
A Macro Actor/Token Implementation of 
Production Systems on a Data-flow Multiprocessor+ 

Andrew Sohn and Jean-Luc Gaudiot 
Department of Electrical Engineering - Systems 

University of Southern California 
Los Angeles, California 90089-0781, U.S.A. 

sohn@priam.usc.edu, gaudiot@priam.usc.edu 

Abstract 
The importance of production systems in artificial intelligence 
has been repeatedly demonstrated by a number of expert sys­
tems. Much effort has therefore been expended on finding an 
efficient processing mechanism to process production systems. 
While data-flow principles of execution offer the promise of 
high programmability for numerical computations, we study 
here variable resolution actors, called macro actors, a process-
ing mechanism for production systems. Characteristics of the 
production system paradigm are identified, based on which we 
introduce the concept of macro tokens as a companion to macro 
actors. Aset of guidelines is identified in the context of produc-
tion systems to derive well-formed macro actors from primitive 
micro actors. Parallel pattern matching is written in macro ac-
tors/tokens to be executed on our Macro Data-flow simulator. 
Simulation results demonstrate that the macro approach can be 
an efficient implementation of production systems. 

1. Introduction 
A major obstacle in the processing of artificial intelligence 
applications lies in the large search/match time. In rule-based 
production systems, for example, it is often the case that the 
rules and the database needed to represent a particular pro­
duction system in a certain problem domain would be on the 
order of hundreds to thousands of rules and assertions. It is 
thus known that simply applying software techniques to the 
matching process would yield intolerable delays. Indeed, as it 
has been pointed out [Forgy, 1982], the time taken to match 
patterns over a set of rules can reach 90% of the total compu-
tation time spent in the processing of expert systems. This 
need for faster execution of production systems has spurred 
research in both the software and hardware domains. 

From the software perspective, not only the matching 
step, but also the parallel firing of many productions have 
been studied. The Rete match algorithm has been developed 
to utilize the temporal redundancy in production systems 
[Forgy, 1982]. Further optimization of the Rete algorithm has 
been studied in the TREAT algorithm [Miranker, 1989], 
which supports the conflict set. Parallelization of the Rete al­
gorithm has been reported to suit the multiprocessor environ-
ment [Tenorio and Moldovan, 1985]. 
t This work is supported in part by the U.S. Department of Energy, 
under Grant No. DE-FG03-87ER25043 

From the hardware perspective, many studies have been 
reported, including shared memory multiprocessors and mes­
sage passing architectures [Gupta and Tambe, 1988]. The 
performance of the conventional control-flow model of exe­
cution is however limited by the "von Neumann bottleneck" 
[Backus, 1978]. Indeed, architectures based on this model 
cannot easily deliver large amounts of parallelism [Arvind 
and Iannucci, 1983]. The data-driven model of execution has 
therefore been proposed as a solution to these problems. The 
applicability of data-flow principles of execution to matching 
operations for production systems has been studied in [Gaud­
iot and Sohn, 1990; Gaudiot and Bic, 1991 ]. 

In this paper, we further explore the applicability of data-
flow principles of execution to production systems. It has 
been our observation that AI problems exhibit a behavior 
characteristically different from conventional numeric com­
putations. We demonstrate in this paper that a macro actor/to­
ken approach wi l l best match these characteristics. We shall 
start our discussion in section 2 by introducing two funda­
mental approaches to AI processing. Section 3 describes 
those characteristics of production systems from the parallel 
processing perspective, which we optimize by the utilization 
of macro data-flow principles. A brief analysis is presented to 
show why medium grain macro actors are preferred to fine 
grain micro actors. Section 4 discusses several strategies 
about how to derive well-formed macro actors from micro ac­
tors for production systems. Section 5 gives simulation re­
sults based on our execution model, the macro data-flow sim­
ulator. Performance evaluation is also discussed in the sec­
tion. Conclusions as well as future research issues are offered 
in the last section. 

2. Parallel Processing of Production Systems 
A production system (PS) consists of a Production Memory 
(PM), a Working Memory (WM), and an Inference Engine 
(IE). PM (or rulebase) is composed of productions (or rules), 
each of which performs predefined actions (right-hand side, 
RHS) if all the necessary conditions (left-hand side, LHS) are 
satisfied. The productions operate on WM which is a data­
base of assertions, called Working Memory Elements 
(WMEs). The inference engine repeatedly executes an infer-

36 Architectures and Lanauaaes 



ence cycle which consists of three steps: pattern matching, 
conflict resolution, followed by rule firing. The inference en­
gine halts either when no rules can be satisfied or when the 
solution is found. 

From the parallel processing perspective the PS para­
digm can be viewed as a composition of local- and global la-
tencies. The local latency, r, is the processing time of an in-
ference cycle in the PS paradigm. Each step in the production 
cycle is considered a local latency, as shown in Fig.l (a). The 
global latency, T, depicted in Fig.l(a), is the processing time 
incurred for searching the state space. Given an initial state, 
the inference engine finds the next state by executing an in­
ference cycle. Based on some heuristic control strategics, the 
system decides which state in the search tree should be ex­
plored. The global latency T is thus linearly proportional to 
the number of states n to be explored in the search tree. 

(a) (b) 
Fig.1: A search tree consisting of inference cycles, (a) an 
inference cycle before parallel processing, (b) after paral­
lel processing. PM, CR, and RF stand respectively for 
pattern matching, conflict resolution, and rule firing 

Techniques to reduce the global latency T in the PS par­
adigm can be basically classified into two categories: (1) 
hardware/software parallel processing, (2) adaptive/ heuris­
tic processing [Wah et al., 1989]. A straightforward tech­
nique would be to use as many Processing Elements (PEs) as 
needed. This would allow all branches to be explored in par­
allel as the search tree grows. This simple hardware approach 
with an infinite number of PEs can eliminate problems asso­
ciated with backtracking and would hopefully find a solution 
in a finite amount of time. However, this technique is clearly 
impractical and too costly since for most AI problems the 
number of possible states in the search tree would be expo­
nential even for modestly sized problems. 

A way of reducing T from the adaptive/heuristic perspec­
tive is to prune unpromising branches in the search tree by de­
riving heuristics at compile time (or learning them at run 
time) and applying them. This second approach has been in­
vestigated by implementing neural network production sys­
tems [Sohn and Gaudiot, 1990a; 1990b] and wil l not be con­
sidered here since it is beyond the scope of this paper. 

Our approach is centered around the data-flow principles 
of execution, more specifically, the macro data-flow princi­

ples [Gaudiot and Ercegovac, 1985]. As we shall see below, 
PSs exhibit distinctive characteristics. Indeed, one of the 
characteristics found in pattern matching is a list processing 
from which medium grain parallelism can be extracted. 

3. Macro Data-flow Principles 
A macro actor is a collection of scalar instructions. The ob­
jective behind lumping instructions into one larger unit is to 
improve performance by exploiting locality within these larg­
er units. Similarly, a macro token is a collection of primitive 
data tokens. Consider an assertion is(x Y). This assertion, 
when implemented, can be represented as a list of three ele­
ments (is),(x),and Y). If we break it into three elements and form 
three data tokens (is), (x), and (Y) as basic elements to operate 
on, each of these three tokens carry little useful information. 

Fig.2: A data-flow graph in micro actors for the compari­
son of two lists (a1...,an) and (b1,...,bn). There are n/2 
comparison actors to obtain a maximum parallelism. 

When viewed from the architectural perspective, macro 
actors will substantially reduce the overhead in matching tags 
of data tokens. When using dynamic data-flow principles 
[Arvind and Iannucci, 1983], tokens carry tags which coasist 
of the context, code block, or instance of a loop to which the 
token belongs. If the fact (IS x Y) is split into three data tokens 
and is compared with another three data tokens (IS), (x), and 
(z), the tag matching time for three pairs of six data tokens is 
no less tnan three time units. However, when the two facts are 
compared in two lists, the tag matching time is only 1! 

Consider a typical match operation, shown in Fig.2, 
which compares two lists, (a1,...,an) and (bl,...,bn). 7o 
achieve the maximum parallelism existing in the fine grain 
micro approach, the n-pairs can be simultaneously compared 
in n PEs, each of which is connected through a (log n)-dim 
hypercube. Assume that two neighboring PEs must commu­
nicate through three facilities (two communication nodes and 
a link) and that each PE consists of four facilities connected 
in a pipeline fashion. If each facility take t to execute, the to­
tal time to process n comparisons on n PEs would be 

'micro, n 

Sohn and Gaudiot 37 



where tc=comparison time, ta=addition time, and tr=routing 
time. Note that in this simple calculation, it is assumed that no 
token waits in the matching/store unit of each PE. Further­
more, all the comparison actors are ideally allocated to neigh­
boring PEs (which may not be realizable). The total time to 
compare 2 lists on 1 PE for the macro approach becomes 

Note that in the micro-actor approach, we assumed that 
the token routing would be done in 1 step, i.e., 3r. In general, 
such one-step routing is impractical for a 6-dim hypercube to­
pology. Considering that the average number of elements in 
a list is five for production systems, the ratio becomes R~5/ 
(log5) -1.7. The macro actors wil l outperform since there is 
no communication overhead involved in macro actors (for 
details, see [Sohn and Gaudiot, 1991]). 

There are, however, drawbacks in using macro actors. 
Putting too many micro actors into a macro actor will de­
crease the degree of parallelism, resulting in some perfor­
mance degradation. Conversely, forming a macro actor with 
too few micro actors wil l not give a noticeable improvement 
in performance. However, the PS paradigm which we are 
considering for our application domain provides data paral­
lelism which exists in many patterns and WMEs. By putting 
too many micro actors into a macro actor, the data parallelism 
wil l likely diminish. There must be a set of guidance criteria 
for the formation of macro actors. In the following section, 
we shall identify several rules from the PS paradigm and es­
tablish criteria to guide the grouping process, thereby produc­
ing efficient and well-formed macro actors. 

4. Formation of Macro Actors 
4.1. Guidelines for well-formed macro actors 

An objective behind setting such a ratio is in the fact that 
if the processing time of the macro actor is not more than 
twice of the processing time for the corresponding micro ac­
tors in an ideal environment, we shall form a macro actor 
from micro actors. The ideal environment refers to the ideal 
allocation of micro actors on n PEs and ideal routing policy 
on data tokens. As we discussed earlier in section 3, achiev­
ing such an ideal environment would be impractical. The 
macro actons would outperform because of no data token 
routing, no waiting for the mating data token (for two operand 
instructions), etc. In this paper, we simply set to 2 for macro 

38 Architectures and Languages 

42. An example on the conversion process 
Using these five guidelines, we shall now write several macro 
actors to implement a simple rule. The functionality of the 
rule that are important to implement production systems wil l 
be taken into account. Consider the following OPS5-like rule: 

Suppose that we have a Rete condition-dependency net­
work constructed for the above rule [Gaudiot and Sohn, 
1990]. Fig.3 shows a conversion process for the first condi-



5. Simulation and Performance Evaluation 
A simulation has been performed on the Macro Data-Flow 
Multiprocessor (MDFM) [Yoo and Gaudiot, 1989]. The ma-

Sohn and Gaudiot 39 



chine contains 64 PEs interconnected by a 6-dim hypercube 
network. The target production system, which we call a 'ge-
neric production system,' has 15 rules, all of which are writ­
ten in micro actors based on the parallel version of the RETE 
algorithm [Gaudiot and Sohn, 1990]. 

A typical OPS5-like rule was shown in the previous sec­
tion. Each rule has on the average 5 condition elements, 2 ac­
tion elements, and 3 two-input nodes. Each condition element 
has on the average 3 one-input nodes and at least one variable 
in the value-part (see [Forgy, 1982] for details). With the 
guidance criteria we developed, the micro actors for the rules 
are written in macro actors, each of which contains on the av­
erage 50 micro actors. 

Tables 1 through 3 show simulation time, network load, 
and speedup. Table 1 lists simulation time units and network 
load for sequential and parallel distribution of WMEs with 
various number of PEs. Table 2 derives the ratio of sequential 
distribution (SD) to parallel distribution (PD). PD of WMEs 
yields a maximum of 4.4 speedup and reduces a maximum of 
2.5 times the network load over SD of the original Rete algo­
rithm . Regardless of the number of PEs used, PD provides an 
average of 2.5 speedup and reduces the network load on the 
average 2.4 times. Table 3 shows simulation results on speed-
up of using different number of PEs. Various curves for the 
simulations results are depicted in Fig.5. 

Architectures and Languages 4 0 



Fig.5: Simulation results on a generic production system 
with 15 rules, (a) Simulation time, (b) network load, (c) 
Ratio of SD to PD for simulation time, (d) Ratio of SD to 
PD for network load, and (e) Speedup. The maximum 
speedup we achieved by using data-driven principles of 
execution reached about 17 out of 32 PEs. 

From the s imu la t i on results, we ve r i f y that: First, our 
para l le l ne two rk w i t h mu l t i p l e root nodes reported in [Gaud­
iot and Sohn , 1990] g ives an impress ive improvement over 
the o r i g i na l sequent ia l R E T E ne twork : the number o f groups 
we had a m o n g cond i t i on elements o f our gener ic p roduc t ion 
system is 3 . T h e s imu la t i on t ime o f the sequent ial R E T E net­
w o r k , regardless o f the number o f PEs used, is almost a lways 
three t imes that of ou r para l le l ne twork , as seen f r om Tab le 1 
and F ig .5 (c ) . Second, the da ta - f low pr inc ip les of execut ion 
can, not on l y e f f i c i en t l y pe r fo rm the symbo l i c computa t ion , 
but also y i e l d an impress ive per formance over the conven­
t ional v o n N e u m a n n mode l o f execut ion fo r p roduct ion sys­
tem processing. F r o m the speedup curve o f F ig .5(c) , we f ind 
that the da ta - f l ow pr inc ip les of execut ion can indeed y ie ld a 
17- fo ld speedup w h e n 32 PEs are used, regardless of the type 
o f ma tch ing a lgo r i t hms . 

6. Conclusions 
In th is paper, a m a c r o actor approach fo r AI prob lems, specif­
i ca l ly p roduc t i on systems, has been demonstrated as an e f f i ­
cient imp lemen ta t i on t o o l . Character ist ics o f p roduc t ion sys­
tems f r o m para l le l processing have been discussed to suit the 
macro da ta - f l ow mul t ip rocessor env i ronment . A s imp le ex­
amp le on compar i son operat ions has been exp la ined in deta i l 
f r om the mac ro perspect ive. Several guidel ines have been 
demonstrated to f o r m wfms. A cond i t i on element of a ru le in 
PS is conver ted to macro actors. T h e results of a determin is t ic 
s imu la t i on w i t h 15 ru les w i t h more than 100 cond i t i on and 
act ion e lements on the macro da ta - f low s imu la tor have re­
vealed that the mac ro approach is an e f f ic ient imp lementa t ion 
fo r the A l p roduc t i on systems. Indeed, the macro approach 
g ives a 17 - fo ld speedup on 32 PEs. Fur thermore , our paral le l 
ma tch ing a lgo r i t hm w i t h m u l t i p l e root nodes g ives an add i ­
t iona l speedup of 3 , regardless o f the machine used. Assess-

ments of the data- f low systems on product ions systems have 
proven ef fect ive and we are current ly invest igat ing issues re­
lated to paral le l f i r i n g o f mu l t i p le rules toward true paral le l 
p roduc t ion systems. 

References 
[Arvind and Iannucci, 1983] Arvind, R. A. Iannucci, "Two 

fundamental issues in multiprocessing: the dataflow solu­
tions" MIT Laboratory for Computer Science, TM-241, 
September 1983. 

[Backus, 1978] J. Backus, "Can programming be liberated 
from the von Neumann style? A functional style and its al­
gebra of programs" C. of ACM, 21(8):613-641, Aug. 1978. 

[Forgy, 1982] C.L. Forgy, "Rete: A Fast Algorithm for the 
Many Pattern/Many Object Pattern Match Problem," in Ar-
tificial Intelligence, 19:17-37, September 1982. 

| Gaudiot and Bic, 1991 ] J.-L. Gaudiot and L. Bic, "Advanced 
Topics in Data-flow Computing," Prentice Hall, Engle-
wood Cliffs, New Jersey, 1991. 

[Gaudiot and Ercegovac, 1985] J.-L. Gaudiot and M.D. Erce-
govac, "Performance evaluation of a simulated dataflow 
computer with low-resolution actors," J. of Parallel Dis­
tributed Computing, pages 321-351, Academic Press 1985. 

[Gaudiot and Sohn, 1990] J.-L. Gaudiot and A. Sohn, "Data-
Driven Parallel Production Systems," IEEE Transactions 
on Software Engineering, 16(3)-.281-293, March 1990. 

[Gupta, 1987] A. Gupta, "Parallelism in Production Sys­
tems," Morgan Kaufmann Publishers, Inc., 1987. 

[Gupta and Tambe, 1988] A. Gupta and M. Tambe, "Suitabil­
ity of Message Passing Computers for Implementing Pro­
duction Systems," in Proc. National Conference on Al, 
pages 687-692, August 1988. 

[Miranker, 1989] D.P. Miranker, "TREAT: A New and Effi-
cient Match Algorithm for AI Production Systems," Mor-
gan Kaufmann Publishers, Inc., 1989. 

[Sohn and Gaudiot, 1990a], A. Sohn and J.-L. Gaudiot, "Con-
nectionist Production Systems in Local Representation,"in 
Proc. International Joint Conference onNeural Networks, 
Washington, D.C., January 1990. 

[Sohn and Gaudiot, 1990b], A. Sohn and J.-L. Gaudiot, "Rep­
resentation and Processing Production Systems in Connec-
tionist Architectures," Int'l Journal of Pattern Recognition 
and Artificial Intelligence, 4(2): 199-214, June 1990. 

[Sohn and Gaudiot, 1991 ], A. Sohn and J.-L. Gaudiot, "Pro­
cessing of Production Systems on a Macro Data-flow Mul­
tiprocessor," USC, Dept. of EE-Systems, CE:TR-91. 

[Tenorio and Moldovan, 1985] M.F.M. Tenorio and D.I. 
Moldovan, "Mapping Production Systems into Multipro­
cessors," in Proc. International Conference on Parallel 
Processing, pages 56-62, August 1985. 

[Yoo and Gaudiot, 1989] N. Yoo and J.-L. Gaudiot, "A Mao 
no Data-flow Simulator," USC, Dept. of E.E.-Systems, 
CE:TR-89-27. 

[Wah et al., 1989] B.W. Wah, M.B. Lowrie, and G.-J. L i , 
"Computers for Symbolic Processing," Proceedings of the 
IEEE, 77(4):509-540, April 1989.. 

Sohn and Gaudiot 41 


