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ABSTRACT Chronic kidney disease (CKD) is a global health problem with high morbidity and mortality

rate, and it induces other diseases. Since there are no obvious symptoms during the early stages of CKD,

patients often fail to notice the disease. Early detection of CKD enables patients to receive timely treatment

to ameliorate the progression of this disease. Machine learning models can effectively aid clinicians achieve

this goal due to their fast and accurate recognition performance. In this study, we propose a machine

learningmethodology for diagnosing CKD. The CKD data set was obtained from the University of California

Irvine (UCI) machine learning repository, which has a large number of missing values. KNN imputation was

used to fill in themissing values, which selects several complete samples with themost similar measurements

to process the missing data for each incomplete sample. Missing values are usually seen in real-life medical

situations because patients may miss some measurements for various reasons. After effectively filling out

the incomplete data set, six machine learning algorithms (logistic regression, random forest, support vector

machine, k-nearest neighbor, naive Bayes classifier and feed forward neural network) were used to establish

models. Among these machine learning models, random forest achieved the best performance with 99.75%

diagnosis accuracy. By analyzing the misjudgments generated by the established models, we proposed an

integrated model that combines logistic regression and random forest by using perceptron, which could

achieve an average accuracy of 99.83% after ten times of simulation. Hence, we speculated that this

methodology could be applicable to more complicated clinical data for disease diagnosis.

INDEX TERMS Chronic kidney disease, machine learning, KNN imputation, integrated model.

I. INTRODUCTION

Chronic kidney disease (CKD) is a global public health prob-

lem affecting approximately 10% of the world’s population

[1], [2]. The percentage of prevalence of CKD in China is

10.8% [3], and the range of prevalence is 10%-15% in the

United States [4]. According to another study, this percentage

has reached 14.7% in the Mexican adult general population

[5]. This disease is characterised by a slow deterioration in

renal function, which eventually causes a complete loss of

renal function. CKD does not show obvious symptoms in its

early stages. Therefore, the disease may not be detected until

the kidney loses about 25% of its function [6]. In addition,

CKD has high morbidity and mortality, with a global impact
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on the human body [7]. It can induce the occurrence of

cardiovascular disease [8], [9]. CKD is a progressive and

irreversible pathologic syndrome [10]. Hence, the prediction

and diagnosis of CKD in its early stages is quite essential,

it may be able to enable patients to receive timely treatment

to ameliorate the progression of the disease.

Machine learning refers to a computer program, which

calculates and deduces the information related to the task

and obtains the characteristics of the corresponding pattern

[11]. This technology can achieve accurate and economical

diagnoses of diseases; hence, it might be a promising method

for diagnosing CKD. It has become a new kind of medical

tool with the development of information technology [12]

and has a broad application prospect because of the rapid

development of electronic health record [13]. In the medical

field, machine learning has already been used to detect human
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body status [14], analyze the relevant factors of the disease

[15] and diagnose various diseases. For example, the models

built by machine learning algorithms were used to diagnose

heart disease [16], [17], diabetes and retinopathy [18], [19],

acute kidney injury [20], [21], cancer [22] and other diseases

[23], [24]. In these models, algorithms based on regression,

tree, probability, decision surface and neural network were

often effective. In the field of CKD diagnosis, Hodneland

et al. utilized image registration to detect renal morphologic

changes [25]. Vasquez-Morales et al. established a classifier

based on neural network using large-scale CKD data, and

the accuracy of the model on their test data was 95% [26].

In addition, most of the previous studies utilized the CKD

data set that was obtained from the UCI machine learning

repository. Chen et al. used k-nearest neighbor (KNN), sup-

port vector machine (SVM) and soft independent modelling

of class analogy to diagnose CKD, KNN and SVM achieved

the highest accuracy of 99.7% [27]. In addition, they used

fuzzy rule-building expert system, fuzzy optimal associative

memory and partial least squares discriminant analysis to

diagnose CKD, and the range of accuracy in thosemodels was

95.5%-99.6% [1]. Their studies have achieved good results

in the diagnosis of CKD. In the above models, the mean

imputation is used to fill in the missing values and it depends

on the diagnostic categories of the samples. As a result,

their method could not be used when the diagnostic results

of the samples are unknown. In reality, patients might miss

some measurements for various reasons before diagnosing.

In addition, for missing values in categorical variables, data

obtained using mean imputation might have a large deviation

from the actual values. For example, for variables with only

two categories, we set the categories to 0 and 1, but the

mean of the variables might be between 0 and 1. Polat et al.

developed an SVM based on feature selection technology,

the proposed models reduced the computational cost through

feature selection, and the range of accuracy in those models

was from 97.75%-98.5% [6]. J. Aljaaf et al. used novel mul-

tiple imputation to fill in the missing values, and then MLP

neural network (MLP) achieved an accuracy of 98.1% [28].

Subas et al. used MLP, SVM, KNN, C4.5 decision tree and

random forest (RF) to diagnose CKD, and the RF achieved an

accuracy of 100% [2]. In the models established by Boukenze

et al., MLP achieved the highest accuracy of 99.75% [29].

The studies of [2], [29] focus mainly on the establishment

of models and achieve an ideal result. However, a complete

process of filling in the missing values is not described in

detail, and no feature selection technology is used to select

predictors as well. Almansour et al. used SVM and neural

network to diagnose CKD, and the accuracy of the models

was 97.75% and 99.75%, respectively [30]. In the models

established by Gunarathne et al., zero was used to fill out the

missing values and decision forest achieved the best perfor-

mance with the accuracy was 99.1% [31].

To summarize the previous CKD diagnostic models,

we find that most of them suffering from either the method

used to impute missing values has a limited application

range or relatively low accuracy. Therefore, in this work,

we propose a methodology to extend application range of the

CKDdiagnosticmodels. At the same time, the accuracy of the

model is further improved. The contributions of the proposed

work are as follows.

1) we used KNN imputation to fill in the missing values in

the data set, which could be applied to the data set with the

diagnostic categories are unknown.

2) Logistic regression (LOG), RF, SVM, KNN, naive

Bayes classifier (NB) and feed forward neural network (FNN)

were used to establish CKD diagnostic models on the com-

plete CKD data sets. The models with better performance

were extracted for misjudgment analysis.

3) An integrated model that combines LOG and RF by

using perceptron was established and it improved the perfor-

mance of the component models in CKD diagnosis after the

missing values were filled by KNN imputation.

KNN imputation is used to fill in the missing values. To our

knowledge, this is the first time that KNN imputation has

been used for the diagnosis of CKD. In addition, building an

integrated model is also a good way to improve the perfor-

mance of separate individual models. The proposed method-

ology might effectively deal with the scene where patients

are missing certain measurements before being diagnosed.

In addition, the resulting integrated model shows a higher

accuracy. Therefore, it is speculated that this methodology

might be applicable to the clinical data in the actual medical

diagnosis.

The rest of the paper is organized as follows. In Section II,

we describe the preliminaries. The establishments of the

individual model and the integrated model are described in

Section III. In Section IV, we evaluate and discuss the perfor-

mance of the integrated model. In Section V, we summarize

the work and its contributions, including future works.

II. PRELIMINARIES

In this section, we describe the preliminaries before estab-

lishing the models, including the description of the data set

and the operating environment, the imputation of the missing

values and the extraction of the feature vector.

A. DATA DESCRIPTION AND OPERATING ENVIRONMENT

The CKD data set used in this study was obtained from the

UCI machine learning repository [32], which was collected

from hospital and donated by Soundarapandian et al. on 3rd

July, 2015. The data set contains 400 samples. In this CKD

data set, each sample has 24 predictive variables or features

(11 numerical variables and 13 categorical (nominal) vari-

ables) and a categorical response variable (class). Each class

has two values, namely, ckd (sample with CKD) and notckd

(sample without CKD). In the 400 samples, 250 samples

belong to the category of ckd, whereas 150 samples belong to

the category of notckd. It is worth mentioning that there is a

large number of missing values in the data. The details of each

variable are listed in Table 1. All of the algorithms were con-

ducted in R (version 3.5.2), and the packages used included

20992 VOLUME 8, 2020



J. Qin et al.: Machine Learning Methodology for Diagnosing CKD

TABLE 1. Details of each variable in the original CKD data set.

Hmisc(4.2-0), DMwR(0.4.1), leaps(3.0), randomForest

(4.6-14), caret(6.0-81), e1071(1.7-0.1), class(7.3-14) and

neuralnet(1.44.2).

B. DATA PROCESSING

Each categorical (nominal) variable was coded to facilitate

the processing in a computer. For the values of rbc and pc,

normal and abnormal were coded as 1 and 0, respectively. For

the values of pcc and ba, present and notpresent were coded

as 1 and 0, respectively. For the values of htn, dm, cad, pe and

ane, yes and no were coded as 1 and 0, respectively. For the

value of appet, good and poor were coded as 1 and 0, respec-

tively. Although the original data description defines three

variables sg, al and su as categorical types, the values of these

three variables are still numeric based, thus these variables

were treated as numeric variables. All the categorical vari-

ables were transformed into factors. Each sample was given

an independent number that ranged from 1 to 400. There is

a large number of missing values in the data set, and the

number of complete instances is 158. In general, the patients

might miss some measurements for various reasons before

making a diagnosis. Thus, missing values will appear in the

data when the diagnostic categories of samples are unknown,

and a corresponding imputation method is needed.

After encoding the categorical variables, the missing val-

ues in the original CKD data set were processed and filled at

first. KNN imputation was used in this study, and it selects the

K complete samples with the shortest Euclidean distance for

each sample withmissing values. For the numerical variables,

the missing values are filled using the median of the corre-

sponding variable in K complete samples, and for the cate-

gory variables, themissing values are filled using the category

that has the highest frequency in the corresponding variable

in K complete samples. For physiological measurements,

people with similar physical conditions should have similar

physiological measurements, which is the reason for using

the method based on a KNN to fill in the missing values. For

example, the physiological measurements should be stable

within a certain range for healthy individuals. For diseased

individuals, the physiological measurements of the person

with a similar degree of the same disease should be similar.

In particular, the differences in physiological measurements

data should not be large for people with similar situations.

This method should also be adapted to the diagnostic data

of other diseases, as it has been applied in the area of

hyperuricemia [33].

When the median of corresponding variables in K com-

plete samples are selected, K is preferably taken as an odd

number because in this case the middle number is naturally

the median when the values of the numeric variables in the K

complete samples are sorted by numerical value. The selec-

tion of K should neither be too large nor too small. An exces-

sively large K value may ignore the inconspicuous mode,

which might be important. Conversely, an excessively small

K value causes noise and the abnormal data affects the filling

of the missing values exceedingly. Therefore, the values of K

in this work were chosen as 3, 5, 7, 9 and 11. As a result, five

complete CKD data sets were generated. In addition, we also

proved the effectiveness of KNN imputation by comparing it

with two other methods in section III. One is to use random

values to fill in the missing values, the other is to use mean

and mode of the corresponding variables to fill in missing

values of continuous and categorical variables, respectively.

C. EXTRACTING FEATURE VECTORS OR PREDICTORS

Extracting feature vectors or predictors could remove vari-

ables that are neither useful for prediction nor related to

response variables and thus prevent these unrelated variables
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FIGURE 1. The results of important variables extraction by using optimal subset regression at K = 9.

FIGURE 2. The results of important variables extraction by RF at K = 9.

from interfering with the model construction, which causes

the models to make an accurate prediction [34]. Herein,

we used optimal subset regression and RF to extract the

variables that are most meaningful to the prediction. Opti-

mal subset regression detects the model performance of all

possible combinations of predictors and selects the best com-

bination of variables. RF detects the contribution of each

variable to the reduction in the Gini index. The larger the Gini

index, the higher the uncertainty in classifying the samples.

Therefore, the variables with contribution of 0 are treated as

redundant variables. The step of feature extraction was run on

each complete data set. Images obtained on one complete data

set are shown in Figs. 1 and 2, and this data set was obtained

by KNN imputation when K equaling to 9.

Fig. 1 represents the optimal combination of variables in

the case of selecting one to all variables when the optimal

subset regression was used. The vertical axis represents vari-

ables. The horizontal axis is the adjusted r-squared which

represents the degree to which the combination of variables

explains the response variable. To make it easy to distin-

guish each combination of variables, we used four colors

(red, green, blue and black) to mark the selected variables.

The combinations are ranked from left to right by the degree

of explanations to the response variable and the right-most

combination has the strongest interception to the response

variable. Since the space is limited, the values represented by

the horizontal axis in Fig. 1 are retained in two decimal places.

The right-most combinations of variables in the images which

were obtained by the optimal subset regression on each com-

plete data set are shown in Table 2. For the complete data sets

obtained by the KNN imputation, we selected the intersection

of the optimal combinations on all complete data sets as

the extracted combination of variables to obtain a uniform

combination. In Table 2, for the complete data sets obtained

by the KNN imputation, we used the intersection (bp, sg, al,

bu, hemo, htn, dm, appet) to establish the models. For the

complete data set obtained by the mean andmode imputation,

the combination of the last row in Table 2 was used. For the

complete data sets obtained by random imputation, we used

the corresponding optimal combination obtained from each

complete data set.

The result of feature extraction of RF is represented

in Fig. 2, the vertical axis represents the variables, and the

horizontal axis represents the reduced Gini index. The larger

the reduced Gini index, the stronger the predictability of the

variable to the response variable. When the RF was used to

remove the variables with the contribution of zero, no matter

which method was used to fill in the missing values, the vari-

ables with contribution of zero were the same, including pcc,

ba and cad. Therefore, when the RF was used to extract the

variables, all variables were selected expect pcc, ba and cad.
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TABLE 2. The top combinations of variables on the complete data sets.

TABLE 3. The template of confusion matrix in this study.

D. PERFORMANCE INDICATORS

In this study, ckd was set to be positive and notckd was set

to be negative. The confusion matrix was used to show the

specific results and evaluate the performance of the machine

learning models. The template of the confusion matrix is

shown in Table 3.

True positive (TP) indicates the ckd samples were correctly

diagnosed. False negative (FN) indicates the ckd samples

were incorrectly diagnosed. False positive (FP) indicates

the notckd samples were incorrectly diagnosed. True nega-

tive (TN) indicates the notckd samples were correctly diag-

nosed. Accuracy, sensitivity, specificity, precision, recall and

F1 score were used to evaluate the performance of the model.

They are calculated using the following equations:

accuracy =
TP+ TN

TP+ FN + FP+ TN
(1)

recall = sensitivity =
TP

TP+ FN
(2)

specificity =
TN

FP+ TN
(3)

precision =
TP

TP+ FP
(4)

F1 score = 2 ×
precision× recall

precision+ recall
(5)

III. PROPOSED MODEL

In this section, the classifiers were first established by

different machine learning algorithms to diagnose the data

samples. Among these models, those with better perfor-

mance were selected as potential components. By analyzing

their misjudgments, the component models were determined.

An integrated model was then established to achieve higher

performance.

A. ESTABLISHING AND EVALUATING INDIVIDUAL MODELS

The following machine learning models have been obtained

by using the corresponding subset of features or predictors on

the complete CKD data sets for diagnosing CKD.

1) Regression-based model: LOG

2) Tree-based model: RF

3) Decision plane-based model: SVM

4) Distance-based model: KNN

5) Probability-based model: NB

6) Neural network: FNN

Generally, in disease diagnosis, diagnostic samples are

distributed in amultidimensional space. This space comprises

predictors that are used for data classification (ckd or notckd).

Samples of data in the space are clustered in different regions

due to their different categories. Therefore, there is a bound-

ary between the two categories, and the distances between

samples in the same category are smaller. According to the

effectiveness of classification, we choose the aforementioned

methods for disease diagnosis. LOG is based on linear regres-

sion, and it obtains the weight of each predictor and a bias.

If the sum of the effects of all predictors exceeds a threshold,

the category of the sample will be classified as ckd or notckd.

RF generates a large number of decision trees by randomly

sampling training samples and predictors. Each decision tree

is trained to find a boundary that maximises the difference

between ckd and notckd. The final decision is determined

by the predictions of all trees in the disease diagnosis. SVM

divides different kinds of samples by establishing a deci-

sion surface in a multidimensional space that comprises the

predictors of the samples. KNN finds the nearest training

samples by calculating the distances between the test sample

and the training samples and then determines the diagnostic

category by voting. Naive Bayes classifier calculates the

conditional probabilities of the sample under the interval

by the number of ckd and notckd samples in each different

measurement interval. FNN can analyse non-linear relation-

ships in the data sets due to its complex structure, and the

sigmoid activation function was used in the hidden layer and

the output layer.

To evaluate model performance comprehensively, in the

case of retaining the sample distribution in the original data,

a complete data set was divided into four subsets evenly.

For all of the above models, each subset was utilized once

for testing, and other subsets were utilized for training,

the overall result was taken as the final performance. With

the exception of RF, the rest of the models were established

using the selected variables by feature extraction. RF does

not require prior feature extraction, because predictors are

selected randomly when each decision tree is established.

In addition, when using KNN and FNN, all the categorical
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TABLE 4. The accuracy of two types of RF after the KNN imputation was
run.

variables were converted into numeric types: categories 0 and

1 were converted to values 0 and 1, respectively, and the

complete data sets were then normalised with the mean that is

equal to 0 and the standard deviation that is equal to 1. Details

of all are as follows:

1) The output of LOG was the probability that the sample

belongs to notckd, and the threshold was set to 0.5.

2) RF was established using all variables. Two strategies

were used to determine the number of decision trees gen-

erated. One is to use the default 500 trees and the other is

to use the number of trees corresponding to the minimum

error in the training stage. The RF was established using both

strategies and evaluated on the data sets obtained by KNN

imputation. The same random number seed 1234 was used to

divide data and establish model, and the accuracy is shown

in Table 4. It can be seen that the default number of trees is

a better choice, therefore we selected the default 500 trees to

establish RF.

3) The models of SVM were generated by using the RBF

kernel function, and the function is described as follow:

K 〈x1, x2〉 = e−γ ‖x1−x2‖
2

(6)

where γ was set to [0.1, 0.5, 1, 2, 3, 4]. Parameter C

represents the weight of misjudgment loss, and it was set

to [0.5, 1, 2, 3]. In each calculation of the model training,

the algorithm selects the best combination of parameters to

establish the model by grid search.

4) For the NB, the value of Laplace was equal to 1.

5) For the KNN, due to the nearest Euclidean distance

with the detected sample, when the number of samples that

are selected in training data set is an even number, the algo-

rithm randomly selects a category as the output result of

the detected sample in the situation wherein the number of

selected samples belonging to ckd and notckd are the same.

To avoid this in the work, the nearest neighbor parameter was

set to [1, 3, 5, . . . , 19]. In each calculation of model training,

the algorithm selected the best parameter to establish the

model by grid search.

6) For the FNN, the network had a hidden layer. Presently,

there is no clear theory in determining the best number of

hidden layer nodes in a neural network. Amethod proposed in

the previous study that was used to evaluate the performance

of neural networks by increasing the number of hidden layer

nodes one by one [35] was used in this study. The number of

hidden layer nodes was increased one by one from 1 to 30.

Then, the best result was selected.

To ensure the repeatability and comparability of the results,

in the division of data, the establishment of RF with FNN,

and the selection of the best parameters of SVM with KNN,

the same seed of 1234 was used. For the random imputation,

TABLE 5. The accuracy (%) of the basic models after the optimal subset
regression.

TABLE 6. The accuracy (%) of the basic models after the features
extraction of RF was run.

the step of feature extraction was run on the complete data set

obtained. Then, the models were established and evaluated

by using the extracted features. Because of the randomness

of the random imputation, the whole process was repeated

five times to get the average result. For the KNN imputation

and the mean and mode imputation, due to the certainty

of data, the evaluation of models was executed once. After

the feature extraction methods of optimal subset regression

and RF were run, the accuracy of the basic models on

the complete data sets are shown in Table 5 and Table 6,

respectively.

It can been seen from Tables 5 and 6 that the optimal subset

regression is more suitable for LOG and SVM when the

KNN imputation is used, and the feature extraction method

of RF is more suitable for FNN and KNN. When the KNN

imputation is used, the accuracy of LOG and SVM is sig-

nificantly improved (Table 5). In Table 6, the accuracy of

LOG and SVM is relatively low, which might be due to the

fact that there are too many redundant variables compared

to the optimal subset regression. The accuracy of FNN is

slightly improved and RF shows better performance when

the KNN imputation is used both in Tables 5 and 6. For the

NB and the KNN, the performance of the models when using

KNN imputation is not very ideal compared to using random

imputation or mean and mode imputation in Tables 5 and 6.

The above result also proves the validity of the KNN impu-

tation, since KNN imputation does improve the accuracy of

some models, such as LOG, RF and SVM (Table 5). From

Tables 5 and 6, LOG and SVM with the use of optimal

subset regression, KNN and FNN with the use of the feature

extraction of random forest and RF have better performance.

Therefore, they are selected as the potential component

models.
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TABLE 7. The numbers of misjudgments of the extracted models.

B. MISJUDGMENT ANALYSIS AND SELECTING

COMPONENT MODELS

After evaluating the above models, the potential component

models were extracted for misjudgment analysis to determine

which would be used as the components. The misjudgment

analysis here refers to find out and compare the samples

misjudged by different models, and then determine which

model is suitable to establish the final integrated model.

The misjudgment analysis was performed on the extracted

models. The prerequisite for generating an integrated model

is that the misjudged samples from each component model

are different. If each component model misjudges the same

samples, the generated integrated model would not make a

correct judgement for the samples either. When the data were

read, each sample was given a unique number ranging from

1 to 400. The numbers of misjudgments for the extracted

models on each complete data are shown in Table 7, and the

black part indicates that the samples were misjudged by other

models except FNN.

In Table 7, for the FNN, it can be seen that most of

the misjudgments are simultaneously misjudged by other

models. In addition, the performance of FNN is affected

by the number of nodes in the hidden layer. It is not easy

to establish a unified model for different data. Therefore,

the FNN was excluded firstly. For the best model (RF), when

K equaling to 7, only one misjudgment is simultaneously

misjudged by the LOG. In other cases, all the samples that

are misjudged by RF can be correctly judged by the rest of

the models. Hence, the combinations of the RF with the rest

of the models could be used to establish an integrated model.

Next, we investigate which specific model combination could

generate the best integrated model for diagnosing CKD.

TABLE 8. The time spent by RF, LOG, SVM and KNN on the complete data.

From Tables 5 and 6, it can be seen that there is no significant

difference between LOG, SVM and KNN. In the case where

the performance of the models is similar, the models are

evaluated by the complexity of the algorithm, the running

time and the computational resources consumed. LOG, RF,

SVM and KNN were run five times on each complete data,

and the average time taken are summarized in Table 8. It can

be seen that the SVM and KNN take more time than the

LOG and RF. In addition, SVM and KNN are also effected

by their respective model parameters, so the parameters need

to be adjusted before themodels are established, whichmeans

more manual intervention is needed. For the LOG, there was

no additional parameter that need to be adjusted. For the

RF, the default parameters of the model were used. Hence,

a combination of the LOGand the RFwas selected to generate

the final integrated model.

C. ESTABLISHING THE INTEGRATED MODEL

LOG and RF were selected as underlying components to

generate the integrated model to improve the performance

of judging. The probabilities that each sample was judged as

notckd in LOG and RFwere used as the outputs of underlying

components. These two probabilities of each sample were

obtained and could be expressed in a two-dimensional plane.

In the complete CKD data sets, the probability distributions

of the samples in a two-dimensional plane are similar. There-

fore, the probability distribution of samples when K equaling

to 11 is shown in Fig. 3.

It can be seen from Fig. 3 that the samples have different

aggregation regions in the two-dimensional plane due to the

different categories (ckd or notckd). In general, samples with

ckd are concentrated in the lower left part, while the notckd

samples are distributed in the top right part. Due to the

fact that the results in the two models are different, some

samples are located at the top left and lower right, and one

of the two models makes the misjudgments. Perceptron can

be used to separate samples of two categories by plotting a

decision line in the two-dimensional plane of the probability

distribution. Ciaburro and Venkateswaran defined perceptron

as the basic building block of a neural network, and it can

be understood as anything that requires multiple inputs and

produces an output [36]. The perceptron used in this study is

shown in Fig. 4.

In Fig. 4, prob1 and prob2 are the probabilities that a sam-

ple was judged as notckd by LOG and RF, respectively. w0,

w1 and w2 are the weights of input signals. w0 corresponds

to 1, w1 corresponds to prob1 and w2 corresponds to prob2,

respectively. y is calculated according to (7):

y = w0 + w1 × prob1 + w2 × prob2. (7)
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FIGURE 3. The probability distribution of the samples in the complete
CKD data set (at K = 11), the horizontal axis and the vertical axis
represent the probabilities that the samples were judged as notckd by
the LOG and the RF, respectively.

FIGURE 4. The structure of the perceptron used in this study.

The input signal corresponding to the weight w0 is 1, which

is a bias. The function of Signum is used to calculate output

by processing the value of y as follows: If y > 0, then the

output = 1, whereas if y < 0, then the output = −1. For

the output, 1 corresponds to notckd, whereas -1 corresponds

to ckd. A single perceptron is a linear classifier that can be

used to detect binary targets. The weights are the core of the

perceptron and adjusted in the training stage. y = 0 is the

decision line, and this line can be described as (8):

prob2 = −
w1

w2
prob1 −

w0

w2
. (8)

In the training stage, the models of LOG and RF were

established by the training data at first. Then, a new training

data set was generated though combining the probabilities

of output of the two component models on the training data

and the labels of the samples. This new training data set was

used to establish the perceptron. For the binary classification,

the samples have two types of labels, i.e. Y = ±1. The

output of perceptron is calculated according to (7), we use

g(X ) to represent the matrix form of this calculation, where

W = [w1,w2], X = [prob1, prob2]
T , and b = w0. When the

g(X ) > 0, the output = 1, whereas the g(X ) < 0, then the

output = −1. Therefore, for all samples correctly judged by

the model, the following equation is valid:

Y × g(X ) = Y (WX + b) > 0. (9)

For all misjudgments, the value of (9) is less than zero, and

the large the absolute value, the more serious the model mis-

judges the samples. Hence, for a misjudged sample (Xi,Yi),

the loss of the perceptron can be expressed as (10):

L = −Yi(WXi + b). (10)

The perceptron is trained by the gradient descent method to

adjust the weight and bias. The partial derivative of the weight

and bias of the loss function are expressed as follows:

∂L

∂W
= −YiX

T
i (11)

∂L

∂b
= −Yi (12)

Therefore, in the training stage, for each misjudgment,

the weight and bias are updated by (13) and (14):

W = W + ηYiX
T
i (13)

b = b+ ηYi (14)

where the η is the learning rate.

However, for the bias, when the updating method of (14)

was used, the obtained decision line could classify the sam-

ples, but the line was located at the edge of the solution

area, so it is not reliable. To solve this problem, a new bias

adjustment strategy proposed in chapter 4 of the previous

literature [36] was referred and used, which is expressed in

(15):

b = b+ ηYiR
2 (15)

where the R is the maximum of the L2 norm of the eigen-

vectors in all training samples. When the (15) was used,

the obtained decision line could correctly classify the sam-

ples, and the line was located in the middle of the solu-

tion area, so it is more reliable than (14). When the second

subset was utilized for testing (at K = 11), the above phe-

nomenon was obvious. Figs. 5(a) and (b) plot the decision

line constructed by the perceptron on the training data set

when the updating strategies of (14) and (15) were used,

respectively. It can be seen that the updating strategy of (15)

in Fig. 5(b) is more reliable than (14) in Fig. 5(a). Therefore,

(13) and (15) were used as the updating strategies of the

perception. The pseudo code of the model is described as

follows:
Training stage
Input: Training data

Output: Integrated model (LOG, RF and perception).

Procedure

1. Use training data to train the model of LOG.

2. Use training data and default parameters to train the

model of RF.

3. Input training data into LOG and RF to record the

probabilities that the samples are judged as notckd by them.
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FIGURE 5. The decision line (blue line) obtained by the perceptron in the training data set. The horizontal axis and the
vertical axis represent the probabilities that samples were judged as notckd by models.

4. Build a new training data set, the predictors are the

probabilities of being recorded, and the response variable

is the label of training data.

5. Initialize the perceptron, W is randomly generated and

b is set to 0.

6. Traverse the samples in the new training data set. If (9)

is not satisfied, updateW and b using (13) and (15).

7. Repeat step 6 until all of the sample satisfies (9).

8. Return LOG, RF and perception.
Testing stage
Input: Test data

Output: Sample category

Procedure

1. Input the data into LOG and RF to record the probabili-

ties that the samples are judged as notckd by them.

2. Input the probabilities into the perceptron to obtain the

result.

IV. EXPERIMENTS AND EVALUATIONS

In order to verify whether the integrated model can improve

the performance of the component models, we first used the

same random number seed 1234 to establish and evaluate

the integrated model on each complete data, and the con-

fusion matrices returned are shown in Table 9. Comparing

Tables 9 and 5, it can be found that the integrated model

improves the performance of the component models and

achieves an accuracy of 100% when K equaling to 3 and 11.

When K equaling to 5, 7 and 9, the integrated model improves

the performance of LOG and has the same accuracy with the

RF.

Next, for a comprehensive evaluation, we removed the

random number seed 1234 which was used to divide the

data into four subsets and establish the RF. The integrated

model was then run 10 times on the complete data sets. The

average results of the integrated models and two component

models are shown in Table 10, and the integrated model has

the best performance in detecting the two categories because

TABLE 9. The confusion matrices returned by the integrated models.

it achieves the highest accuracy and F1 scores under almost

all conditions. The accuracy and F1 scores of integrated

model have different degrees of improvement compared to

component models, and the sensitivity of components has

also been improved by integrated model. We can find that

the integrated model does improve the performance of the

component models and could achieve an ideal effect. We also

compared the methodology in this study (LOG, RF and inte-

grated model) with the other models on the same data in

previous studies (called contrast models), and the comparison

result is shown in Table 11. It can be seen that although the

performance of the LOG established in this work is relatively

low compared to somemodels established in previous studies,

it is still better than half of the contrast models. For the RF,

the performance is superior to most of the models built in

previous works, however, it is consistent with some mod-

els [29], [30]. The proposed integrated model improves the

performance of separate individual models and is superior to

almost all the contrast models, with the highest accuracy and

F1 score can achieve 100% in Table 9.

Our results show the feasibility of the proposed

methodology. By the use of KNN imputation, LOG, RF,

SVM and FNN could achieve better performance than the
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TABLE 10. Performance comparison between the LOG, RF and the proposed integrated model.

TABLE 11. Performance comparison between the other models and the proposed model on the same data.

cases when the random imputation and mean and mode

imputation were used. KNN imputation could fill in the

missing values in the data set for the cases wherein the diag-

nostic categories are unknown, which is closer to the real-life

medical situation. Through the misjudgments analysis, LOG

and RF were selected as the component models. The LOG

achieved an accuracy of around 98.75%, which indicates

most samples in the data set are linearly separable. The

RF achieved better performance compared with the LOG

with the accuracy was around 99.75%. From Tables 7 and 8,

the misjudgments produced by LOG and RF are differ-

ent in almost all cases, and the corresponding calculation

speeds are relatively fast. Therefore, an integrated model

combining LOG and RF was established to improve the

performance of the component models. From the simulation

result, the method of integrating several different classifiers

is feasible and effective. We speculate that this methodol-

ogy could be extended to more complex situations. When

processing more complex data, various different algorithms

are first attempted to establish models. After misjudgment

analysis, the better algorithms that produce different mis-

judgments are extracted as component models. An integrated

model is then established to improve the performance of the

classifier. From Tables 10 and 11, it can be seen that the

proposed methodology improves the performance of the oth-

erwise independentmodels and achieves comparable or better

performance compared to the models proposed in previous

studies. In addition, the CKD data set is composed of mixed

variables (numeric and category), so the similarity evaluation

methods based on mixed data could be used to calculate

the similarity between samples, such as general similarity

coefficient [37]. In this study, we used euclidean distance

to evaluate the similarity between samples, and KNN could

obtain a good result based on euclidean distance with the

highest accuracy of 99.25%. Therefore, we did not use other

methods to evaluate the similarity between samples.

V. CONCLUSION

The proposed CKD diagnostic methodology is feasible in

terms of data imputation and samples diagnosis. After unsu-

pervised imputation of missing values in the data set by

using KNN imputation, the integrated model could achieve

a satisfactory accuracy. Hence, we speculate that applying

this methodology to the practical diagnosis of CKD would

achieve a desirable effect. In addition, this methodology

might be applicable to the clinical data of the other diseases

in actual medical diagnosis. However, in the process of estab-

lishing the model, due to the limitations of the conditions,

the available data samples are relatively small, including only

400 samples. Therefore, the generalization performance of

the model might be limited. In addition, due to there are

only two categories (ckd and notckd) of data samples in the
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data set, the model can not diagnose the severity of CKD.

In the future, a large number of more complex and repre-

sentative data will be collected to train the model to improve

the generalization performance while enabling it to detect the

severity of the disease. We believe that this model will be

more and more perfect by the increase of size and quality of

the data.
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