set�;
Output: CART �(�);
Begin

In the characteristic space of �, each region is divided
into two subregions recursively, and the optimal output value
of each subregion is calculated, and the binary decision tree
is constructed.

(1) Solve (10); select the optimal cut variable " and the
optimal cut point �.

min
�,�

[
[
min�1

∑
��∈�1(�,�)

(	� − �1)2 +min�2
∑

��∈�2(�,�)
(	� − �2)2]]

(10)

Equation (11) is the space value of R1 and R2:

�1 (", �) = {� | �(�) ≤ �} ,
�2 (", �) = {� | �(�) > �} (11)

Iterate through the variables ", and then scan the cut point� orderly in the speci�ed cut variable ", and select the value
pair (", �) to make sure that (8) is minimum.

(2) Figure out the corresponding optimal output value:

�� = 1
/� ∑

��∈��(�,�)
	�, � ∈ ��, : = 1, 2 (12)

(3) Continue to call steps (1) and (2) of the two subregions
until the stop condition is satis�ed.

(4) �e input space of � is divided into �
regions�1�2 . . . , �� and CART is generated (9).
End

By the CART generation algorithm, each time the recur-
sive calculation, the optimal output value is generated from
each division unit using the least square error criterion; that
is, the optimal output value is the mean of all labels on
the unit; a heuristic algorithm is used to solve the optimal
cut variables and optimal cut points. �e decision tree
constructed from the above generation algorithm is called the
least square CART.

4.1.2. CART Pruning. In view of the problem of over�tting
in the CART generated above, the pruning operation is
necessary. �e CART pruning is cut from the bottom end
of the decision tree to make it simple, so that the unknown
data has better generalization ability and higher prediction
accuracy.

In the pruning process, the loss function of subtree is
calculated by the following:

;� (?) = ; (?) + � |?| ,
; (?) = �∑

�=1
(	� − 	̂�)2 (13)

where ? represents any subtree, ;(?) represents the square
error of training data, |?| is the number of leaf nodes of ?,�(> 0) represents the �tting degree and the complexity of the
model, ;�(?) represents the overall loss in the subtree under�, and the only optimal subtree for �xed � exists. �e CART
pruning algorithm is given as follows.

Algorithm Framework 2: CART Pruning

Input: �0 constructed from CART generation;
Output: the optimal CART ��;
Begin

(1) Suppose @ = 0, ? = ?0;
(2) Suppose � = +∞;
(3) Calculate from the top down on ;(?�), |?|, and

B (�) = ; (�) − ; (?�)CCCC?�CCCC − 1 (14)

� = min (�, B (�)) (15)

(4) B(�) = � is pruned by the internal node t, the output
value of the leaf node t is calculated by average method, and
the tree T is obtained;

(5) @ = @ + 1, �� = �, ?� = ?;
(6) Determine whether ?� is composed of the root node

and two leaf nodes, if it is, ?� = ?�; if not, go back to step (3);
(7) Based on the independent veri�cation data set, the

cross-validation method is used to select the optimal subtree
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?� in the subtree sequence {?�} (@ = 1, 2, ..., �) according to
the square error.
End

In the above algorithm, B(�) represents the decrease
degree of the total loss function a�er pruning. It is indicated
that (1) the size of the optimal subtree ?� is positively corre-
lated with the size of �; (2) the subtrees in the corresponding
subtree sequences {?�} (@ = 1, 2, ..., �) are nested by small
increments �; (3) in the optimal subtree sequence, each
subtree ?� corresponds to one �, so when the optimal subtree?� is determined, the corresponding � is determined. When
the pruning operation is completed, it is possible to integrate
the new base learner into the existing GBDTmodel.

4.2. Gradient Boosting Decision Tree. �eCART is used as the
base learner in the gradient boosting decision tree (GBDT)
[17]. For its excellent performance, GBDT is widely used in
various �elds of real life.

4.2.1. Estimation Function. �e purpose of GBDT algorithm
is to estimate the unknown function [18]. Since it is a kind
of supervised learning, the prerequisite for learning is to

have enough data sets with labels (��, 	�)��=1, where / is the

size of the sample set, �� = (�(1)� , �(2)� , ..., �(n)� )�, 	� is the
sample label. �e purpose of supervised learning is to give

an estimation function �̂(�) to the real function � : � E→ 	
and to minimize the loss function G(	, �̂(�)) to improve the
accuracy of the prediction, as shown in the following:

�̂ (�) = argmin
�(�)

G (	, �̂ (�)) (16)

Equation (16) can also be written to the minimized
expected loss form, as shown in the following:

�̂ (�) = argmin
�(�)

H� [H� [G (	, �̂ (�))] | �] (17)

Tomaterialize the target problem, the parameters K of the
search space are limited, as shown in the following:

K̂ = argmin
�

H� [H� [G (	, �̂ (�, K))] | �] (18)

So far, no speci�c formal assumptions have beenmade on
estimation functions and real functions. Moreover, in most
cases, the problem described above does not have a closed
form solution, so the recursive numerical process is usually
optimized.

4.2.2. Optimization Method. At normal circumstances, the
loss function adopted in optimizing is square loss function
and index loss function; the general Boosting algorithm
(such as AdaBoost) can achieve the goal of optimization.
However, for general loss function, it is di�cult to adopt
common optimization methods. In response to this problem,
Freidman proposed GBDT algorithm, using the value of the
loss function in the negative gradient direction, as shown

in (19), to approximate residuals and �t regression trees,
improving the performance of the prediction model.

−[MG (	, � (��))M� (��) ] (19)

GBDT is an algorithm to recursively solve prediction
model. In the beginning of each stage of solving, unperfect
model, a very weak model, can be used only to predict the
average of the training set; and then a better model can be
got by adding an estimator ℎ(�) to P (�), as shown in the
following:

P +1 (�) = P (�) + ℎ (�) (20)

According to the empirical risk minimization principle,

P0 (�) = argmin
!

�∑
�=1

G (	�, Q) (21)

P (�) = P −1 (�)
+ argmin

ℎ

�∑
�=1

G (	�, P −1 (��) + ℎ (��)) (22)

�en, the gradient descent method is used to minimize
the loss function, and the model is updated according to the
following:

P (�) = P −1 (�) − Q 
�∑
�=1

∇#�−1G (	�, P −1 (��)) (23)

Q = argmin
!

�∑
�=1

G (	�, P −1 (��)
− Q∇#�−1G (	�, P −1 (��)))

(24)

To sum up, the algorithm framework of GBDT is as
follows:

Algorithm Framework 3: GBDT

Input:

(i) A labeled training set �
(ii) Iterations �
(iii) �e loss function G(	, �)
(iv) �e base learner ℎ(�)

Output: A prediction model P (�)
Begin

(1) Initialization model:

P0 (�) = argmin
!

�∑
�=1

G (	�, Q) (25)

(2) For i = 1 to M, do
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Calculated pseudo residuals:

Q� = −[MG (	, P (��))MP (��) ]
#(�)=#�−1(�)

: = 1, 2, . . . , � (26)

Obtain ℎ (�) using CART to �t pseudo residual, and
calculate the weighted coe�cient Q :

Q = argmin
!

�∑
�=1

G (	�, P −1 (��) + Qℎ (��)) (27)

Update model:

P (�) = P −1 (�) + Q ℎ (�) (28)

(3) Get the �nal prediction model P (�)
End

In some cases, over�tting and prediction error bias may
occur in the above algorithm. In general, the regularization
technique can be used to reduce over�tting e�ect by control-
ling the �tting process, so the updating rules of the above
algorithm are modi�ed as follows:

P (�) = P −1 (�) + S ⋅ Q ℎ (�) , 0 < S < 1 (29)

where S is called the “learning rate”, which is the weight
reduction coe�cient of the base learner.

It has been found that a small learning rate (S < 0.1)
can signi�cantly improve the generalization ability of the
model, but the disadvantage is that the number of iterations is
increased.Overall, a regularizedGBDTalgorithm framework
is adopted in the following modeling process.

5. GBDT Modeling

5.1. Data Integration and Feature Extraction. Above all, No.
25 BEV discharge data from March 1, 2015, to March 1, 2016,
is selected as training set, and No. 15 BEV discharge process
data on January, March, and August 2015, is selected as test
set.

Considering the in�uence of the external environment
on BEVs [19], weather information of Beijing urban area
needs to be integrated in the training and test set, which
comes from the national meteorological science data sharing
service platform. �e speed variable in the data is processed
to average for its frequent change and nonlinear e�ect on the
driving range, namely, the speed of the driving range for k
corresponding to the average speed of driving range from 0
to k. In this way, the e�ect of average speed on the driving
range is incorporated into the future prediction model.

�epurpose ofGBDTalgorithm is to extract the structure
and essence of the target problem from the original data
set. To make the selected features well explain the current
problem, the selection of features should meet the following
requirements that can construct the prediction model with
high e�ciency and low consumption, improving prediction
accuracy. In fact, the extraction of features is to select the
optimal feature set for model training from the original

feature set. Good features o�en improve the prediction
accuracy of GBDT algorithm. According to the previous
analysis and research, SOC,MaxT,MinT,MaxV,MinV, TotalV,
EDT, EDV, AveSpeed, TotalMile, Temper, Visibility, and Precip
are extracted to train and test the model.

5.2. Parameter Setting and Relative Importance Calculation.
GBDT algorithmneeds to set some key parameters, including
each iteration step length, S; loss function, G; maximumdepth
of tree,MaxDepth; number of iterations, /.

�e speci�c steps of the parameter adjustment of GBDT
algorithm are as follows.

(1) According to experience, the maximum depth of the
tree is set to 10 (reference range for 6 to 20). Considering
the accuracy requirement, the step length is set to 0.1; the
loss function is set as the mean square error. Search for
appropriate number of iterations within a range of 100 to 400.

(2) �en, the maximum depth of the tree and step lengthS are detected and adjusted until the optimal parameters are
found.

In practice, the input features rarely have the same
correlation. In order to understand the size of contribution
of each characteristic in driving range prediction, the relative
importance of input variables need to be calculated. �e
calculation of global relative importance of features is as
shown in the following:

P� = 1
�

�∑
 =1

P̂� (? ) (30)

where � is the number of base learners. �e importance of
feature j in a single tree is as shown in the following:

P̂� (? ) = �−1∑
�=1

:� (V� = ") (31)

where / is the number of leaf nodes, /-1 is the number of
non-leaf nodes, V� is the characteristic associated with node�, and :� is the reduction value of square loss a�er node �
division. In short, the importance of a feature is the mean of
its importance in all the basic learners.

5.3. Result

5.3.1. Model Establishment. According to the parameter set-
ting method above, the statistical error results of the initial
iteration are shown in Figure 3.

As shown in Figure 3, when the number of iterations
is [100, 300], the mean absolute error is rising, and the
root mean square error is decreasing; when the number
of iterations is greater than 300, the mean absolute error
shows a downward trend, and the root mean square error
is decreased a�er increasing trend. Since the maximum
value of the mean absolute error is only 0.00466 from the
minimum, considering the stability of the prediction model,
the optimal iteration number is the number of iterations with
the minimum root mean square error, 300. �en �nd the
optimal maximum depth of the tree, and its statistical error is
shown in Figure 4.
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Figure 3: Statistical error results of iterations.
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Figure 4: Statistical error results of maximum depth.

From Figure 4, as the maximum depth of the tree
increases, the mean absolute error �uctuates. However, the
di�erence between the maximum and minimum values of
the mean absolute error is only 0.01212. To make the model
have better robustness, the optimal maximum depth should
be chosen according to the root mean square error. �e

minimum mean square error of 0.1733 corresponds to the
maximum depth of 11, which is the optimal maximum depth
of tree. �en, other optimal parameters are detected as S =
0.05 and / = 300.

Training the GBDT model with the optimal parameters,
the results are shown in Figure 5.
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Figure 5 shows that, in the beginning of the iteration, both
the training set error and the test set error are large; the two
errors decrease with the increase of the number of iterations;
when the number of iterations reaches about 300, the two
error curves basically coincide and stop changing. �e error
statistical results of the GBDT model are given as RMSE =
0.278, MAE = 0.813, maximum error = 1.61 and minimum
error = -1.58.

According to (28), the relative importance of each feature
is shown in Figure 6. It can be seen that SOC and TotalV are
the key feature of GBDT model for driving range.

5.3.2. Model Veri�cation. To verify the reliability of the
GBDT prediction model, No. 12 BEV discharge process data
on March 10, 2015, August 21, 2015, and January 9, 2016, are
used for veri�cation; the result is shown in Figure 7.

�e results of the minimum error, the maximum error,
and the mean absolute error obtained from the veri�cation
are shown in Table 6.

Table 6 shows that the maximum prediction error is
1.58 km, the minimum prediction error is -1.41 km, and the
average prediction error is about 0.7 km.

5.4. Discussion. No. 15 BEV discharge process data on
September 11, 2015, September 19, 2015, and September 28,
2015, have been selected as a data sample. To conduct

comparison analysis, three methods, that is, GBDT, CART,
and the multiple linear regression (MLR), are performed on
the same data sample. �e comparison results are shown in
Table 7.

When data has many features and the relationships
between them are complex, the idea of building a global
model is di�cult. One approach is to use conventional
linear regression analysis to model; some variables will be
excluded from the model for the multicollinearity between
them. However, that does not mean the model ignores the
global impact of other variables. �e excluded variables still
a�ect the model because of the existence of the remaining
variables. �e model established by traditional regression
method can be used to predict and the results are reliable.
Another approach is to use the decision tree to model; CART
is a widely used decision tree. In the regression with CART,
each node has a predicted value, which is equal to the average
value of all samples belonging to the node. When branching,
the best segmentation point of each threshold value of each
attribute is selected, and the criterion to be measured is to
minimize the mean variance. �e value of this node is set
as the average value of the training sample that falls on
this node until it is indivisible or reaches a certain height
or the attribute is used up or the mean square error does
not decrease. �e test samples are dropped according to the
segmentation points during the training and fall to the leaf
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Figure 7: Residual error sequence chart of No. 12 BEV.

Table 7: Comparison results of predictive performance.

Data
Maximum error Minimum error MAE

GBDT CART MLR GBDT CART MLR GBDT CART MLR

2015/9/11 1.234 2.034 3.3865 -0.98 -1.684 -3.1664 0.678 1.237 1.6260

2015/9/19 1.459 1.497 0.8749 -1.023 -1.767 -3.6975 0.719 1.116 1.5701

2015/9/28 1.501 1.972 2.5925 -1.237 -1.791 -3.6078 0.821 1.084 1.4612

nodes. �e average value of the leaf nodes is the predicted
value. Moreover, GBDT is an algorithm based on CART and
is an iterative tree. Obviously, all variables are considered
by GBDT and CART in the process of modeling. Although
conventional linear regression only introduces some variables
in the �nal model, it is also established based on all variables.
�erefore, it is no problem to compare their prediction
results.

It can be seen from Table 7 that the predictive perfor-
mance (maximum error, minimum error, and mean absolute
error) of GBDT is overall better than that of CART. GBDT

produces a weak classi�er through multiple iterations, each
iteration produces a weak classi�er. Each classi�er trains
based on the residual of the classi�er in the previous round
and continuously improves the accuracy of the �nal classi�er
by reducing the deviation. Furthermore, even if GBDT and
CART takes as many as 13 parameters into consideration, the
predictive performance (maximum error, minimum error,
andmean absolute error) of MLRmodel is the worst of them.
�erefore, it is apparent that the GBDT model has higher
prediction accuracy and reliability. It indicates that the GBDT
model of driving range has better predictive performance
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and can better meet the requirements of real-world driving
conditions.

6. Conclusions

In recent years, the number of BEVs is increasing gradually,
but the problem of inaccurate residual power display has been
restricting the promotion and the use of BEVs. �e purpose
of this study is to solve the problem of “range anxiety” caused
by battery performance and other factors by predicting the
BEV driving range. Many studies usually take less factors
into account when establishing the prediction model of
driving range, which may lead to the poor applicability and
prediction accuracy of the model. In this study, a prediction
model for BEV driving range based on machine learning has
been established. �e study is innovative in its application of
machine learning method, GBDT algorithm, which includes
a very large number of feature variables that cannot be
considered by conventional regression methods. Moreover,
the study is novel in its accuracy and reliability of a prediction
model for BEV driving range.

As theGBDTmodel belongs to the black box algorithm, it
can only give the importance distribution of the feature vari-
ables but cannot specify the interconnection and interaction
between the feature variables. In future studies, there is a lot
of research space for the correlation of variables within the
model.�e predictionmodel proposed in this study canmeet
the requirements of actual working conditions, but it needs to
be further optimized to improve the prediction accuracy in
the future. For instance, the cloud computing can be applied
in the task of modeling, which is responsible for irregularly
training, to obtain more accurate prediction model.

Nomenclature

BEV: Battery electric vehicle
GBDT: Gradient boosting decision tree
CART: Classi�cation and regression tree
MLR: Multiple linear regression
MAE: Mean absolute error
RMSE: Root mean square error
RMSPE: Root mean square percent error
SOC: State-of-charge
MaxT: Maximum cell temperature
MinT: Minimum cell temperature
MaxV : Maximum cell voltage
MinV : Minimum cell voltage
TotalV : Battery set total voltage
EDT: Extreme temperature di�erence
EDV : Extreme voltage di�erence
AveSpeed: Average speed of BEV
TotalMile: Total driving range of BEV
Temper: Environment temperature
Visibility: Horizontal visibility
Precip: Amount of precipitation.
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