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Abstract: The high prevalence of chronic kidney disease (CKD) is a significant public health concern
globally. The condition has a high mortality rate, especially in developing countries. CKD often
go undetected since there are no obvious early-stage symptoms. Meanwhile, early detection and
on-time clinical intervention are necessary to reduce the disease progression. Machine learning
(ML) models can provide an efficient and cost-effective computer-aided diagnosis to assist clinicians
in achieving early CKD detection. This research proposed an approach to effectively detect CKD
by combining the information-gain-based feature selection technique and a cost-sensitive adaptive
boosting (AdaBoost) classifier. An approach like this could save CKD screening time and cost since
only a few clinical test attributes would be needed for the diagnosis. The proposed approach was
benchmarked against recently proposed CKD prediction methods and well-known classifiers. Among
these classifiers, the proposed cost-sensitive AdaBoost trained with the reduced feature set achieved
the best classification performance with an accuracy, sensitivity, and specificity of 99.8%, 100%, and
99.8%, respectively. Additionally, the experimental results show that the feature selection positively
impacted the performance of the various classifiers. The proposed approach has produced an effective
predictive model for CKD diagnosis and could be applied to more imbalanced medical datasets for
effective disease detection.

Keywords: AdaBoost; chronic kidney disease; cost-sensitive learning; machine learning; medical diagnosis

1. Introduction

Chronic kidney disease is among the leading causes of death globally. A recent medical
report states that approximately 324 million people suffer from CKD globally [1]. The
glomerular filtration rate (GFR) is a widely used CKD screening test [2]. Though CKD
affects people worldwide, it is more prevalent in developing countries [3]. Meanwhile, early
detection is vital in reducing the progression of CKD. However, people from developing
countries have not benefitted from early-stage CKD screening due to the cost of diagnosing
the disease and limited healthcare infrastructure. While the global prevalence of CKD is
reported to be 13.4% [4], it is said to have a 13.9% prevalence in Sub-Saharan Africa [5,6].
Another study reported a 16% pooled prevalence of CKD in West Africa [7], the highest in
Africa. Numerous research works have specified that CKD is more prevalent in developing
countries [8]. Notably, it is reported that 1 out of every 10 persons suffers from CKD in
South Asia, including Pakistan, India, Bhutan, Bangladesh, and Nepal [3].

Therefore, several researchers have proposed machine learning (ML)-based methods
for the early detection of CKD. These ML methods could provide effective, convenient, and
low-cost computer-aided CKD diagnosis systems to enable early detection and intervention,
especially in developing countries. Researchers have proposed different methods to detect
CKD effectively using the CKD dataset [9] available at the University of California, Irvine
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(UCI) machine learning repository. For example, Qin et al. [9] proposed an ML approach
for the early detection of CKD. The approach involved using the k-Nearest Neighbor
(KNN) imputation to handle the missing values in the dataset. After filling the missing
data, six ML classifiers were trained and tested with the preprocessed data. The classifiers
include logistic regression, SVM, random forest, KNN, naïve Bayes, and a feed-forward
neural network. Due to the misclassification of these classifiers, the authors developed
an integrated classifier that uses a perceptron to combine the random forest and logistic
regression classifiers, which produced an enhanced accuracy of 99.83%.

Meanwhile, Ebiaredoh-Mienye et al. [10] proposed a method for improved medical
diagnosis using an improved sparse autoencoder (SAE) network with a softmax layer. The
neural network achieved sparsity through weight penalty, unlike the traditional sparse
autoencoders that penalize the hidden layer activations. When used for CKD prediction, the
proposed SAE achieved an accuracy of 98%. Chittora et al. [11] studied how to effectively
diagnose CKD using ML methods. The research employed seven algorithms, including
the C5.0 decision tree, logistic regression, linear support vector machine (LSVM) with L1
and L2 norms, artificial neural network, etc. The authors studied the performance of the
selected classifiers when they were trained under different experimental conditions. These
conditions include instances where the complete and reduced feature sets were used to
train the classifiers. The experimental results showed that the LSVM with L2 norm trained
with the reduced feature set obtained an accuracy of 98.46%, which outperformed the
other classifiers.

Furthermore, Silveira et al. [12] developed a CKD prediction approach using a variety
of resampling techniques and ML algorithms. The resampling techniques include the
synthetic minority oversampling technique (SMOTE) and Borderline-SMOTE, while the
classifiers include random forest, decision tree, and AdaBoost. The experimental results
showed that the decision tree with the SMOTE technique achieved the best performance
with 98.99%. Generally, these ML research works utilize many attributes such as albumin,
hemoglobin level, white blood cell count, red blood cell count, packed cell volume, blood
pressure, specific gravity, etc., to flag patients at risk of CKD, thereby allowing clinicians to
provide early and cost-efficient medical intervention. Despite the attention given to CKD
prediction using machine learning, only a few research works have focused on identifying
the most relevant features needed to improve CKD detection [13–15]. If identified correctly
in suspected CKD patients, these features could be utilized for efficient computer-aided
CKD diagnosis.

In machine learning tasks, the algorithms employ discriminative abilities of features in
classifying the samples. The ML models’ performance relies not only on the specific training
algorithm but also on the input data characteristics, such as the number of features and
the correlation between the features [16]. Moreover, in most ML applications, especially
in medical diagnosis, all the input features may not have equal importance. The goal
of feature selection is to remove redundant attributes from the input data, ensuring the
training algorithm learns the data more effectively. By removing non-informative variables,
the computational cost of building the model is reduced, leading to faster and more efficient
learning with enhanced classification performance.

Filter- and wrapper-based methods are the two widely used feature selection
mechanisms [17]. Wrapper-based feature selection techniques use a classifier to build ML
models with different predictor variables and select the variable subset that leads to the
best model. In contrast, filter-based methods are statistical techniques independent of a
learning algorithm used to compute the correlation between the predictor and independent
variables [18]. The predictor variables are scored according to their relevance to the target
variable. The variables with higher scores are then used to build the ML model. Therefore,
this research aims to use information gain (IG), a filter-based feature selection method, to
identify the most relevant features for improved CKD detection. IG is a robust algorithm
for evaluating the gain of the various features with respect to the target variable [19]. The
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attributes with the least IG values are removed, and those whose IG values are above a
particular threshold are used to train the classifiers.

Meanwhile, a significant challenge in applying machine learning algorithms for medi-
cal diagnosis is the imbalanced class problem [20,21]. Most ML classifiers underperform
when trained with imbalanced datasets. Class imbalance implies there is an uneven dis-
tribution of samples in each class. The class with the most samples is the majority class,
while the class with the lesser samples is the minority class. Imbalance learning can be
divided into data and algorithm-level approaches [22]. Data level methods are based on
resampling techniques. Several studies have employed resampling techniques such as
undersampling and oversampling to solve the class imbalance problem [23–25]. In order
to create a balanced dataset, undersampling methods remove samples from the majority
class, while oversampling techniques artificially create and add more data in the minority
class. However, there are limitations to using these resampling techniques. For example,
the samples discarded from the majority class could be vital in efficiently training the
classifiers [20]. Therefore, several studies have resorted to using algorithm-level methods
such as ensemble learning and cost-sensitive learning to effectively handle the imbalanced
data instead of data-level techniques [26–29].

Ensemble learning is a breakthrough in ML research and application, which is used
to obtain a very accurate classifier by combining two or more classifiers. Boosting [30]
and Bagging [31] are widely used ensemble learning techniques. Adaptive boosting [30]
is a type of boosting technique that creates many classifiers by assigning weights to the
training data and adjusting these weights after every boosting cycle. The wrongly classified
training instances are given higher weights in the next iteration, whereas the weight of
correctly predicted examples is decreased. However, the AdaBoost algorithm does not
treat the minority class and majority class weight updates differently when faced with
imbalanced data. Therefore, in this study, we develop an AdaBoost classifier that gives
higher weight to examples in the minority class, thereby enhancing the prediction of the
minority class samples and the overall classification performance. A cost-sensitive classifier
is obtained by biasing the weighting technique to focus more on the minority class. Recent
findings have demonstrated that cost-sensitive learning is an efficient technique suitable
for imbalanced classification problems [32–34]. The contribution of this study is to obtain
the most important CKD attributes needed to improve the performance of CKD detection
and develop a cost-sensitive AdaBoost classifier that gives more attention to samples in the
minority class.

The rest of this paper is structured as follows: Section 2 presents the materials and
methods, including an overview of the CKD dataset, the information gain technique, the
traditional AdaBoost method, the proposed cost-sensitive AdaBoost, and the performance
evaluation metrics. Section 3 presents the experimental results and discussion, while
Section 4 concludes the paper.

2. Materials and Methods

This section provides an overview of the CKD dataset and the various methods used
in the research. In particular, a detailed overview of the traditional AdaBoost algorithm
and the proposed cost-sensitive AdaBoost is presented, thereby showing the difference
between both methods.

2.1. Dataset

This study utilizes the CKD dataset prepared in 2015 by Apollo Hospitals, Tamil Nadu,
India. The dataset is publicly available at the University of California, Irvine (UCI) machine
learning repository [35]. It contains medical test results and records from 400 patients;
250 correspond to patients with CKD, and 150 correspond to patients without CKD, so the
dataset is imbalanced. There are 24 independent variables (11 numerical and 13 nominal)
and a class variable (ckd or notckd). The attributes and their corresponding descriptions
are shown in Table 1.
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Table 1. CKD dataset description.

No. Attribute Description Category Scale

f1 age Age of the patient Numerical age in years
f2 bp Blood pressure Numerical mm/Hg
f3 sg Specific gravity Nominal 1.005, 1.010, 1.015, 1.020, 1.025
f4 al Albumin Nominal 0, 1, 2, 3, 4, 5
f5 su Sugar Nominal 0, 1, 2, 3, 4, 5
f6 rbc Red blood cells Nominal normal, abnormal
f7 pc Pus cell Nominal normal, abnormal
f8 pcc Pus cell clumps Nominal present, not present
f9 ba Bacteria Nominal present, not present
f10 bgr Blood glucose random Numerical mgs/dl
f11 bu Blood urea Numerical mgs/dl
f12 sc Serum creatinine Numerical mgs/dl
f13 sod Sodium Numerical mEq/L
f14 pot Potassium Numerical mEq/L
f15 hemo Hemoglobin Numerical gms
f16 pcv Packed cell volume Numerical -
f17 wc White blood cell count Numerical cells/cumm
f18 rc Red blood cell count Numerical millions/cmm
f19 htn Hypertension Nominal yes, no
f20 dm Diabetes mellitus Nominal yes, no
f21 cad Coronary artery disease Nominal yes, no
f22 appet Appetite Nominal good, poor
f23 pe Pedal edema Nominal yes, no
f24 ane Anemia Nominal yes, no
f25 class Class Nominal ckd, notckd

Some of the features in Table 1 are briefly described as follows: Specific gravity
estimates the concentration of particles in the urine and the urine’s density relative to the
density of water. It indicates the hydration status of a patient together with the functional
ability of the patient’s kidney. Albumin is a protein found in the blood [36]. When the
kidney is damaged, it allows albumin into the urine. Higher albumin levels in the urine
could indicate the presence of CKD. Meanwhile, blood urea indicates vital information
about the functionality of the kidney. A blood urea nitrogen test measures the quantity
of urea nitrogen in a patient’s blood, and a high amount implies the kidneys are not
functioning normally. While a random blood glucose test measures the amount of sugar
circulating in a patient’s blood, and a level of 200 mg/dL or above implies the patient
has diabetes. Serum creatinine is a waste product produced by a person’s muscles [37].
A creatinine test measures the creatinine levels in the blood or urine, and high levels of
the substance imply the kidney is not functioning well enough to filter the waste from
the blood.

Furthermore, sodium is an electrolyte in the blood that helps the muscles and nerves
work effectively. A sodium blood test measures the amount of sodium in the patient’s
blood, and a very high or low amount may indicate a kidney problem, dehydration, or
other medical condition. Potassium is another electrolyte in the blood, and a very high
or low amount could signal the presence of an underlying condition. White blood cells
(WBC) protect the human body from invading pathogens. They are part of the body’s
immune system, protecting it from infections [38]. The normal range is between 4000 and
11,000 per microliter of blood. Elevated WBC count is a popular indicator of the progression
of CKD. Red blood cells (RBC) in humans deliver oxygen to the body tissues. The average
RBC count is 4.7 to 6.1 million cells per microliter for men and 4.2 to 5.4 million cells per
microliter for women. A low RBC, also called anemia, is a common complication of CKD.

Meanwhile, the data needs to be preprocessed to make it suitable for machine learning.
Therefore, all the nominal or categorical data were coded. Specifically, the attributes whose
scales are ‘normal’ and ‘abnormal’ were transformed to 1 and 0, respectively. The attributes
whose scales are ‘present’ and ‘not present’ were transformed to 1 and 0, respectively.
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Additionally, the ‘yes’ and ‘no’ scales were coded to 1 and 0, respectively. Lastly, the
attribute with ‘good’ and ‘poor’ scales was transformed to 1 and 0, respectively.

Furthermore, the dataset contains a few missing values. It is vital to appropriately deal
with missing values before building ML models because ignoring or deleting the missing
data could degrade or bias the performance of the models [39,40]. Imputation is a method
used to estimate and fill missing values in a dataset. Since the number of missing values
in our dataset is not large, the mean imputation technique is used to handle the missing
values. The mean imputation technique computes the mean of the observed values for
each variable, and the missing values are filled with the corresponding computed mean
value [41]. Meanwhile, except for the ‘age’ and binary attributes, the remaining attributes
were scaled to have values between 0 and 1 using the Min–Max Scaling technique [42].

Additionally, the clinicians at Apollo Hospitals, Tamil Nadu, India, categorized at-
tributes as normal or abnormal, present or not present, yes or no. The clinicians selected the
24 attributes representing the patient’s medical tests and records associated with chronic
kidney disease. However, the attributes do not carry equal weights in diagnosing a patient
with CKD, and some attributes are more indicative of the presence of CKD than others.
Additionally, certain attributes might be redundant and could increase the complexity of
the ML model [43]. Hence, this research employs the information gain technique to rank the
attributes according to their relevance in detecting the disease, and only the most relevant
attributes are used to build the ML model.

2.2. Information Gain

Effective feature selection could remove attributes that are less useful in obtaining an
excellent predictive model. Additionally, it is necessary to remove attributes unrelated to the
target variable because these attributes could increase the computational cost and prevent
the model from obtaining optimal performance [44]. This study utilizes the information
gain (IG) technique to extract the optimal features. IG is a type of filter-based feature selec-
tion that calculates the predictor variable’s ability to classify the dependent variable [45].
The IG method has its roots in information theory, and it calculates the statistical depen-
dence between two variables. Mathematically, the IG between two variables X and Y is
formulated as:

IG(X|Y) = H(X)− H(X|Y), (1)

where H(X) is the entropy for variable X and H(X|Y) represents the conditional entropy
for X given Y. Computing the IG value for an attribute involves calculating the entropy
of the target variable for the whole dataset and subtracting the conditional entropies for
every potential value of that attribute [46]. Furthermore, the entropy H(X) and conditional
entropy H(X|Y) are computed as:

H(X) = −∑x∈X P(x)log2(x), (2)

H(X|Y) = − ∑
x∈X

P(x) ∑
y∈Y

P(x|y)log2(P(x|y)), (3)

Hence, given two variables X and Z, a given variable Y is said to have a more sig-
nificant correlation to X than Z if IG(X|Y) > IG(Z|Y). Furthermore, IG considers every
attribute in isolation, calculates its information gain, and computes its relevance to the
target variable.

2.3. AdaBoost Algorithm

The AdaBoost algorithm is an ML technique derived from the concept of boosting.
The boosting technique primarily entails converting weak learners into strong learners [47].
Freund and Schapire [48] proposed the AdaBoost algorithm to iteratively train multiple
learning classifiers using the same training dataset. After training the weak learners, they
are combined to obtain a strong classifier. The AdaBoost procedure involves selecting
an appropriate weak learner and employing the same training dataset to train the weak
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learner iteratively to enhance its performance, as shown in Algorithm 1. Two weights
are utilized in implementing the AdaBoost algorithm; the first is the sample weight, and
the second is the weight of every weak learner [49]. The algorithm adjusts the sam-
ple weight depending on the weak classifier’s result, thereby giving more attention to
wrongly classified samples. Subsequent base learners are trained with the adjusted sam-
ples [50]. The final strong classifier is obtained by combining the output of the weak
learners using a weighted sum [51]. The AdaBoost is adaptive because subsequent weak
classifiers are trained to pay more attention to the samples that were wrongly classified by
preceding classifiers.

Algorithm 1: Conventional AdaBoost technique

Input: training dataset S = {(x1, y1), . . . , (x2, y2), . . . , (xn, yn)}, base learner h, the number of
training rounds T.
Output: the final strong classifier H.
Procedure:

1. for i = 1 : 1 : n
2. compute the weight of the sample xi: D1(i) = 1

n
3. end for
4. for t = 1 : 1 : T
5. select a training data subset X from S, fit h using X to get a weak classifier ht, compute the

classification error εt: εt = P[ht(xi) 6= yi] = ∑n
i=1 Dt(i)I[ht(xi) 6= yi] where ht(xi) denotes

the predicted label of xi using the weak classifier ht, and yi denotes the actual label of xi.

6. compute the weight of ht : αt =
1
2 ln
(

1−εt
εt

)
7. update the weight of all the instances in S: for i = 1 : 1 : n Dt+1(i) =

Dt(i)
Zt

exp(−αtyiht(xi))
where Zt is a normalization factor and is calculated as: Zt = ∑n

i=1 Dt(i) exp(−αtyiht(xi))
8. end for
9. end for
10. assuming H(x) is the class label for an instance x; after the iterations, the final classifier H is

obtained as: H(x) = sign
(

∑T
t=1 αtht(x)

)

2.4. Proposed Cost-Sensitive AdaBoost

At every iteration, the AdaBoost algorithm increases the weights of the misclassified
training samples and decreases that of the samples that were predicted correctly. This
weighting method distinguishes instances as correctly or wrongly classified, and the exam-
ples from both classes are treated equally. For example, the weights of incorrectly classified
instances from both classes are increased by a similar ratio. The weights of the samples that
were predicted correctly from both classes are decreased by a similar ratio [52]. However,
in imbalance classification, the goal is to improve the classifier’s prediction performance on
the minority class. Hence, a suitable weighting approach will identify the different types of
instances and give more weight to the samples with greater detection importance, i.e., the
minority class.

From the AdaBoost learning method (Algorithm 1), cost items (βi) are added to the
weight update equation to bias the weighting technique. The rate of correct and incorrect
predictions of the various classes are included as part of βi. The cost of false positive is
denoted as c10 and the cost of false negative is denoted as c01, while the cost of true positive
and true negative are denoted as c11 and c00, respectively [53]. The weight update in the
traditional AdaBoost takes into account the overall error rate only [54]. However, in the
cost-sensitive AdaBoost, the error rate of each class is considered. In this new weighting
strategy, the weights of the minority class examples are higher compared to the majority
class examples. The new cost-sensitive AdaBoost is presented in Algorithm 2.
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Algorithm 2: Cost-Sensitive AdaBoost

Input: training dataset S = {(x1, y1), . . . , (x2, y2), . . . , (xn, yn)}, base learner h, the number of
iterations T.
Output: the final strong classifier H.
Procedure:

1. for i = 1 : 1 : n
2. compute the weight of the sample xi: D1(i) = 1

n
3. end for
4. for t = 1 : 1 : T
5. select a training data subset X from S, fit h using X to get a weak classifier ht
6. let n+ and n− indicate the positive and negative classes, respectively. Compute the error

rate εt of the base learner for both the positive class ε
p
t and negative class εn

t : εt =
(

ε
p
t +εn

t
2

)
,

where ε
p
t = P[ht(xi) 6= yi] =

n+
∑

i=1
Dt(i)I[ht(xi) 6= yi] and εn

t = P[ht(xi) 6= yi] =

n−
∑

i=1
Dt(i)I[ht(xi) 6= yi]

7. compute the weight of ht: αt =
1
2 ln
(

1−εt
εt

)
8. update the weight of all the instances in S: for i = 1 : 1 : n

Dt+1(i) =
Dt(i)

Zt
exp(−αtβiyiht(xi)) where Zt is a normalization factor and is calculated as:

Zt = ∑n
i=1 Dt(i) exp(−αtβiyiht(xi)) and βi is calculated as:

βi =



TPt
FPt+TPt

c10, i f yi = 1, ht(xi) = −1
TNt

FNt+TNt
c01, i f yi = −1, ht(xi) = 1

TPt
FPt+TPt

c11, i f yi = 1, ht(xi) = 1
TNt

FNt+TNt
c00, i f yi = −1, ht(xi) = −1

where TPt, TNt, FPt, FNt are true positive,

true negative, false positive, and false negative values for iteration t. Meanwhile, c10, c01,
c11, c00 are the cost-sensitive factors, where c10 > c00 and c01 > c11.

9. end for
10. end for

11. the final classifier is obtained as follows: H(x) = sign
(

∑T
t=1 αtht(x)

)

By giving higher weights to samples in the minority class, the weak classifiers tend to
focus more on the misclassification of examples in that class, thereby accurately classifying
more instances at each iteration. Therefore, the final strong classifier will obtain more
correct predictions. The architecture of the proposed approach is shown in Figure 1.

2.5. Performance Evaluation Metrics

The dataset used in this research comprises two classes, ckd and notckd classes. The
ckd-labeled data are the positive patients, while the notckd-labeled data are the negative
patients. Meanwhile, accuracy (ACC), sensitivity (SEN), and specificity (SPE) are used to
assess the performance of the classifiers. Accuracy is the total number of correct predictions
divided by the total number of predictions made by the classifier. Sensitivity or true positive
rate is the number of correct positive predictions divided by the number of positive cases
in the dataset; it measures the ability of the classifier to correctly detect those with the
disease [55]. Specificity measures the classifier’s ability to correctly identify people without
the disease, i.e., negative instances. These metrics are computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

Sensitivity =
TP

TP + FN
, (5)

Specificity =
TN

TN + FP
, (6)
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where true positive (TP) represents the ckd instances that were correctly classified, and
false-negative (FN) represents the ckd instances that were wrongly classified. True negative
(TN) denotes the notckd samples that were correctly classified, and false-positive (FP)
indicates the notckd instances that were wrongly classified [56]. Additionally, this research
utilizes the receiver operating characteristic (ROC) curve and the area under the ROC curve
(AUC) to further evaluate the classifiers’ performance. The ROC curve is a plot of the
true positive rate (TPR) against the false positive rate (FPR) at different threshold values.
It shows the ability of the classifier to distinguish between the ckd and notckd classes.
Meanwhile, the AUC is mainly utilized to summarize the ROC curve, and it has a value
between 0 and 1 that shows the classifiers’ ability to differentiate between both classes [57].
The higher the AUC value, the better the classifiers can distinguish between the ckd and
notckd classes.
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3. Results

In this section, the experimental results are presented and discussed. All experiments
used the preprocessed data, as discussed in Section 2.1, and the ML models were devel-
oped using scikit-learn [58], a machine learning library for Python programming. The
experiments were conducted using a computer with the following specifications: Intel(R)
Core(TM) i7-113H @ 3.30 GHz, 4 Core(s), and 16 GB RAM. Furthermore, to have a base-
line for comparing the proposed cost-sensitive AdaBoost (CS AdaBoost), this research
implements the traditional AdaBoost [30] presented in Algorithm 1 and other well-known
classifiers, including logistic regression [59], decision tree [60], XGBoost [61], random
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forest [62], and SVM [63]. The classifiers are trained with the complete feature set and
the reduced feature set to demonstrate the impact of the feature selection. Meanwhile,
the 10-fold cross-validation method is employed to evaluate the performance of the var-
ious models. The decision tree algorithm is the base learner for the AdaBoost and CS
AdaBoost implementations.

3.1. Performance of the Classifiers without Feature Selection

This subsection presents the experimental results obtained when the complete fea-
ture set was used to train the various classifiers. These results are tabulated in Table 2.
Additionally, Figure 2 shows the AUC values and the ROC curves of the different classifiers.

Table 2. Performance of the classifiers trained with the complete feature set.

Classifier ACC SEN SPE AUC

Logistic regression 0.940 0.948 0.933 0.940
Decision tree 0.902 0.932 0.890 0.910

XGBoost 0.958 0.964 0.942 0.970
Random forest 0.952 0.955 0.940 0.960

SVM 0.937 0.943 0.930 0.940
AdaBoost 0.930 0.941 0.935 0.950

Proposed CS AdaBoost 0.967 0.975 0.960 0.980
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Table 2 and Figure 2 show that the proposed cost-sensitive AdaBoost obtained ex-
cellent performance by outperforming the traditional AdaBoost and the other classifiers,
having obtained an AUC, accuracy, sensitivity, and specificity of 0.980, 0.967, 0.975, and
0.960, respectively.

3.2. Performance of the Classifiers after Feature Selection

The information-gain-based feature selection ranked the chronic kidney disease at-
tributes. This step aims to select the features with the highest information gain with respect
to the target variable. The ranked features and their IG values are shown in Table 3. After
obtaining the IG values of the various features, the standard deviation [19] of the values
is computed, which serves as the threshold value for the feature selection. The standard
deviation measure has been used in recent research to obtain a reasonable threshold for
feature selection [19,64,65]. The threshold value obtained is 0.156. Therefore, the IG values
equal to or greater than 0.156 are selected as the informative features and used for building
the models. In contrast, the attributes with IG values lower than the threshold are discarded.



Bioengineering 2022, 9, 350 10 of 15

Hence, from Table 3, the top 18 features are selected as the optimal feature set since their IG
values (rounded to three decimal values) are greater than 0.156, and the following features
are discarded: f22, f5, f24, f8, f9, and f21.

Table 3. Feature ranking.

No. Feature Name IG Value

f4 al 0.598
f15 hemo 0.581
f16 pcv 0.526
f18 rc 0.482
f12 sc 0.474
f10 bgr 0.422
f3 sg 0.392
f11 bu 0.389
f13 sod 0.344
f17 wc 0.325
f19 htn 0.270
f14 pot 0.266
f1 age 0.253
f7 pc 0.251
f20 dm 0.215
f2 bp 0.209
f6 rbc 0.206
f23 pe 0.184
f22 appet 0.155
f5 su 0.135
f24 ane 0.128
f8 pcc 0.097
f9 ba 0.069
f21 cad 0.065

To demonstrate the effectiveness of the feature selection, the reduced feature set
is used to train the proposed CS AdaBoost and the other classifiers. The experimental
results are shown in Table 4. Additionally, the ROC curve and the various AUC values
are shown in Figure 3. The experimental results in Table 4 and Figure 3 show that the
proposed CS AdaBoost obtained an AUC, accuracy, sensitivity, and specificity of 0.990,
0.998, 1.000, and 0.998, respectively, which outperformed the logistic regression, decision
tree, XGBoost, random forest, SVM, and conventional AdaBoost. Secondly, it is observed
that the performance of the various classifiers in Table 4 is better than their corresponding
performance in Table 2. This improvement demonstrates the effectiveness of the feature
selection step. Therefore, the combination of feature selection and cost-sensitive AdaBoost
is an effective method for predicting CKD.

Table 4. Performance of the classifiers trained with the reduced feature set.

Classifier ACC SEN SPE AUC

Logistic regression 0.961 0.959 0.961 0.970
Decision tree 0.940 0.935 0.948 0.940

XGBoost 0.989 0.990 0.986 0.990
Random forest 0.977 0.981 0.973 0.980

SVM 0.954 0.957 0.961 0.960
AdaBoost 0.964 0.960 0.968 0.970

Proposed CS AdaBoost 0.998 1.000 0.998 0.990
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3.3. Comparison with Other CKD Prediction Studies

Even though the proposed approach showed superior performance to the other algo-
rithms, it is not enough to conclude its robustness. It is, however, necessary to compare
it with other state-of-the-art methods in the literature. Hence, the proposed approach
is compared with the following methods: a probabilistic neural network (PNN) [66], an
enhanced sparse autoencoder (SAE) neural network [10], a naïve Bayes (NB) classifier
with feature selection [67], a feature selection method based on cost-sensitive ensemble
and random forest [3], a linear support vector machine (LSVM) and synthetic minority
oversampling technique (SMOTE) [11], a cost-sensitive random forest [68], a feature se-
lection method based on recursive feature elimination (RFE) and artificial neural network
(ANN) [69], a correlation-based feature selection (CFS) and ANN [69]. The other methods
include optimal subset regression (OSR) and random forest [9], an approach to identify
the essential CKD features using improved linear discriminant analysis (LDA) [13], a deep
belief network (DBN) with Softmax classifier [70], a random forest (RF) classifier with
feature selection (FS) [71], a model based on decision tree and the SMOTE technique [12], a
logistic regression (LR) classifier with recursive feature elimination (RFE) technique [14],
and an XGBoost model with a feature selection approach combining the extra tree classifier
(ETC), univariate selection (US), and RFE [15].

The proposed approach based on cost-sensitive AdaBoost and feature selection achieved
excellent performance compared to several state-of-the-art methods in the literature, as shown
in Table 5.

3.4. Discussion

This study aimed to solve two problems: first, to select the most informative features
to enable the effective detection of CKD. The second aim was to develop an effective
cost-sensitive AdaBoost classifier that accurately classifies samples in the minority class.
The use of more features than necessary sometimes affects ML classifiers’ performance and
increases the computational cost of training the models. Hence, this research employed the
IG-based feature selection method to obtain the optimal feature set. Furthermore, seven
classifiers were used in this study, trained using the complete and the reduced feature sets.
From the experimental results, the proposed framework showed improved classification
performance with the reduced feature set, i.e., 18 out of 24 input variables. Additionally,
the models trained with the reduced feature set performed better than those trained with
the complete feature set. Remarkably, the proposed method obtained higher performance
than the other classifiers.
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Table 5. Comparison with other studies.

Reference Method ACC SEN SPE AUC

Rady and Anwar [66] PNN 0.969 0.987 0.964 -
Ebiaredoh-Mienye et al. [10] SAE 0.980 0.970 - -

Almustafa [67] NB and FS 0.976 0.988 - 0.989
Ali et al. [3] Cost-sensitive ensemble with RF 0.967 0.986 0.935 0.982

Chittora et al. [11] LSVM and SMOTE 0.988 1.000 - -
Mienye and Sun [68] Cost-sensitive RF 0.986 1.000 - -

Akter et al. [69] RFE and ANN 0.970 0.980 - 0.980
Akter et al. [69] CFS and ANN 0.960 0.970 - 0.970

Qin et al. [9] OSR and RF 0.995 0.993 - -
Nishanth and Thiruvaran [13] Enhanced LDA 0.980 0.960 - -

Elkholy et al. [70] DBN with Softmax classifier 0.985 0.875 - -
Rashed-Al-Mahfuz et al. [71] RF and FS 0.990 0.979 0.996 0.987

Silveira et al. [12] Decision tree and SMOTE 0.989 0.990 - -
Motwani et al. [14] LR and RFE 0.983 0.990 - -

Ogunleye and Wang [15] XGBoost and ETC-US-RFE 0.976 1.000 0.917 0.990
This paper Proposed CS AdaBoost 0.998 1.000 0.998 0.990

Furthermore, the features selected by the IG technique were similar to current medical
practices. For example, the IG technique ranked albumin, hemoglobin, packed cell volume,
red blood cell count, and serum creatinine as the most informative features, and numerous
studies have identified a strong correlation between these variables and chronic kidney
disease [71–74].

Meanwhile, the class imbalance problem is common in most real-world classification
tasks. Another objective of this study was to develop a robust classifier to prevent the
misclassification of the minority class that occurs when classifiers are trained using im-
balanced data. Hence, this study developed a cost-sensitive AdaBoost classifier, giving
more attention to the minority class. The experimental results indicate that the proposed
method achieved a higher classification performance than the baseline classifiers and
techniques in recent literature. Secondly, the results demonstrate that the combination
of the information-gain-based feature selection and the cost-sensitive AdaBoost classifier
significantly improved the detection of chronic kidney disease.

4. Conclusions

This paper proposed an approach that combines information-gain-based feature se-
lection and a cost-sensitive AdaBoost classifier to improve the detection of chronic kidney
disease. Six other machine learning classifiers were implemented as the baseline for per-
formance comparison. The classifiers include logistic regression, decision tree, random
forest, SVM, XGBoost, and the traditional AdaBoost. Firstly, the IG technique was used to
compute and rank the importance of the various attributes. Secondly, the classifiers were
trained with the reduced and complete feature sets. The experimental results show that
selected features enhanced the performance of the classifiers.

Furthermore, the proposed cost-sensitive AdaBoost achieved superior performance to
the other classifiers and methods in recent literature. Therefore, combining the IG-based
feature selection technique and cost-sensitive AdaBoost is an effective approach for CKD
detection and can be potentially applied for early detection of CKD through computer-
aided diagnosis. Future research will focus on collecting large amounts of data to train ML
models, including datasets that allow for the prediction of the disease severity, duration of
the disease, and the age of onset.
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