
A Macro-Cell Global Router Based on Two Genetic Algorithms

Henrik Esbensen

Computer Science Department

Aarhus University

DK-8000 Aarhus C, Denmark

E-mail: hesbensen@daimi.aau.dk

Abstract

This paper presents a novel approach to global routing of
macro-cell layouts. A genetic algorithm generates sev-
eral short routes for each net. Another genetic algorithm
then selects a route for each net while minimizing area
and secondarily interconnect length. Exact channel den-
sities are used for area estimation. The layout quality
obtained on MCNC benchmarks compares favourably to
that of TimberWolfMC.

1 Introduction

A well-known strategy for global routing of macro-cell
layouts consists of two phases [10]. In the �rst phase,
a number of alternative routes are generated for each
net. The nets are treated independently one at a time,
and the objective is to minimize the length of each net.
In the second phase, a speci�c route is selected for each
net, subject to channel capacity constraints, and so that
some overall criterion, typically area or total intercon-
nect length, is minimized. A main advantage of this
routing strategy is its independence of a net ordering.

Mercury [7] and TimberWolfMC [8] are state of the art
global routers for macro-cell layouts, and both are based
on the two-phase strategy. For nets with a small num-
ber of terminals, these routers generate up to 10� 20
alternative routes for each net. However, due to the
time complexity of the applied algorithms, only a sin-
gle route is generated for nets having more than 5� 11
terminals. As noted in [8] this limits the overall quality
obtainable.

In this paper a new global router is presented which min-
imizes area and secondarily, total interconnect length.
While also being based on the two-phase strategy, this
router di�ers signi�cantly from previous approaches in
two ways:

1) Each phase is based on a genetic algorithm (GA).
The GA used in phase one provides several high-quality
routes for each net independently of its number of ter-
minals. In the second phase another GA minimizes the
dual optimization criterion by appropriately selecting a
speci�c route for each net.

2) The estimates of area and total interconnect length
used throughout the optimization process are calculated

very accurately. The area estimate is based on compu-
tation of channel densities and the wirelength estimate
is based on exact pin locations.

Experimental results shows that the layout quality ob-
tained by the router compares favourably to that of
TimberWolfMC.

2 Phase One of the Router

Before the global routing process itself is initiated a rec-
tilinear routing graph is extracted from the given place-
ment. Routing is then performed in terms of this graph,
i.e., computing a global route for a net is done by com-
puting a corresponding path in the routing graph.

A quite detailed description of how to generate the rout-
ing graph for a given placement is given in [7]. Roughly
speaking, each edge of the graph corresponds to a rout-
ing channel and each vertex corresponds to the intersec-
tion of two channels. An example is shown in Fig. 1.

Figure 1: A placement and the corresponding routing
graph.

Before �nding routes for a given net, vertices represent-
ing the terminals of the net are added to the routing
graph at appropriate locations. Finding the shortest
route for the net is then equivalent of �nding a mini-
mum cost subtree in the graph which spans all of the
added terminal vertices, assuming that the cost of an
edge is de�ned as its length. This problem is known as
the Steiner Problem in a Graph (SPG). When a net has
been treated, its terminal vertices are removed from the
routing graph before considering the next net, thereby

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

signi�cantly reducing the size of the SPG instances to
be solved.

For each terminal the location of the corresponding ter-
minal vertex is determined by a perpendicular projec-
tion of the terminal onto the edge representing the ap-
propriate routing channel, as illustrated in Fig. 2. This
is in contrast to the strategy used in e.g. [7]. Here ver-
tices are added only at the center of routing channels
and each terminal is then assigned to the closest vertex.
This scheme may result in some nets having identical
sets of terminal vertices, in which case some computa-
tions can be avoided. On the other hand, our scheme
provides a more accurate estimate of the wirelength and
also allows a more accurate area estimate as discussed
in Section 3.1.

Figure 2: Addition of terminal vertices (shaded) for a
net with three terminals (marked with crosses).

Fig. 3 outlines phase one. A net is trivial if all its ter-
minals are projected onto the same edge of the routing
graph. Although several routes can still be generated
for a trivial net, it will rarely be advantageous. Hence,
global routing is skipped for such nets.

generate routing graph
for each non-trivial net do :
add vertices to graph
if 2-terminal net :
apply Lawlers algorithm

else
apply a GA for SPG

end
remove vertices from graph

end

Figure 3: Outline of phase one.

The SPG is in general NP-complete. However, if only
two vertices are to be connected, SPG reduces to a
shortest path problem, which is handled by an algorithm
of Lawler discussed in Section 2.1. Nets with more than
two terminals are handled by a GA discussed in Sec-
tion 2.2.

2.1 Two-terminal nets

For each net with two terminals, an algorithm due to
Lawler [6] is used to compute the shortest, second-
shortest, third-shortest, etc. route until a maximum of
R routes are found or no more routes exists. Lawlers al-
gorithm is exact but also quite expensive, requiring time
O(Rn3) for one net, where n is the number of vertices
in the routing graph.

An earlier algorithm by Dreyfuss [1] may at �rst seem
more attractive. It generates the R shortest routes from
a designated vertex to each of the other vertices in time
O(Rn logn). However, loops are allowed in a path, as
opposed to Lawlers algorithm, and if two paths do not
visit the same vertices in the same order they are con-
sidered distinct. One could then simply generate routes
until R loopless routes were obtained, which were also
distinct in the sense that their sets of edges are distinct.
However, experiments have shown that this strategy is
not feasible in practice due to the number of routes then
required.

2.2 Nets with at least three terminals

At most R distinct routes are generated for each net
having three or more terminals using a GA for the SPG.
For a detailed description of that algorithm the reader is
referred to [2, 3]. There are two main advantages of us-
ing that algorithm in this context. Firstly, it generates
high-quality solutions. In [2] the GA is tested on graphs
with up to 2,500 vertices and is found to be within 1 %
from the global optimum solution in more than 92 %
of all runs. The routing graph of a macro-cell place-
ment with C cells will have less than 3C vertices. It is
therefore most likely that the GA will �nd the short-
est existing route for every net in any reasonably sized
macro-cell layout. The second advantage of the GA is
that it provides a number of distinct solutions in a single
run. The problem of Mercury and TimberWolfMC that
only one route is generated for nets with many terminals
is thus eliminated.

For nets with few terminals, say 6-7 or less, exhaustive
search for the shortest route will often be feasible. Using
an algorithm by Sullivan [9] optimum can be found by
exhausting a search space consisting of

kX
i=0

�
n
i

�

points, where k = min(t � 2; n) and t is the number of
terminals of the net. However, experiments has revealed
that Sullivans algorithm often considers fewer distinct
solutions and is slower than the GA. Therefore, the GA
is used for every net with more than two terminals 1.

3 Phase Two of the Router

The area estimate is of course crucial to the phase two
algorithm, and is discussed in Section 3.1. A detailed
description of the GA performing the optimization then
follows in Section 3.2.

1To obtain as many distinct solutions as possible, the GA does
not use the reduction of the search space described in [2, 3].

3.1 Area Estimation

As in [7, 10] the area estimation is based on the forma-
tion of polar graphs as illustrated in Fig 4. For a given
placement and routing graph, two polar graphs are con-
structed, a horizontal (HPG) and a vertical (VPG). Let
us start by considering HPG. The vertices of HPG con-
sists of a vertex for each cell plus two additional vertices,
a source and a sink. Each edge in HPG corresponds to
a vertical edge in the routing graph and is directed from
the source towards the sink.

HPG

source,

sink, VPG

source, VPG

sink, HPG

Figure 4: Polar graphs for area estimation.

Assume that each edge (v; w) has a cost which corre-
sponds to the spacing needed between cells v and w to
perform the routing. Furthermore, assign to each path
from source to sink a �xed cost which is the sum of the
horizontal length of all cells visited on the path. The
total cost of the longest path in HPG then estimates the
horizontal length of the layout. By constructing VPG
in a similar way, the area is estimated as the product
of the longest path in HPG times the longest path in
VPG.

In [7] the cost of an edge in the polar graphs is a rather
simple function of the number of nets present in the
corresponding routing channel. However, if m nets are
present in a channel, the channel density can be any
number between 0 and m, assuming that two metal lay-
ers are available for routing and that each layer is used
exclusively for routing in a speci�c direction. Therefore,
to obtain a more accurate area estimate, we compute
the exact channel density for each edge in the routing
graph. This is possible since the routing in phase one
was performed using accurate positions for the termi-
nals of each net, cf. Section 2. The cost of an edge in
the polar graphs is then proportional to the density of
the corresponding channel.

Several factors a�ects the accuracy of the area estimate.
The two most important has to do with the subsequent
compaction/spacing of the layout:

1) If the compactor alters the placement to the extent
where the topology of the routing graph is changed,
the polar graphs are also changed. Hence, the qual-
ity of the area estimate decreases signi�cantly or may

even become meaningless. In other words, a good initial
placement is required so that the compactor will only
perform minor adjustments of the cell positions. This
situation re
ects the well-known strong mutual depen-
dency of the placement and global routing tasks.

2) It is implicitly assumed that the compactor generates
a layout in which no routing channel on a longest path
of a polar graph is wider than needed. Otherwise, the
area will be underestimated.

The practical consequences of these assumptions are ad-
dressed in Section 4.3.

3.2 Area and Wirelength Optimization

The concept of genetic algorithms, introduced by
John Holland [5], utilizes the notion of the natural evo-
lution process. In nature, the individuals constituting
a population adapt to the environment in which they
live. The �ttest individuals have the highest probabil-
ity of survival and tend to increase in numbers, while
the less �t individuals tend to die out. This survival-of-
the-�ttest Darwinian principle is the basic idea behind
the GA.

The algorithm maintains a population of individuals,
each of which corresponds to a speci�c solution. A
measure of �tness de�nes the quality of an individual.
Starting with some set of individuals, a process of evo-
lution is simulated. The main components of this pro-
cess are crossover, which mimics propagation, and mu-
tation, which mimics the random changes occurring in
nature. After a number of generations, highly �t indi-
viduals will emerge corresponding to good solutions to
the given optimization problem. A good introduction
to GAs is given in [4].

generate(PC);
evaluate(PC);
s = bestOf(PC);
repeat until stopCriteria():
PN = ;;
repeat M=2 times:
select p1 2 PC , p2 2 PC ;
crossover(p1; p2; c1; c2);
PN = PN [fc1; c2g;

end;
evaluate(PC [PN);
PC = reduce(PC [PN);
8 p 2 PC : possibly mutate(p);
8 p 2 PC : possibly invert(p);
evaluate(PC);
s = bestOf(PC [fsg);

end;
optimize(s);
output s;

Figure 5: Outline of phase two.

Fig. 5 outlines the phase two algorithm. Initially, the
current populationPC of sizeM = jPCj consists ofM�1
randomly generated individuals and a single individual
consisting of the shortest route found for each net. Seed-
ing the population with this relatively good solution
does not lead to better �nal results, but merely speeds
up the search process. Routine evaluate described in
Section 3.2.2 computes the �tness of each of the given
individuals, while bestOf �nds the individual with the
highest �tness. One execution of the outer \repeat"
loop corresponds to the simulation of one generation.
Throughout the simulation, M is kept constant. We
keep track of the best individual s ever seen. Rou-
tine stopCriteria terminates the simulation when no im-
provement has been observed for S consecutive gener-
ations. Each generation is initiated by the formation
of a set of o�spring PN of size M . The two mates p1
and p2 are selected independently of each other, and
each mate is selected with a probability proportional
to its �tness. The crossover routine described in Sec-
tion 3.2.3 generates two o�spring c1 and c2. Routine
reduce returns the M �ttest of the given individuals,
thereby keeping the population size constant. The ge-
netic operators for mutation and inversion are discussed
in Section 3.2.4. Routine optimize(s) performs simple
hill-climbing by executing a sequence of mutations on s,
each of which improves the �tness of s. The output of
the algorithm is then the solution s.

3.2.1 Representation

A global routing solution is represented by specifying
for each net which of its possible routes is used. More
speci�cally, assume a �xed numbering 0; 1; : : : ; N � 1 of
the nets, let � : f0; 1; : : : ; N �1g 7! f0; 1; : : : ; N �1g be
a bijection and denote by rk � R the number of routes
generated in phase one for the k'th net. An individual
is then a set of N tuples:

f(�(0); q�(0)); (�(1); q�(1)); : : : ; (�(N � 1); q�(N�1))g

where 1 � qk � rk for all k = 0; 1; : : : ; N � 1. For
example, the tuple (3,7) speci�es that the 3rd net uses
its 7'th route. The mapping � de�nes an ordering of the
nets, the purpose of which is explained in Section 3.2.4.
Note that the routing solution speci�ed by an individual
is independent of �.

3.2.2 De�nition of Fitness

Given a population P , the routine evaluate of Fig. 5
computes the �tness of each individual as follows. For
each individual p 2 P , its estimated area is computed
as described in Section 3.1 and its estimated total wire-
length is computed as the sum of the length of the routes
speci�ed by p.

The population P = fp0; p1; : : : ; pM�1g is then sorted
lexicographically using area as most signi�cant crite-
rion and wirelength as a secondary criterion. Assume
that P is sorted in decreasing order with respect to
this ordering. The �tness F of pi is then computed

as F (pi) = 2i=(M � 1) for i = 0; 1; : : : ;M � 1. This
scheme, called ranking, assures constant variance of �t-
ness throughout the optimization process. Ranking is a
good approach for controlling the speed of convergence,
including the avoidance of premature convergence.

3.2.3 Crossover Operator

Given two parent individuals � and �, the crossover op-
erator generates two o�spring, � and . The parent
individuals are not altered by the operator. In the fol-
lowing, a (second) subscript speci�es which individual
the marked property is a part of. Crossover consists of
two steps:
1) One of the parents, say �, is chosen at random, and
a copy
 of � is made.
 is then reordered so that it
becomes homologous to �, that is, �
 = ��.
2) The o�spring are given the same ordering as their
parents: �� = � = ��. Standard 1-point crossover is
then performed [5]: A crossover-point x is selected at
random in f0; 1; : : : ; N � 2g. The selected routes of � is
then de�ned by q�(k);� = q�(k);� if k � x and q�(k);� =
q�(k);
 otherwise, where � = ��. Similarly, the selected
routes of is de�ned by q�(k); = q�(k);
 if k � x and
q�(k); = q�(k);� otherwise.

3.2.4 Mutation and Inversion Operators

The mutation operator is very simple. It goes through
the N tuples of the given individual and randomly se-
lects another route for the k'th net with probability
pmut(rk � 1), where pmut is a small userde�ned prob-
ability. This scheme is called pointwise mutation.

As mentioned in Section 3.2.1 a given global routing
solution can be represented by several equivalent indi-
viduals because of the independence of the ordering �.
However, the �tness of o�spring produced by crossover
depends on the speci�c orderings of the given parent
individuals. The purpose of inversion is to optimize the
performance of the crossover operator. With a given
probability pinv, the inversion operator alters the or-
dering � of a given individual. To obtain a uniform
probability of movement of all tuples, we consider the
set of tuples to form a ring. A part of the ring is
then selected at random and reversed. More speci�-
cally, two points x; y 2 f0; 1; : : : ; N � 1g; x 6= y, are
selected at random. The operator then de�nes the new
ordering �0 as2 �0((x + i) mod N) = �((y � i) mod N)
if 0 � i � (y � x) mod N and �0((x+ i) mod N) =
�((x+ i) mod N) otherwise, i = 0; 1; : : : ; N � 1.

4 Experimental Results

The router has been implemented in the C program-
ming language, and all experiments are performed on
a Sun Sparc IPX workstation. The router is interfaced
with the macro-cell layout system Mosaico, which is a

2The de�nition of �0 relies on the mathematical de�nition of
modulo, in which the remainder is always non-negative.

part of the Octtools CAD framework developed at Uni-
versity of California, Berkeley. This integration allows
for comparison of the routers performance to that of
TimberWolfMC [8], a state of the art global router also
interfaced to Mosaico.

4.1 Test Examples

Three of the MCNC macro-cell benchmarks, xerox,
ami33 and ami49, were used for the experiments. How-
ever, due to a purely technical problem, it became nec-
essary to remove all pads from these examples before
using them 3. The modi�ed benchmarks are referenced
using a '-M' su�x.

Problem #cells #nets #terms.

xerox-M 10 203 696

ami33-M 33 85 442

ami33-2-M 33 85 442

ami49-M 49 390 913

ami49-2-M 49 390 913

Table 1: Problem characteristics.

Table 1 lists the main characteristics of the test exam-
ples. The number of nets and the number of termi-
nals listed are totals, i.e., they include the few trivial
nets. xerox-M, ami33-M and ami49-M are placed by
Puppy, a placement tool based on simulated annealing,
also included in Octtools. ami33-2-M and ami49-2-M
are other placements of ami33-M and ami49-M, respec-
tively. The generation of these placements are described
in Section 4.3.

4.2 Method

Two factors makes it di�cult to device a sequence of ex-
periments providing an absolute fair performance com-
parison of the two global routers. Firstly, global rout-
ing is just one of a sequence of heavily interacting steps
needed to generate a complete layout. Hence, when
considering a speci�c result, it may be in
uenced by
a pattern of interactions with other tools, which acci-
dentally favours one of the routers. Secondly, the op-
timization strategies used by the two routers are not
identical. As described earlier, the GA-based router ex-
plicitly attempts to minimize area and secondarily wire-
length. While TimberWolfMC also generates the short-
est possible routes in phase one, area is not an explicit
component of the optimization criterion used in the sec-
ond phase. Instead, TimberWolfMC selects the shortest
possible routes subject to channel capacity constraints.

The chosen strategy for experiments are as follows: For
each of the placed examples listed in Table 1, Mosaico
was executed to generate a complete layout, using either
TimberWolfMC or the GA-based router for the global
routing task. Hence, all other steps of the layout process
are performed by the same tools.

Mosaico was executed �ve times for each example us-
ing the GA-based global router in order to capture the

3In our version of Octtools (5.2) the channel de�nitionprogram
Atlas can not handle the pad placement generated by Padplace.

variations caused by the stochastic nature of the applied
algorithms. The same set of parameters are used for all
program executions, i.e., no problem speci�c tuning is
performed. For each net, at most R = 30 alternative
routes are generated. The parameters of the GA used
in phase one are as given in [3]. The phase two GA
is executed with population size M = 40, stop criteria
S = 100, mutation probability pmut = 2:5 � 10�4 and
inversion probability pinv = 0:1. There is no variation
of results when applying TimberWolfMC.

4.3 Layout Quality

Table 2 summarizes the impact on the completed lay-
outs of using the GA-based router instead of Timber-
WolfMC. Atot denotes total area, Aroute denotes rout-
ing area, i.e., the part of the total area not occupied by
cells and WL denotes total wirelength. Each entry is
computed as 100(GA-result=TW-result � 1). Hence, a
negative value indicates a reduction in percent obtained
by the GA-based router, while a positive value indicates
a percentage overhead as compared to TimberWolfMC.
Despite the inherent problems of this kind of comparison
discussed in Section 4.2, it is clear that in general the
GA-based global router obtains the best layout quality
for the problem instances considered.

Problem Solution Atot Aroute WL

xerox-M best �1:9 �4:7 +0:0

avg �1:4 �3:5 +0:8

ami33-M best �3:2 �5:1 �3:2

avg +1:6 +2:5 �0:2

ami33-2-M best �3:0 �4:7 �1:5

avg �1:1 �1:7 �0:2

ami49-M best �1:9 �3:3 �1:5

avg �0:5 �0:8 +0:3

ami49-2-M best �4:2 �7:3 �4:0

avg �3:7 �6:3 �2:9

Table 2: Relative improvements obtained by the GA-
based router. best and avg. is best and average of the
�ve runs performed.

Inspection of the generated layouts reveals interesting
information regarding the two major assumptions un-
derlying the area estimation, discussed in Section 3.1.
The placement of xerox-M is adjusted only slightly dur-
ing compaction, and the routing graph topology is un-
altered. For this example, the GA-based router obtains
an average reduction of 3.5 % of the routing area which
comes at the price of a 0.8 % increase in total wire-
length. However, for ami33-M, the GA-based router on
average obtains larger layouts than TimberWolfMC. In
this case the placement, and hence the routing graph
topology, is signi�cantly modi�ed by the compactor.
As a consequence, the function minimized by the GA-
based router in its second phase correlates very poorly
to the actual layout generated, which inevitably leads

to a poor result. To counteract this phenomenon, a
new placement ami33-2-M was produced by ripping up
all routing in the completed layout of ami33-M gener-
ated using TimberWolfMC. Since the placement thus
obtained is the result of compaction and completion of
all routing, it will probably only be subjected to minor
adjustments when used itself as input to Mosaico. Ex-
periments con�rmed this assumption. The topology of
the routing graph of ami33-2-M is unaltered through-
out the process and the performance of the GA-based
router is now superior to that of TimberWolfMC. Very
similar results are observed for ami49-M: The routing
graph topology is signi�cantly altered during the lay-
out process. The placement of ami49-2-M is obtained
the same way as ami33-2-M, and the performance of the
GA-based router improves signi�cantly on this example.

The signi�cant routing graph alterations for some prob-
lems are a consequence of rather poor initial placements.
It is not clear how better placements would a�ect the
relative performance of the two routers. As placement
quality increases, the relative e�ect of eliminating a wire
from the longest path in a polar graph increases, indi-
cating a potential advantage for the GA-based router.
On the other hand, a good placement contains less rout-
ing, suggesting that the performance gap would be nar-
rowed.

For the test examples considered here, most routing
channels on the longest paths are compacted to their
minimum widths by the compactor, cf. the second as-
sumption discussed in Section 3.1. However, in most
cases at least one channel on the longest paths are still
wider than necessary. Hence, the area estimation per-
formed tends to underestimate the �nal area. However,
this assumption appears to be fairly reasonable.

4.4 Runtime

On average the router requires about 22, 12 and 130
minutes to route examples based on xerox, ami33 and
ami49, respectively. TimberWolfMC spends about 30
seconds for examples based on xerox and ami33, and
about 5 minutes for ami49-based examples. Hence, the
GA-based router is clearly inferior to TimberWolfMC
with respect to runtime. The total layout generation
process performed by Mosaico (i.e. excluding place-
ment) requires about 15 minutes for examples based on
xerox and ami33, and about an hour for ami49-based ex-
amples, when TimberWolfMC is used. Hence, the use
of the GA-based router increases the layout generation
time by a factor of two or three.

However, the runtime of the current implementation can
be improved signi�cantly in a number of ways. The
vast majority of the runtime is spend computing chan-
nel densities. When estimating the area of a solution,
all densities are recomputed whether the routing in a
channel is actually changed or not. Keeping track of
the need to recompute channel densities and updating
channel densities dynamically would hence reduce run-
time signi�cantly. Another approach is to implement a
parallel version of the router. Due to the inherent par-
allelism of any GA, a high speedup can be expected on
any MIMD architecture [4].

5 Conclusion and Future Work

In this paper a novel approach to global routing of
macro-cell layouts based on genetic algorithms has been
presented. The performance of the router is compared
to that of TimberWolfMC on MCNC benchmarks. Ex-
perimental results shows that the quality of completed
layouts improves when using the GA-based router in-
stead of TimberWolfMC, assuming that the quality of
the given placement is su�ciently high. The router is
inferior to TimberWolfMC with respect to runtime, but
major improvements are possible. Since the work pre-
sented here is a �rst approach to global routing based
on genetic algorithms, future improvements of the lay-
out quality obtainable are also very likely. We conclude
that the genetic algorithm is well suited as the basic
algorithm of a global router.

References

[1] Stuart E. Dreyfuss, \An Appraisal of Some Shortest-
Path Algorithms," Journal of the Operations Re-
search Society of America, Vol. 17, pp. 395-412,
1969.

[2] Henrik Esbensen, \Computing Near-Optimal Solu-
tions to the Steiner Problem in a Graph Using a Ge-
netic Algorithm," Technical Report, Daimi PB-468,
Aarhus University, Feb. 1994.

[3] Henrik Esbensen, Pinaki Mazumder, \A Genetic Al-
gorithm for the Steiner Problem in a Graph," Pro-
ceedings of the European Design and Test Confer-
ence, pp. 402-406, 1994.

[4] D. E. Goldberg, Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley,
1989.

[5] John H. Holland, Adaption in Natural and Arti�cial
Systems, University of Michigan Press, Ann Arbor,
MI., 1975.

[6] E. L. Lawler, Combinatorial Optimization: Net-
works and Matroids, Holt, Rinehart and Winston,
New York, 1976.

[7] Y. Nishizaki, M. Igusa, A. Sangiovanni-Vincentelli,
\Mercury: A New Approach to Macro-cell Global
Routing," Proceedings of the IFIP 10/WG 10.5 In-
ternational Conference on VLSI, Munich, 1989.

[8] Carl Sechen, VLSI Placement and Global Routing
Using Simulated Annealing, Kluwer Academic Pub-
lishers, Boston, 1988.

[9] G. F. Sullivan, \Approximation Algorithms for
Steiner Tree Problems," Technical Report 249,
Dept. of Computer Science, Yale University, 1982.

[10] R. Venkateswaran, P. Mazumder, \Routing Algo-
rithms in Semiconductor Circuit Design," In prepa-
ration.

