A Macro Actor/Token Implementation of
Production Systems on a Data-flow Multiprocessor+

Andrew Sohn and Jean-Luc Gaudiot
Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-0781, U.S.A.
sohn@priam.usc.edu, gaudiot@priam.usc.edu

Abstract

The importance of production systems in artificial intelligence
has been repeatedly demonstrated by a number of expert sys-
tems. Much effort has therefore been expended on finding an
efficient processing mechanism to process production systems.
While data-flow principles of execution offer the promise of
high programmability for numerical computations, we study
here variable resolution actors, called macro actors, a process-
iIng mechanism for production systems. Characteristics of the
production system paradigm are identified, based on which we
introduce the concept of macro tokens as a companion to macro
actors. Aset of guidelines is identified in the context of produc-
tion systems to derive well-formed macro actors from primitive
micro actors. Parallel pattern matching is written in macro ac-
tors/tokens to be executed on our Macro Data-flow simulator.
Simulation results demonstrate that the macro approach can be
an efficient implementation of production systems.

1. Introduction

A major obstacle in the processing of artificial intelligence
applications lies in the large search/match time. In rule-based
production systems, for example, it is often the case that the
rules and the database needed to represent a particular pro-
duction system in a certain problem domain would be on the
order of hundreds to thousands of rules and assertions. It is
thus known that simply applying software techniques to the
matching process would yield intolerable delays. Indeed, as it
has been pointed out [Forgy, 1982], the time taken to match
patterns over a set of rules can reach 90% of the total compu-
tation time spent in the processing of expert systems. This
need for faster execution of production systems has spurred
research in both the software and hardware domains.

From the software perspective, not only the matching
step, but also the parallel firing of many productions have
been studied. The Rete match algorithm has been developed
to utilize the temporal redundancy in production systems
[Forgy, 1982]. Further optimization of the Rete algorithm has
been studied in the TREAT algorithm [Miranker, 1989],
which supports the conflict set. Parallelization of the Rete al-
gorithm has been reported to suit the multiprocessor environ-
ment [Tenorio and Moldovan, 19895].

t This work is supported in part by the U.S. Department of Energy,
under Grant No. DE-FG03-87ER25043

36 Architectures and Lanauaaes

From the hardware perspective, many studies have been
reported, including shared memory multiprocessors and mes-
sage passing architectures [Gupta and Tambe, 1988]. The
performance of the conventional control-flow model of exe-
cution is however limited by the "von Neumann bottleneck"
[Backus, 1978]. Indeed, architectures based on this model
cannot easily deliver large amounts of parallelism [Arvind
and lannucci, 1983]. The data-driven model of execution has
therefore been proposed as a solution to these problems. The
applicability of data-flow principles of execution to matching
operations for production systems has been studied in [Gaud-
lot and Sohn, 1990; Gaudiot and Bic, 1991].

In this paper, we further explore the applicability of data-
flow principles of execution to production systems. It has
been our observation that Al problems exhibit a behavior
characteristically different from conventional numeric com-
putations. We demonstrate in this paper that a macro actor/to-
ken approach will best match these characteristics. We shall
start our discussion in section 2 by introducing two funda-
mental approaches to Al processing. Section 3 describes
those characteristics of production systems from the parallel
processing perspective, which we optimize by the utilization
of macro data-flow principles. A brief analysis is presented to
show why medium grain macro actors are preferred to fine
grain micro actors. Section 4 discusses several strategies
about how to derive well-formed macro actors from micro ac-
tors for production systems. Section 5 gives simulation re-
sults based on our execution model, the macro data-flow sim-
ulator. Performance evaluation is also discussed in the sec-

tion. Conclusions as well as future research issues are offered
In the last section.

2. Parallel Processing of Production Systems

A production system (PS) consists of a Production Memory
(PM), a Working Memory (WM), and an Inference Engine
(IE). PM (or rulebase) is composed of productions (or rules),
each of which performs predefined actions (right-hand side,
RHS) if all the necessary conditions (left-hand side, LHS) are
satisfied. The productions operate on WM which is a data-
base of assertions, called Working Memory Elements
(WMEs). The inference engine repeatedly executes an infer-

ence cycle which consists of three steps: pattern matching,
conflict resolution, followed by rule firing. The inference en-
gine halts either when no rules can be satisfied or when the
solution is found.

From the parallel processing perspective the PS para-
digm can be viewed as a composition of /ocal- and global la-
tencies. The local latency, r, is the processing time of an in-
ference cycle in the PS paradigm. Each step in the production
cycle is considered a local latency, as shown in Fig.l (a). The
global latency, T, depicted in Fig.l(a), is the processing time
incurred for searching the state space. Given an initial state,
the inference engine finds the next state by executing an in-
ference cycle. Based on some heuristic control strategics, the
system decides which state in the search tree should be ex-
plored. The global latency T is thus linearly proportional to
the number of states n to be explored in the search tree.

initial
state

s XOXO

|
T "

........

(S) €
S

.......

PR e

rrrrrrr
lllllll

a path to

the gOﬂ' goal

state

"""’"”l"""""'l""')

PTG EEETFTEETETEFFTETE T FESTESGTEFSESyS
F o &y FrFFFyyFyyyyyyyyyyyyyyyy.d

P Y Y Y I VY IPYFIVEFYYEY P

¢
’
4
L 4
’
’
’
/
’
¢
’
’
s
*

(a) (b)
Fig.1: A search tree consisting of inference cycles, (a) an
iInference cycle before parallel processing, (b) after paral-
lel processing. PM, CR, and RF stand respectively for
pattern matching, conflict resolution, and rule firing

Techniques to reduce the global latency T in the PS par-
adigm can be basically classified into two categories: (1)
hardware/software parallel processing, (2) adaptive/ heuris-
tic processing [Wah et al., 1989]. A straightforward tech-
nigue would be to use as many Processing Elements (PEs) as
needed. This would allow all branches to be explored in par-
allel as the search tree grows. This simple hardware approach
with an infinite number of PEs can eliminate problems asso-
ciated with backtracking and would hopefully find a solution
In a finite amount of time. However, this technique is clearly
iImpractical and too costly since for most Al problems the
number of possible states in the search tree would be expo-
nential even for modestly sized problems.

A way of reducing T from the adaptive/heuristic perspec-
tive is to prune unpromising branches in the search tree by de-
riving heuristics at compile time (or learning them at run
time) and applying them. This second approach has been in-
vestigated by implementing neural network production sys-
tems [Sohn and Gaudiot, 1990a; 1990b] and will not be con-
sidered here since it is beyond the scope of this paper.

Our approach is centered around the data-flow principles
of execution, more specifically, the macro data-flow princi-

ples [Gaudiot and Ercegovac, 1985]. As we shall see below,
PSs exhibit distinctive characteristics. Indeed, one of the
characteristics found in pattern matching is a list processing
from which medium grain parallelism can be extracted.

3. Macro Data-flow Principles

A macro actor is a collection of scalar instructions. The ob-
jective behind lumping instructions into one larger unit is to
improve performance by exploiting locality within these larg-
er units. Similarly, a macro token is a collection of primitive
data tokens. Consider an assertion is(x Y). This assertion,
when implemented, can be represented as a list of three ele-
ments (is),(x),and Y). If we break itinto three elements and form
three data tokens (is), (x), and (Y) as basic elements to operate
on, each of these three tokens carry little useful information.

Fig.2: A data-flow graph in micro actors for the compari-
son of two lists (a...,a,) and (by,...,b,). There are n/2
comparison actors to obtain a maximum parallelism.

When viewed from the architectural perspective, macro
actors will substantially reduce the overhead in matching tags
of data tokens. When using dynamic data-flow principles
[Arvind and lannucci, 1983], tokens carry tags which coasist
of the context, code block, or instance of a loop to which the
token belongs. If the fact (IS x Y) is split into three data tokens
and is compared with another three data tokens (IS), (x), and
(z), the tag matching time for three pairs of six data tokens is
no less than three time units. However, when the two facts are
compared in two lists, the tag matching time is only 1!

Consider a typical match operation, shown in Fig.2,
which compares two lists, (a4...,a,) and (b,...,b,). 70

achieve the maximum parallelism existing in the fine grain
micro approach, the n-pairs can be simultaneously compared
in n PEs, each of which is connected through a (log n)-dim
hypercube. Assume that two neighboring PEs must commu-
nicate through three facilities (two communication nodes and
a link) and that each PE consists of four facilities connected
In a pipeline fashion. If each facility take t to execute, the to-
tal time to process n comparisons on n PEs would be

'micro, n

Sohn and Gaudiot 37

= 4(1+[lognt])tr +3[logon}x = (4+7[logon])t
where t.=comparison time, t,=addition time, and t.=routing
time. Note that in this simple calculation, it is assumed that no
token waits in the matching/store unit of each PE. Further-
more, all the comparison actors are ideally allocated to neigh-
boring PEs (which may not be realizable). The total time to
compare 2 lists on 1 PE for the macro approach becomes
fmacro,1 = Mc+(n-1)t, = 4(2n-1)t.

The ratio of the time taken for macro actors with 1 PE to
micro actors with n PEs is

R = tgycro,1/tmicron = H2n-1)/ (4+7[logn]) = O(n/log,n).

Note that in the micro-actor approach, we assumed that
the token routing would be done in 1 step, i.e., 3r. In general,
such one-step routing is impractical for a 6-dim hypercube to-
pology. Considering that the average number of elements in
a list is five for production systems, the ratio becomes R~5/
(logd) -1.7. The macro actors will outperform since there is
no communication overhead involved in macro actors (for
details, see [Sohn and Gaudiot, 1991)).

There are, however, drawbacks in using macro actors.
Putting too many micro actors into a macro actor will de-
crease the degree of parallelism, resulting in some perfor-
mance degradation. Conversely, forming a macro actor with
too few micro actors will not give a noticeable improvement
in performance. However, the PS paradigm which we are
considering for our application domain provides data paral-
lelism which exists in many patterns and WMESs. By putting
too many micro actors into a macro actor, the data parallelism
will likely diminish. There must be a set of guidance criteria
for the formation of macro actors. In the following section,
we shall identify several rules from the PS paradigm and es-
tablish criteria to guide the grouping process, thereby produc-
ing efficient and well-formed macro actors.

4. Formation of Macro Actors

4 .1. Guidelines for well-formed macro actors
Let A be a set of micro (or primitive) actors, {a,,...,a,}, and
T 5 be a set of data tokens, {¢,...,{p }, manipulated by A. Let

B be a macro actor derived from A such that B&A. Let ¢ be
the time taken to process a micro actor on a PE. Let ¢, be the
time taken to process A on n PEs. Let T be the time taken to
process a macro actoron a PE. Let rbe aratioof T, to ¢, i.e.,

=T,/t,. A macro actor B is said to be well-formed if r<e, e<2.

An objective behind setting such a ratio is in the fact that
If the processing time of the macro actor is not more than
twice of the processing time for the corresponding micro ac-
tors in an ideal environment, we shall form a macro actor
from micro actors. The ideal environment refers to the ideal
allocation of micro actors on n PEs and ideal routing policy
on data tokens. As we discussed earlier in section 3, achiev-
ing such an ideal environment would be impractical. The
macro actons would outperform because of no data token
routing, no waiting for the mating data token (for two operand
instructions), etc. In this paper, we simply set € to 2 for macro

38 Architectures and Languages

actor formation. We now briefly describe the formation of

well-formed macro actors (wfms).
Let], be a set of tokens input to g; and O; be a set of to-

kens output from actor g;. We denote the dependence relation

for a;,a,€A as follows: If OSJ; such that iwj, a;Za; for all i

and j, where £ is a dependence operator which implies that g;

must be executed before a;. By applying the dependence rela-

tion @;Za; to A, we obtain an ordered set of actors,
={by,...bn }, where b;={a| a;La; is not true}. The depen-
dence distance for b;,b,EB is defined as d(b;,b;)=d ;=i-). The

maximum dependency distance d,,,, for B is m-1.

We list below five guidelines for the formation of wfms
(the proof of correctness can be found in [Sohn and Gaudiot,
1991)):

1. (Flow Dependency) Let a; and g; be two actors. A macro
actor M={a;,a;} can be defined if O;/; and 4, j=1, where
O; is an output of a;, I; is an input to a;, and d; ; is a de-
pendence distance between a; and a;.

2. (Encapsulation Effect) Let a be a comparison actor and b
be a set of true/false actors {b,,...,b_}. A macro actor
M={a,b} can be defined if O,&I}, and d, y=1. This guide-
line eliminates unnecessary true/false actors.

3. (List Processing) Let A={a,,...,a,}, and L be a list of m
data tokens {fy,...,0n}. Let I=[{U..Ul, and O =
0,U...U0,. A macro actor M={a,,...,a,} can be defined
if ,&IUOUL for 1sisn and O, &/ for k=d_,,,. This guide
preserves the semantics of a list.

4. (Array Operations) Let A={a,,...,a,} and B = { Append,
Select, Create, Copy}. If ANBw(J, a macro actor M can

be formed on A-B. Separating array operations from the
macro actors removes the potential bottleneck in array
operations.

5. (Interconnection Topology) Let A={ay,...,a,} such that

dy.x = Max{d, J} =1 for all a;,aEA. Let m be a dimen-

s10n of hypercube interconnection network. If msn, a set
of macro actors {M,,...,M;} is defined where M;={-

Qyy..,8p }, k= [n/m], and 1sisk.

42. An example on the conversion process

Using these five guidelines, we shall now write several macro
actors to implement a simple rule. The functionality of the
rule that are important to implement production systems will
be taken into account. Consider the following OPS5-like rule:

Rule: [A (Y 2)] ;»Gondition Element 1
B (¢ X) (d Y)] »Condition Element 2
[C(p1)(q2 (r X)] .»Condition Element 3
[Modify B (c Y) (d X)] ;;Action Element 1

Suppose that we have a Rete condition-dependency net-
work constructed for the above rule [Gaudiot and Sohn,
1990]. Fig.3 shows a conversion process for the first condi-

tion element. A micro data-flow graph for the comparison op-
crations on two elements, [A (Y Z)] and [A (B C)), is depicted
in Fig.3(a) and the corresponding macro actor in Fig.3(b).

-

(a)

result token
of actor #4 re

A X X S 4 T F F Ly rryYyyyyy)

~\\.\‘\‘."‘\‘\‘\“\‘\‘\\‘\‘\‘\\\‘\
\\\\\“\“\\“\\\“\“\\\\\.“\

FOEOIPIISIIFFFIosrsrFSForeos r g rrrryy

h
.

¢ . Condition
(b) [wme
EQUAL

Fig.3: A conversion process. (a) a data-flow graph in mi-
cro actors, (b) a macro actor.

Rule Guide3 is applied to this conversion process as {ol-
lows: Let A be a set of five actors {a,,...,as} (three compari-

son actors and two AND actors), and L be a list of six data to-
kens {A,Y,Z,A,B,C}. Let r; be the output token of an actor a;.

Applying a dependency distance to the set A, we partition A
Into three sets AI’A2’ andA-;, WhCl'CAl {01,02,03} Az {04}

and Ay={as}. We then find d,,=2 because Max{du A»,

max

day Az daz a3} = Max{1,2,1} = 2. We also observe that
I=1,U...Uls={L,r,,...,rs}, O=0,U...U0s={ry,..., 75} (1)
From (1), we have LGIUO for 1sis5, and Op3=rs&l.

Therefore, Guide3 is satisfied and a macro actor M =

{ay,...,ac} can be formed. After Guide5 is applied to the data-

flow graph for the first condition element of the above rule,
we obtain a graph shown in Fig.4. Note that for the sake of
simplicity, five comparison micro actors of Fig.3(a) have
been replaced by a single actor #1, comp, in Fig.4(a).

In Fig.4(a), there are 2 actors related to array operations:
‘append’ and ‘select.” GuideS5 states that if there exists an ac-
tor g; in A such that a;E{append,select,...}, then a macro actor

M is considered on the set A-a;. Applying the GuideS to the
graph partitions it into 3 sets of micro actors A;, A,, and A,
where A;={ay,...,a;12}, Ay={a;3}, and A;={a;4}. In the first
step of the conversion process, the set of actors {a,...,as}
however is converted to a macro actor M. We therefore treat
M, as a micro actor in the following discussion. Partitioning
the graph into three graphs is shown in Fig.4(a).

The last rule we apply to the data-flow graph stems from
the fact that there are six true/false actors in A (sec Fig. 4(a))

Guidel states that if there is a comparison actor A which im-
mediately affects a set of true/false actors B such that 0, CJp

and dA,B--l, then we should form a macro actor M={A,B}.

"""""" A A A X XL F L Ly Yy yryyy yryyyrpyyy) ["'"""O"""‘"

Memory2
Name of @ index for
Memory?2

Memory1

W Index for

incomin
Memory1 0

tokens

Y
5
)

TR LR RNCLCR R R RBRRACRRBRRBRRRY
2ATLLLLLLLLLBLLLSLLIRIRATRESTRTRS

"""""""""""""

After oompletc'
comparison

input
2 «— by
(b)

acro
actor #

2 <\(l»;;mrlb

9@:::;@

Fig.4: Converting (a) micro-actors to (b) a macro actor.

Let A be a macro comparison actor M, defined in the scc-
ond step and B be a set of true/false actors, {aq,...,a;;}. We
observe from the graph that

Op={rs} and Ig={a,b,c,d,(A,Y,Z),s} (2)
From (2), we have O &/ and dj g=1. Therefore, Guidel is
satisfied and a macro actor M = {A,B} = {M,,a,....a,,} =
{ay,...,a11} can be formed. The data-flow graph shown in

Fig.4(a) is now completely converted into three macro actors
{M,M,,M,} and one micro actor a,;, where M,={a,...,.a;¢},

M,={a,,}, and M3={a;,}. The three macro actors are shown

in Fig.4(b). The conversion process we have demonstrated
thus far is for the first condition element. However, the same
argument discussed above applies to other condition elements
and we shall not discuss it any further. The set of guidelines
described above is by no means a complete set. It can, how-
ever, serve as a starting point for the formation of wfms for
other applications.

5. Simulation and Performance Evaluation

A simulation has been performed on the Macro Data-Flow
Multiprocessor (MDFM) [Yoo and Gaudiot, 1989]. The ma-

Sohn and Gaudiot 39

chine contains 64 PEs interconnected by a 6-dim hypercube
network. The target production system, which we call a 'ge-
neric production system,' has 15 rules, all of which are writ-
ten in micro actors based on the parallel version of the RETE
algorithm [Gaudiot and Sohn, 1990].

A typical OPS5-like rule was shown in the previous sec-
tion. Each rule has on the average 5 condition elements, 2 ac-
tion elements, and 3 two-input nodes. Each condition element
has on the average 3 one-input nodes and at least one variable
in the value-part (see [Forgy, 1982] for details). With the
guidance criteria we developed, the micro actors for the rules
are written in macro actors, each of which contains on the av-
erage 50 micro actors.

Tables 1 through 3 show simulation time, network load,
and speedup. Table 1 lists simulation time units and network
load for sequential and parallel distribution of WMEs with
various number of PEs. Table 2 derives the ratio of sequential
distribution (SD) to parallel distribution (PD). PD of WMEs
yields a maximum of 4.4 speedup and reduces a maximum of
2.5 times the network load over SD of the original Rete algo-
rithm . Regardless of the number of PEs used, PD provides an
average of 2.5 speedup and reduces the network load on the
average 2.4 times. Table 3 shows simulation results on speed-
up of using different number of PEs. Various curves for the
simulations results are depicted in Fig.5.

SD1 PD1 SD2 D2
#PEs T L I L T L T L
1 23619 0 8955 0 23544 0 8912 0
2 13269 9510 4589 4017 12161 9432 4840 3792
4 7239 15738 2614 6901 5873 15078 2895 6406
8 5047 22491 1701 9643 3296 21389 1545 8935
16 3519 26568 1423 11841 2101 26822 1038 11101
32 3336 33364 1314 14157 1434 31991 763 12874
Table 1: Simulation time(7) and network load(L) for a ge-
neric production system executed on MDFM.
N

SD1/PD1 SD1/PD2 SD2/PD1 SD2/PD2
#PBs 1T L I L I L I L
1 26 NA 27 NA 26 NA 26 NA

2 2.9 2.4 2.7 2.5 2.7 2.3 2.5 2.5
4 2.8 2.3 2.5 2.5 2.2 2.2 2.0 2.4
8 3.0 2.3 33 2.5 1.9 2.2 2.1 24
16 25 2.2 34 2.4 1.5 2.3 2.0 24
32 25 2.4 4.4 2.6 1.1 2.3 1.9 2.5

Table 2: Ratio of SD to PD.

—w—_———_
No.of PEs SDI1 PD1 SD2 PD2
1 1.00 1.00 1.00 1.00
2 1.78 1.95 1.94 1.84
4 3.26 3.43 4.00 3.08
8 4.68 5.26 7.14 5.77
16 6.71 6.29 11.21 8.59
32 7.08 6.82 16.42 11.68 ‘
L
Table 3: Speedup, S=T,/T,, of a generic production sys-
tem executed on Macro data-flow simulator.

————

40 Architectures and Languages

(c) Ratio of Simulation Time (b) Network Load (a) Simulation Time

(d) Ratio of Network Load

Jo+d

2044 1

1044

W
L
4+
H

2044

SD1/PD1
SD1/PD2

—— SD2/PD1
i~ SD2/PD2

- ey W W Wty

Number of PEs

T 7
........................ AE—
F
unnOou:u SD1 mD1 o
sessasPposene SD1 /pDZ
= SD2/PD2
. ——

20

(e) Speedup

0 10 20 30 40
Number of PEs

Fig.5: Simulation results on a generic production system
with 15 rules, (a) Simulation time, (b) network load, (c)
Ratio of SD to PD for simulation time, (d) Ratio of SD to
PD for network load, and (e) Speedup. The maximum
speedup we achieved by using data-driven principles of
execution reached about 17 out of 32 PEs.

From the simulation results, we verify that: First, our
parallel network with multiple root nodes reported in [Gaud-
iot and Sohn, 1990] gives an impressive improvement over
the original sequential RETE network: the number of groups
we had among condition elements of our generic production
system is 3. The simulation time of the sequential RETE net-
work, regardless of the number of PEs used, is almost always
three times that of our parallel network, as seen from Table 1
and Fig.5(c). Second, the data-flow principles of execution
can, not only efficiently perform the symbolic computation,
but also yield an impressive performance over the conven-
tional von Neumann model of execution for production sys-
tem processing. From the speedup curve of Fig.5(c), we find
that the data-flow principles of execution can indeed yield a
17-fold speedup when 32 PEs are used, regardless ofthe type
of matching algorithms.

6. Conclusions

In this paper, a macro actor approach for Al problems, specif-
ically production systems, has been demonstrated as an effi-
cient implementation tool. Characteristics of production sys-
tems from parallel processing have been discussed to suit the
macro data-flow multiprocessor environment. A simple ex-
ample on comparison operations has been explained in detail
from the macro perspective. Several guidelines have been
demonstrated to form wfms. A condition element of a rule in
PS is converted to macro actors. The results ofa deterministic
simulation with 15 rules with more than 100 condition and
action elements on the macro data-flow simulator have re-
vealed that the macro approach is an efficient implementation
for the Al production systems. Indeed, the macro approach
gives a 17-fold speedup on 32 PEs. Furthermore, our parallel
matching algorithm with multiple root nodes gives an addi-
tional speedup of 3, regardless of the machine used. Assess-

ments of the data-flow systems on productions systems have
proven effective and we are currently investigating issues re-
lated to parallel firing of multiple rules toward true parallel
production systems.

References

[Arvind and lannucci, 1983] Arvind, R. A. lannucci, "Two
fundamental issues in multiprocessing: the dataflow solu-
tions" MIT Laboratory for Computer Science, TM-241,
September 1983.

[Backus, 1978] J. Backus, "Can programming be liberated
from the von Neumann style? A functional style and its al-
gebra of programs” C. of ACM, 21(8):613-641, Aug. 1978.

[Forgy, 1982] C.L. Forgy, "Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Problem," in Ar-
tificial Intelligence, 19:17-37, September 1982.

| Gaudiot and Bic, 1991] J.-L. Gaudiot and L. Bic, "Advanced
Topics in Data-flow Computing," Prentice Hall, Engle-
wood Cliffs, New Jersey, 1991.

[Gaudiot and Ercegovac, 1985] J.-L. Gaudiot and M.D. Erce-
govac, "Performance evaluation of a simulated dataflow
computer with low-resolution actors," J. of Parallel Dis-
tributed Computing, pages 321-351, Academic Press 1985.

[Gaudiot and Sohn, 1990] J.-L. Gaudiot and A. Sohn, "Data-
Driven Parallel Production Systems," IEEE Transactions
on Software Engineering, 16(3)-.281-293, March 1990.

[Gupta, 1987] A. Gupta, "Parallelism in Production Sys-
tems," Morgan Kaufmann Publishers, Inc., 1987.

[Gupta and Tambe, 1988] A. Gupta and M. Tambe, "Suitabil-
ity of Message Passing Computers for Implementing Pro-
duction Systems," in Proc. National Conference on Al,
pages 687-692, August 1988.

[Miranker, 1989] D.P. Miranker, "TREAT: A New and Effi-
cient Match Algorithm for Al Production Systems," Mor-
gan Kaufmann Publishers, Inc., 1989.

[Sohn and Gaudiot, 1990a], A. Sohn and J.-L. Gaudiot, "Con-
nectionist Production Systems in Local Representation,"in
Proc. International Joint Conference onNeural Networks,
Washington, D.C., January 1990.

[Sohn and Gaudiot, 1990b], A. Sohn and J.-L. Gaudiot, "Rep-
resentation and Processing Production Systems in Connec-
tionist Architectures," Int'l Journal of Pattern Recognition
and Artificial Intelligence, 4(2): 199-214, June 1990.

[Sohn and Gaudiot, 1991], A. Sohn and J.-L. Gaudiot, "Pro-
cessing of Production Systems on a Macro Data-flow Mul-
tiprocessor," USC, Dept. of EE-Systems, CE:TR-91.

[Tenorio and Moldovan, 1985] M.F.M. Tenorio and D.I.
Moldovan, "Mapping Production Systems into Multipro-
cessors," in Proc. International Conference on Parallel
Processing, pages 56-62, August 1985.

[Yoo and Gaudiot, 1989] N. Yoo and J.-L. Gaudiot, "A Mao
no Data-flow Simulator,” USC, Dept. of E.E.-Systems,
CE:TR-89-27.

[Wah et al.,, 1989] B.W. Wah, M.B. Lowrie, and G.-J. Li,
"Computers for Symbolic Processing," Proceedings of the
IEEE, 77(4):509-540, April 1989..

Sohn and Gaudiot 41

