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Abstract

Physiological processes are essential for understanding the distribution and abundance of organisms, and recently,
with widespread attention to climate change, physiology has been ushered back to the forefront of ecological
thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data
on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose
three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i)
Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis.
Although each mechanism predicts a positive correlation between BMR and range size, they can be further
distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive
relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative,
mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that
expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic
macroecological relationship between range size and body size in mammals and birds. The fact that this pattern
holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest
ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body
size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR
are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions
are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at
heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR and more general
issues of phylogenetic and geographic scale.
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Introduction

“Who can explain why one species ranges widely and is very
numerous, and why another allied species has a narrow range
and is rare?” - Darwin 1859:6 [1]

A fundamental task of Ecology is to understand the
distributions of species. In particular, the puzzle of why even
closely related species vary so greatly in the size, limits,
position, and shape of their distributions has been an enduring
concern of ecologists [2-7]. For example, geographic range
size (hereafter, range size) varies by 12 orders of magnitude
among extant terrestrial mammals [8].

Attempts to understand determinants of range properties
have been pursued at many geographical and phylogenetic

scales. At one extreme are analyses of one to a few species
using correlations between climatic variables (e.g., temperature
isoclines) and range edges, or mechanistic analyses using
experimental approaches such as transplants beyond a range
margin or evaluation of abiotic tolerances [9-12]. Although case
studies may clarify mechanisms, they typically lack generality
because so few species are studied.

At the opposite extreme are macro-scale approaches, our
focus in this study, generally involving large datasets of
hundreds to thousands of species within large taxonomic
groups such as mammals, birds, reptiles or palms, over
continental scales [4,13-18]. Both approaches have implicated
a wide array of intrinsic factors, such as physiological
tolerances, life history and trophic position; and extrinsic
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factors, such as the presence and number of competitors,
predators and parasites [2,7,19,20] as determinants of the size,
position and limits of the range. Yet after more than a century
of study, and an expansive catalog of case studies and
correlations of range properties with many variables [19],
recent reviews highlight our limited understanding of the
underlying causal mechanisms that determine this variation at
all scales [7,19,21,22].

Macroecological studies have advanced our understanding
of species distributions by quantitatively and statistically
describing range properties for many kinds of organisms, and
how these properties vary with species traits, geography,
habitat and taxonomy. However, the success of
macroecological approaches in concretely explaining range
properties has been limited, for several reasons. First,
variables included in macroecological analyses such as body
size or trophic position typically explain small amounts of total
variation (e.g., Table 1). Second, macroecological studies still
largely ignore phylogenetic relatedness as a confounding factor
in statistical analysis of pattern, which is now well recognized
as an important issue when using a comparative approach
[1,23,24].

Finally, most macroecological studies infer mechanisms
tangentially, either because they are derived from correlations
to proxy variables such as latitude, or from coarse scale
correlations with habitat variables. For example, many recent
studies have used correlational habitat modeling and latitude to
infer that ‘physiological tolerance’ explains variation in range
size [25,26]. But organisms generally experience climate on a
much finer scale than is captured by the ‘average climate’ at a
given latitude and temperature moments (mean or daily and
seasonal variance) can be complexly and nonlinearly related to

Table 1. Amount of variation in log10 geographic range size
explained as a linear function of log10 mass in various
groups of mammals and New World birds.

Group No. species
% variation
explained (R2) Source

Amazonian primates 39 19 [137]
New World carnivores 70 9 [62]
Neotropical forest mammals 100 10 [138]
African large mammalsa 242 4 [139]
Carnivora 210 4.3 [8]b

Primates 259 4.8 [8]b

Rodentia 1,287 n.s.c [8]b

Mammalia 3,268 n.s. [8]b

New World birds 2,908 1 [117]

Geographic range size was measured as squared area, except where noted.
Only studies that measured the complete extent of geographic ranges, rather than
partial or regional ranges, were included. Note the overall negative correlation
between the number of species included in the study and amount of variation
explained.

a latitudinal extent was used as the measure of range size
b calculated from all available data in the PanTHERIA database [8]
c n.s. = not significant (p > 0.05)

doi: 10.1371/journal.pone.0072731.t001

latitude [27,28]. In addition, many other factors that likely
contribute to range size besides temperature covary with
latitude, including land area, productivity, species diversity, and
resource turnover rates. Moreover, ‘physiological tolerance’ is a
complex multivariate species trait with many distinct cellular
mechanisms that evolve more or less independently (e.g., heat
tolerance, cold tolerance, tolerance breadth, etc.). Any one or
some combination of these underlying mechanisms of
tolerance could drive patterns. In the end, such habitat
correlational studies can only provide statistical support for
correlations between range properties and coarse-scale abiotic
factors, an understanding that was well-articulated more than a
century ago [29-31].

The emergent field of Macrophysiology aims to address this
lack of mechanism by incorporating physiological species traits
(PSTs) that are theoretically related to both environmental
tolerance/performance and energetics into analyses of range
properties [32-36]. PSTs that are hypothesized to relate to
range properties include heat and cold tolerance limits,
tolerance breadth, performance capacity, performance breadth,
and acclimation capacity [32,37-42]. Thus macrophysiology
integrates several longstanding research approaches to
species distributions including the mechanistic perspective of
physiological ecology, the comparative insights amassed by
comparative physiology, and the large scale of analysis
inherent in macroecology [36].

In this paper, we take a macrophysiological approach using
data on basal metabolic rate (BMR) to understand mammalian
distributions, a group that has been of seminal import in
macroecological studies. Mammals are also well-studied
physiologically, and several explicit hypotheses exist about
how and why variation in BMR should relate to mammalian
distributions. Additionally, we take a phylogenetic approach to
examine whether accounting for relatedness alters
conclusions. Finally, we explore relationships between
physiology and range size at different taxonomic and
geographic scales to assess how the scale of comparison
influences the hypothesized functional relationships.

Theoretical basis of, and alternative hypotheses for, a
functional relationship between PSTs and range size

The thesis that physiology interacts with climate to determine
range size has deep historicalroots (e.g., [29,43,44]; reviewed
by [36]), but a focus on biotic interactions marginalized
physiological thinking from mainstream ecology for decades
[36]. Macrophysiology [36] provides a framework for evaluating
functional hypotheses about how PSTs relate to range
properties.

To date, macrophysiological studies are limited and focus on
the role of physiological niche breadth, primarily tolerances to
temperature. The Climatic Variability Hypothesis [43] predicts
that species that experience wider variation in climate (e.g.,
temperate zone terrestrial species) should have evolved
broader physiological tolerances [28,36,43-46] and therefore
realize larger ranges (reviewed by [45]) than related species
occupying less variable climates. However, few quantitative
tests of these predictions actually exist [7,22,36,45]. The few
extant studies of ectotherms find the expected positive
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relationship between interspecific variation in thermal tolerance
and latitudinal position of the range [37,47,48] and between
thermal tolerance and range size [21,27,38,49,50]. Other
aspects of physiological tolerance, such as resistance to water
logging and drought stress in grasses [51], also positively
correlate with range size.

Little attention has been given to how PSTs other than
tolerance, such as species differences in basal metabolic rates
(BMR), might influence range size or position [32] despite the
well-developed theoretical connection of metabolism and
overall energy budgets [52-58]. This is particularly surprising
for mammals, which have been a favorite subject of
macroecology and comparative physiology, and for which there
is statistically significant residual interspecific variation in BMR
not explained by body size allometry [59,60]. Moreover, the
energetics of endothermy and its relationship to both energy
supply and demand have been widely studied (see below), and
have been hypothesized previously to explain the classic
macroecological relationship between body size and range size
in mammals and birds [14,18]. This relationship is positive and
conforms roughly to a triangular ‘constraint space’
[14,16,61,62], where small species can achieve small or large
ranges, but as species get larger, they are increasingly
restricted to larger ranges. The most widely accepted
explanation for this pattern is that, because larger organisms
require more energy, they are constrained to have lower
population densities, larger home ranges and thus larger
geographic range size to maintain minimum viable population
sizes to avoid extinction [14,61,63-65]. Below we refer to this
as the Energy Constraint Hypothesis. Despite continued
interest in the body size-range size relationship over the last
two decades, little new insight into this macroecological pattern
has emerged (but see [65]), in the sense that fuller statistical
explanations of the variance in range size have not been
realized (Table 1). Moreover, although effects of body size on
metabolic rate and energetics are well-described for mammals,
the role of PSTs and BMR in particular as predictor variables of
range size has not yet been assessed directly, despite the fact
that the original explanation for the body size-range size
relationship was stated in explicit energetic terms [18].

BMR is a measure of the rate of energy use necessary for
sustaining basic physiological functions [66-68]. In endotherms,
our focus here, it is defined as the minimal rate of metabolism
during rest in a postabsorptive (non-digestive) state measured
within the thermoneutral zone [69]. Because BMR is strongly
positively correlated with body size in animals [70,71], any
macroecological relationship between BMR and range size
should be similar to the previously well-known relationship
between body size and range size discussed above. Of more
interest here is that, across the range of mammal body sizes
and taxonomic diversity in the present data set (see Methods),
there is ~6% unexplained residual variation in BMR with
respect to mass (hereafter, mass-independent BMR, MIBMR).
MIBMR correlates negatively with environmental temperature
and positively with latitude in mammals [39,67,72-75].

Latitude is often used as a proxy for thermal environments
because average ambient temperatures (Tenv) generally
decrease and temperature variation (∆Tenv) generally increases

from the equator to the poles (Figure 3 in [76]; see also [27]).
Selection for increased heat production to maintain body
temperature in the face of low Tenv and high ∆Tenv is thought to
be the primary driver of the latitudinal gradient in MIBMR.

We hypothesize three related, non-mutually exclusive causal
links between species differences in BMR and range size:

1 Thermal Plasticity Hypothesis: High BMR increases thermal
tolerance [66,77], which increases potential range size. Given
sufficient available energy, high BMR species can better
maintain homeothermy at high latitudes and elevations and are
better equipped to cross physiological barriers, such as
mountain chains [43,45,78], with comparatively low Tenv and
high ∆Tenv. As a result of their increased aerobic scope (i.e.,
ability to increase metabolism above resting rate), high BMR
species are also better able to harvest enough energy in the
short-term to meet energy requirements in the long-term, such
as hoarding food for winter. Thus, high BMR species are better
equipped to inhabit more variable thermal and resource
environments, such as those typically found at higher latitudes
and elevations [77]. Nonetheless, high BMR species are not
necessarily restricted to living at high latitudes or elevations
because genetic, phenotypic and seasonal variation in
metabolism, body size and heat dissipation mechanisms (e.g.,
fur length or density) can allow populations at low latitude and
low elevation to persist.

2 Activity Levels /Dispersal Hypothesis: High BMR increases
activity levels and dispersal potential of individuals and,
ultimately, increases potential range size. Intraspecific and
interspecific studies of diverse animal taxa generally indicate a
positive link between BMR and activity levels [73,79-85],
metabolic rates and dispersal potential [32,86,87], and
dispersal potential and range size [32,51,88-90]. Moreover, the
evolution of endothermy and associated high BMR is most
often explained by the aerobic capacity model [77,91,92],
which states that high BMR evolves as a correlated response
to selection for increased aerobic scope to power higher
maximal rates of metabolism or higher rates of sustained
metabolic activity. At the cellular level, high BMR permits
higher rates of ATP synthesis and more rapid use of ATP by
muscles and visceral organs to support higher rates of
foraging, growth, reproduction and thermogenesis [77].
Presumably, the increased aerobic scope associated with
increased BMR allows individuals to move over larger
distances, forage and seek mates more widely, and disperse
and colonize at higher rates. Low BMR is advantageous
because it requires less energy, which may permit occupation
of low-energy habitats; however, the cost is that physiological
rates and behaviors governing growth, activity and
reproduction are reduced, and thus rates of dispersal and
colonization are potentially low.

3 Energy Constraint Hypothesis [14,18,61,63-65]: Because
higher BMR requires higher, sustained levels of energy
throughput, habitat energy availability should constrain the
evolution, interspecific frequency, and geographic distribution
of high BMR. Concomitantly, once high BMR evolves, these
same demands may constrain individuals to forage farther and
space themselves more widely to obtain sufficient energy,
resulting in low population densities, larger home ranges, and
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ultimately larger species distributions to maintain minimum
viable population sizes to avoid extinction. As discussed above,
this mechanism has been proposed previously to explain body
size-range size relationships [14,18,61,63-65].

These non-mutually-exclusive hypotheses can be partially
contrasted based on the form of the macroecological pattern
they predict (Figure 1). The Thermal Plasticity Hypothesis and
Activity Levels/Dispersal Hypothesis can both be viewed as
constraints arising from performance capacity and predict that
low BMR is a constraint on achieving large range size, but that
high BMR species can have large or small ranges. These
hypotheses predict a positive relationship described by a
triangular trait-space lacking species with low BMR and large
range size (Figure 1a). In contrast, the Energy Constraint
Hypothesis is a constraint arising from energy demand and
predicts that high BMR is a constraint on persisting with small
range size, but not a requirement for achieving large range
size, so that low BMR species can have large or small ranges.
This hypothesis predicts a triangular trait-space lacking species
with high BMR and small range size (Figure 1b). If these
mechanisms operate together, then we should observe an
absence of both species with low BMR and large ranges and
species with high BMR and small ranges. In this case, the
relationship should be well-described by a line (Figure 1c).

This paper has three major aims. First, we test for the
predicted positive relationship between BMR and range size
and attempt to resolve the three hypotheses outlined above. To
do this, we analyzed a relatively large sample of terrestrial
mammals (45% of which are rodents), taking account of
phylogeny and covariation with latitude and body size. Second,

we evaluate the global latitudinal trends in mammal range size
and MIBMR and relate these to climate and geographic
differences in the MIBMR-range size relationship. Third, we
provide a general commentary on the value of a
macrophysiological approach for understanding species
distributions and the broad conservation implications of our
study for predicting vulnerability to range size reductions driven
by large-scale environmental change (e.g., habitat loss, climate
change).

Methods

Data sources
Range size in this study represents an estimate of the area

contained within the outer-most limits of a species’ known
distribution [7]. Range size, along with latitudinal and
longitudinal extents of occurrence, were obtained from the
PanTHERIA database [8], with modifications by G. Ceballos
(see refs [93,94] for details) for 4,668 extant, non-marine
mammal species. Body size (mass) and BMR data that met
standards for reliability per Sieg et al. [60] were available for
695 species (Dryad Digital Repository: http://datadryad.org/
handle/10255/dryad.712). The final data set used in this study
included 574 species for which there were combined data on
range size, mass and BMR, and which were included in the
most complete mammalian phylogeny available (which
includes 4,510 extant species and is 47% resolved compared
to a fully bifurcating tree [95,96]). The phylogeny and all
species names follow Wilson & Reeder [97]. We examined two

Figure 1.  Hypothetical forms of a positive macroecological relationship between basal metabolic rate (BMR) and
geographic range size.  (a) Expected relationship if low BMR (low performance capacity) is a constraint on achieving large range
size (upper bound with positive slope) and high BMR is an advantage for achieving large range size, but not a constraint on
persisting with small range size (constant lower bound). This pattern would be consistent with the Thermal Plasticity Hypothesis and
Activity Levels/Dispersal Hypothesis. (b) Expected relationship if high BMR (high energy demand) is a constraint on persisting with
large range size (lower bound with positive slope), but not a requirement for achieving large range size (constant upper bound). This
pattern would be consistent with the Energy Constraint Hypothesis, and is the same pattern described previously for the relationship
between body size and range size. (c) Expected relationship if constraints on range size operate at both ends of the BMR spectrum.
At low BMR, species are constrained against achieving large ranges as in (a). At high BMR, species are constrained to have large
ranges as in (b). See text for details.
doi: 10.1371/journal.pone.0072731.g001
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nested data sets, all mammals (N = 574) and rodents (N =
259).

Statistical analysis
All variables were log10 transformed. To derive MIBMR, we

regressed BMR against mass to obtain the residuals. This was
done separately for the analysis involving all mammals and that
involving only rodents. We used non-phylogenetic ordinary
least squares regression (OLS) and phylogenetic generalized
least squares regression (PGLS) to test for a relationship
between MIBMR and range size. Although MIBMR was our
variable of central interest, we conducted similar analyses of
mass and BMR versus range size. We first used OLS to
examine latitudinal trends in range size and MIBMR. We
assigned species along the latitudinal gradient using the
latitudinal midpoint of a species geographic range [7]. Given
that range size was significantly related to latitude, we used the
residuals of this relationship to obtain latitude-independent
range size for our most conservative test of the MIBMR-range
size relationship.

Because shared evolutionary history among species can
cause interspecific trait similarity, it may inflate statistical power
in comparative analyses, possibly leading to erroneous
conclusions [23,24,98,99]. Nevertheless, current methods for
accounting for phylogenetic autocorrelation in comparative
studies (e.g., PGLS) are not a panacea for resolving these
issues because (1) most phylogenies are incomplete and
include unresolved relationships (‘soft’ polytomies), and (2)
specific models of trait evolution, such as Brownian motion,
must be assumed to perform the analyses, yet are not
empirically supported [100]. For comparison and because
neither method is ideal, we used both OLS and PGLS
regression in this study.

To perform PGLS, we used Pagel’s correlation structure
(corPagel) in the APE package [101] in the program R 2.11.1
[102]. Pagel’s version of PGLS (PGLSλ) assumes a Brownian
motion model of evolution to estimate the amount of
phylogenetic signal in the trait data (λ) using maximum-
likelihood and then uses this value to estimate the
phylogenetically-corrected regression between traits
[98,103,104]. The parameter λ usually varies between 0 and 1,
but in some circumstances can be > 1. When λ = 0, there is no
phylogenetic correlation in the trait data and those species can
be treated as independent observations (trait variation is
independent of phylogeny). In this case, PGLSλ is equivalent to
OLS. When λ = 1, this indicates that traits have evolved along
the phylogeny in a manner congruent with Brownian motion,
such that trait variation scales in direct proportion to shared
evolutionary history. In this case, PGLSλ is comparable to
independent contrasts [23]. Intermediate values of λ can be
interpreted as the strength of the phylogenetic signal in the trait
data from 0 to 1. Because the species-level relationships of
mammals are only ~50% resolved, and therefore phylogenetic
comparative methods may allow only weak tests under these
circumstances, we also examined relationships among families
– both across mammals and within rodents – to provide an
additional perspective on the role that phylogenetic relatedness
may play in these data.

We first regressed range size against mass, BMR and
MIBMR without respect to latitude to compare the nature and
strength of the relationships. For a more conservative test of
the MIBMR-range size relationship, we accounted for
covariance between range size and latitude by regressing
residuals of the range size-latitude relationship (latitude-
independent range size) against MIBMR. We examined this
relationship globally and for three regions: North (> 23.7°
latitude), Tropics (23.7° to -23.7° latitude), South (< -23.7°
latitude). Species were assigned to regions based on the
latitudinal midpoint of their range. Third, we used OLS and
PGLSλ multiple regression to test for an effect of MIBMR on
range size with mass and latitude as additional predictors and
to examine the predictive power of multivariate models.
Because the previous analyses indicated significant
differences, we conducted separate multiple regressions for
each region. Lastly, we used OLS simple regression to
examine the relationship between MIBMR and latitude-
independent range size at the among-families level using
family mean trait values.

In all analyses, we used the Akaike Information Criterion with
the second-order correction for finite sample sizes (AICc) to
choose between linear and curvilinear models when fitting OLS
regressions and to evaluate whether OLS or PGLSλ provided a
better fit to the data [105]. All statistical analyses were
performed in R 2.11.1 or JMP 9.0.0 [106] and were considered
significant at p < 0.05. p-values between 0.05 and 0.10 are
referred to as ‘marginally significant’.

Results

Our data set comprised 99 mammal families, 39% of which
were represented by a single species. The representative
number of species for the remaining families ranged from 2-76.
In the full mammal data set, range size (as area, km2) is highly
correlated with both latitudinal (r = 0.95, p < 0.0001) and
longitudinal (r = 0.94, p < 0.0001) extent of geographic ranges.
Thus, range size in squared area, and latitudinal and
longitudinal extent provide very similar information. We present
only the results involving range area.

Histograms of range size are shown in Figure S1. Range
size in mammals varied from less than 1 km2 for the murid
rodent Melomys rubicola to 63 million km2 for the red fox
(Vulpes vulpes). By contrast the distribution of range sizes of
the 574 species for which we had appropriate metabolic rate
data ranged from 2,237 km2 in the chipmunk Tamias palmeri to
63 million km2 in the red fox. Thus, our data set varied over 5
orders of magnitude compared to 12 orders of magnitude in
PanTHERIA and was biased against species with small
ranges. Both distributions were strongly right-skewed for
untransformed data but less strongly left-skewed for log10

transformed data. Similar results were found when the rodent
data were analyzed separately (Figure S1).

The allometries of BMR and mass and the residuals are
shown in Figure S2. For all mammals, mass explained 94.5%
of the variation in BMR. Even on a log-log plot, the allometry
was best described by the quadratic function: log10BMR =
0.642 + 0.673 · log10 Mass + 0.031 · (log10 Mass - 2.269)2 (F2, 571
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 = 4897.08, p < 0.0001). Although the improvement in R2 was
negligible (< 1%) compared to the linear function, the quadratic
term was significant, so we used it to derive the residuals for
our measure of MIBMR (results were qualitatively the same
using the residuals estimated from the linear function).
Residuals were normally distributed and MIBMR was not
correlated with mass; species with both higher and lower than
expected BMR for their body size occurred across the range of
masses (Figure S2). For rodents only, mass explained 88.4%
of the variation in BMR: log10BMR = 0.694 + 0.671 · log10 Mass
(F1, 257 = 1962.75, p < 0.0001). Again, residuals were normally
distributed and not correlated with mass.

Although MIBMR and mass were orthogonal, MIBMR and
BMR were correlated for all mammals (r = 0.23, n = 574, p <
0.0001) and for rodents only (r = 0.32, n = 259, p < 0.0001).

Latitudinal trends
Based on AICc scores, the OLS relationship between range

size and latitude (Figure 2a-c) was best described by a cubic
function for all mammals (PanTHERIA: R2 = 0.025, F3, 4664 =
39.87, p < 0.0001), the subset of mammals in this study (R2 =
0.15, F3, 570 = 34.45, p < 0.0001), and the subset of rodents in
this study (R2 = 0.11, F3, 255 = 10.78, p < 0.001). In each case,
average range size increased in the Southern hemisphere from
about -55° latitude towards the tropics, remained constant
throughout the tropics, and increased from the tropics to high
latitudes in the Northern hemisphere.

The relationship between MIBMR and latitude (Figure 2d,e)
was best described by a quadratic function for all mammals (R2

= 0.20, F2, 571 = 73.20, p < 0.0001) and just rodents (R2 = 0.15,
F2, 256 = 22.25, p < 0.0001). MIBMR increased relatively strongly
with latitude in the Northern hemisphere, where the data
extend to 70.7° latitude (Lemmus sibiricus). MIBMR increased

Figure 2.  Latitudinal trends in (a-c) geographic range size and (d, e) mass-independent basal metabolic rate (MIBMR) for
various mammal datasets.  Points along the x-axis represent the latitudinal midpoint of a species’ geographic range. Significant
relationships are indicated by OLS regression lines-of-best-fit. Positive latitudes represent the Northern hemisphere; negative
latitudes represent the Southern hemisphere.
doi: 10.1371/journal.pone.0072731.g002
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less strongly (if at all) with latitude in the Southern hemisphere,
where the data extend only to -53.5° latitude (Euneomys
chinchilloides), with few data points past -40° latitude. Note that
south of -55° latitude, there is essentially no land until reaching
Antarctica.

Mass-, BMR- and MIBMR-range size relationships
For all mammals, there was a significant positive relationship

between range size and mass, range size and BMR, and range
size and MIBMR (Table 2; Figure 3a-c). Although the
parameter estimates differed, the same results were found
using OLS and PGLSλ regression (Table 2). We also divided
the range size data into quartiles: average MIBMR decreased
significantly from the highest to lowest quartile (Figure 4a).
When the correlation between latitude and range size was
removed, the relationship between latitude-independent range
size and MIBMR was not significant for OLS and marginally
significant (0.10 < p > 0.05) for PGLSλ (Table 2). However,
when the data were analyzed separately by region (Table 3),
there was a significant relationship between range size and
MIBMR (Figure S3) and between latitude-independent range
size and MIBMR (Figure 5a-c) in the North (n = 214) for both
OLS and PGLSλ, whereas no relationship was detected in the
Tropics (n = 263) or South (n = 97).

For rodents, there was no significant relationship between
range size and mass or between range size and BMR (Table 2;
Figure 3d,e). There was a significant positive relationship
between range size and MIBMR for both OLS and PGLSλ
regression (Table 2; Figure 3f). As with all mammals, average
MIBMR decreased from the highest to lowest range size
quartile (Figure 4b). When the effect of latitude on range size
was removed, there was a marginally significant relationship
between latitude-independent range size and MIBMR for both
OLS and PGLSλ (Table 2). However, again, these relationships
changed when separated by region (Table 3). As in the all-
mammals dataset, there was a significant positive relationship
between range size and MIBMR (Figure S3) and between
latitude-independent range size and MIBMR (Figure 5d-f) for
rodents in the North (n = 142). Unlike all mammals, and only for
the PGLSλ analysis of latitude-independent range size, there
also was a significant positive relationship in the South (n =
45).

The amount of variation in range size explained by MIBMR,
mass and latitude combined varied from 2-28%, depending on
geographic region and taxonomic scale (Table 4). For all
mammals in the North, OLS multiple regression showed
significant positive effects of each variable, while PGLSλ
multiple regression revealed only a significant effect of latitude
with marginally significant effects of mass and MIBMR. In the
Tropics, only mass had a significant positive effect on range
size in the OLS multiple regression; the PGLSλ multiple
regression was not significant. In the South, only latitude had a
significant negative effect on range size in both OLS and
PGLSλ multiple regressions.

For rodents in the North, both OLS and PGLSλ multiple
regression showed significant positive effects of latitude and
MIBMR on range size, but no effect of mass (Table 4). In the
Tropics, there was no significant effect of any variable on range

size. In the South, latitude had a significant negative effect and
there was a marginally significant effect of MIBMR in both OLS
and PGLSλ regression.

Family-level analyses
As described earlier, the low species-level resolution of

mammalian relationships afforded weak tests of the impact of
phylogeny upon the traits analyzed, so we opted to also
examine these relationships at the family level where data
permitted. For all mammal families (Figure 6a), there was a
significant positive OLS relationship between mean MIBMR
and mean latitude-independent range size (slope = 1.075 ±
0.402, R2 = 0.07, F1, 97 = 7.16, p = 0.009) and between mean
mass and mean latitude-independent range size (slope = 0.112
± 0.058, R2 = 0.04, F1, 97 = 3.84, p = 0.053). By contrast, for
rodent families only (Figure 6b), there was a strong positive
OLS relationship between mean MIBMR and mean latitude-
independent range size (slope = 3.462 ± 0.896, R2 = 0.42, F1, 21

= 14.93, p = 0.0009), but no relationship between mean mass
and mean latitude-independent range size (slope = 0.266 ±
0.156, R2 = 0.12, F1, 21 = 2.90, p = 0.103)

Discussion

Geographic range size is codified as a key criterion for
inferring vulnerability to extinction [107,108]. The underlying
assumption is that narrow distribution or stenotopy is inherently
risky and conversely that broad distribution or eurytopy confers
resistance to stochastic extinction. Hence, the identification of
species’ traits including PSTs that relate to range size is
essential to assess vulnerability to extinction and, moreover,
key to gaining a mechanistic understanding of range size
diversity and dynamics [32,109].

Metabolic rate, range size and the Energy Constraint
Hypothesis

We hypothesized that diversity in geographic range size in
the assemblage of contemporary terrestrial mammals would be
positively related to diversity in metabolic rate. Using the
largest macrophysiological dataset yet assembled for
mammals (or any other major monophyletic radiation), we
found evidence for this prediction in two dimensions: BMR, a
measure of absolute minimal energy demand, and MIBMR, a
measure of relative minimal energy demand, both of which are
significantly positively correlated with range size.

Our analysis of the classic macroecological relationship
between mass and range size showed that as body size
increases, species occupy larger ranges, so there is a general
lack of large-bodied stenotopic species (Figure 3a,d), as
previously known [18,63,65,110]. Our new macrophysiological
analyses showed a similar lack of stenotopic species with high
BMRs (Figure 3b,e) or high MIBMRs (Figure 3c,f). In terms of
our three hypothesized mechanisms (Figure 1), the observed
patterns are most consistent with that expected from the
Energy Constraint Hypothesis (Figure 1b) previously invoked to
explain the relationship between mass and range size: small
body size/low BMR or low MIBMR does not necessarily restrict
species to smaller ranges, but large body size/high BMR or
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high MIBMR apparently constrains species to relatively large
ranges. Presumably, the operant constraints on minimum
range size in both dimensions of energetics stem from per
capita energy demand, in which an increase in either absolute
(mass, BMR) or relative (MIBMR) energy demand increases
the minimum area required for individuals and therefore

species to support minimum viable populations to avoid
extinction.

A recent refinement of the Energy Constraint Hypothesis
modifies the classic view of the body size-range size
relationship in mammals [65]. That work, which examined a
much larger body size-range size data set (n = 3268 species,
approx. 57% of known species) than this or previous studies

Table 2. Global non-phylogenetic (OLS) and phylogenetic (PGLSλ) simple linear regressions of geographic range size
versus mass, BMR, and MIBMR in all mammals and rodents.

   Regression model:

Group Test Parameters OLS p-value PGLSλ p-value
Mammals GR~mass slope 0.112 (0.033) <0.001 0.107 (0.048) 0.03
  intercept 5.805 (0.082) <0.001 5.620 (0.369) <0.001
  R2 0.02  -  
  λ -  0.56  
  AICc 1385.99  1250.53  
 GR~BMR slope 0.202 (0.045) <0.001 0.195 (0.064) 0.002
  intercept 5.615 (0.105) <0.001 5.438 (0.373) <0.001
  R2 0.03  -  
  λ -  0.55  
  AICc 1377.95  1246.34  
 GR~MIBMR slope 0.682 (0.194) <0.001 0.491 (0.205) 0.02
  intercept 6.059 (0.034) <0.001 5.971 (0.342) <0.001
  R2 0.02  -  
  λ -  0.57  
  AICc 1385.32  1248.97  
 LIGR~MIBMR slope 0.270 (0.180) 0.13 0.367 (0.196) 0.06
  intercept -1.3e-11(0.031) 1.00 -0.019 (0.297) 0.95
  R2 0.004  -  
  λ -  0.49  
  AICc 1299.63  1206.81  
Rodents GR~mass slope 0.016 (0.076) 0.83 0.145 (0.099) 0.14
  intercept 5.848 (0.154) <0.001 5.712 (0.277) <0.001
  R2 0.00  -  
  λ -  0.38  
  AICc 597.90  586.91  
 GR~BMR slope 0.145 (0.106) 0.17 0.310 (0.132) 0.02
  intercept 5.590 (0.216) <0.001 5.353 (0.325) <0.001
  R2 0.01  -  
  λ -  0.37  
  AICc 596.05  583.02  
 GR~MIBMR slope 1.066 (0.304) <0.001 0.842 (0.328) 0.01
  intercept 5.879 (0.046) <0.001 6.007 (0.169) <0.001
  R2 0.05  -  
  λ -  0.35  
  AICc 585.85  580.22  
 LIGR~MIBMR slope 0.531 (0.291) 0.069 0.541 (0.314) 0.086
  intercept -3.7e-11(0.004) 1.000 0.113 (0.147) 0.44
  R2 0.013  -  
  λ -  0.29  
  AICc 563.70  561.67  

All variables were log10 transformed. GR = geographic range size; BMR = basal metabolic rate; LIGR = latitude-independent GR; MIBMR = mass-independent BMR.
Standard error of the slope (b) and intercept (a) are in parentheses. Statistically significant (p < 0.05) and “marginally significant” (0.10 < p > 0.05) slopes are indicated by p-
values in bold.
doi: 10.1371/journal.pone.0072731.t002
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detected a transition in the body size-range size relationship
around the modal mammal body size (~40 g in the expanded

body size-range size data set [65]; ~100 g in the entire
assemblage of mammals [111]). For larger species to the right

Figure 3.  Among-species relationship between geographic range size and (a, d) mass, (b, e) BMR, and (c, f) MIBMR in all
mammals and rodents.  OLS (solid) and PGLS (dashed) regression lines are plotted where significant. Dotted lines were drawn by
eye to illustrate the hypothesized functional constraint (see text).
doi: 10.1371/journal.pone.0072731.g003
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of the mode, the pattern described above of progressively
larger ranges with increasing body size was clearly evident in
the expanded data set, consistent with the original Energy
Constraint Hypothesis [18]. However, for smaller species to the
left of the mode, the relationship between body size and range
size was actually negative, prompting a modified Energy
Constraint Hypothesis that includes a transition in the
energetics of body size and its consequences for minimum
space requirements as body size departs in either direction
from the mode. Because the allometry of BMR to mass in
mammals has a slope < 1, there is a transition from high mass-
specific (i.e., per gram) BMR in small mammals to low mass-
specific BMR in large mammals. Thus, the smallest mammals
have the highest mass-specific energy demands, which may
increase their space needs above those expected based solely
on their small body size, as seen in the relationship between

body size and home range size [112,113]. Thus, the negative
relationship between body size and geographic range size in
small mammals is now argued to be another constraint on
minimum space requirements arising from progressively higher
mass-specific energy demands at small body sizes [65]. In
short, although the body size-range size relationships we
present here fit the classic view of the triangular constraint
space in Figure 1b, it is important to recognize that an
expanded data set [65] shows the relationship actually shifts
from negative in the smallest species (< ~ log10 [2] = 100 g) to
positive in larger species (> log10 [2] =100 g).

Comparative explanatory power of mass and metabolic
rate: analysis of central tendencies.  It has long been
assumed that energy demand underlies the relationship
between mass and range size [18]. Our analysis of BMR and
range size confirms this (Figure 3b,e). Moreover, our analysis

Figure 4.  Box-plots of MIBMR among quartiles of geographic range size for (a) all mammals and (b) rodents.  Different
letters indicate significant differences among quartiles (ANOVA followed by Tukey-Kramer HSD test).
doi: 10.1371/journal.pone.0072731.g004
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of MIBMR uncovers a second, previously unrecognized
dimension to the energetics of range size diversity in
mammals. In fact, MIBMR explained more variation in range
size than mass, the most widely studied macroecological
predictor of range size [7,14,17,64,114,115] (Table 1). In OLS
regressions, among-species variation in MIBMR explained from
2-5% of variation in range size, with and without the effects of
latitude. Despite this small amount of explained variance,
MIBMR explained almost twice the interspecific range variance
than did mass (2% in mammals, none in rodents). This pattern
was amplified in the family-level analyses. Among families,
MIBMR explained 7% and 42% of the variation in latitude-
independent range size in mammals and in rodents,
respectively. By comparison, mass explained 4% of variation in
latitude-independent range size among all mammal families

and explained none of the range variance among rodent
families. However, the small amount of variation explained by
the predictors we examined highlights the limited success that
traditional regression approaches have had in resolving
determinants of variation in range size, especially when large
numbers of species are compared within a single set of
statistical models [14,61].

Comparison of boundary line-constrained trait spaces:
analysis of functional diversity.  A more informative
perspective on macro-scale relationships between range size
and species traits is the idea of a 2D trait-space bounded by
mechanisms that restrict the combinations of values to fall
within a constrained space (Figure 1). The ‘constraint space’
approach [14] shifts emphasis from estimating linear
relationships between variables to considering why certain

Table 3. Regional non-phylogenetic (OLS) and phylogenetic (PGLSλ) simple linear regressions of geographic range size as
a function of MIBMR in all mammals and rodents in the North (> 23.7° lat), Tropics (23.7° to -23.7° lat), and South (< -23.7°
lat)

Response variable: Range size Latitude-independent range size

   Regression model: Regression model:

Group Region Parameters OLS p-value PGLSλ p-value OLS p-value PGLSλ p-value
Mammals North slope 1.256 (0.305) <0.0001 0.990 (0.322) 0.0024 0.802 (0.301) 0.008 0.655 (0.317) 0.04
  intercept 6.081 (0.058) <0.0001 6.345 (0.304) <0.0001 -0.068 (0.057) 0.23 0.215 (0.309) 0.48
  R2 0.07  -  0.03  -  
  λ -  0.38  -  0.38  
  AICc 492.33  465.48  486.46  456.20  
 Tropics slope 0.065 (0.306) 0.83 0.039 (0.301) 0.90 -0.053 (0.298) 0.82 -0.020 (0.297) 0.95
  intercept 6.145 (0.052) <0.0001 5.988 (0.428) <0.0001 -0.011 (0.051) 0.85 -0.147 (0.407) 0.72
  R2 0.0002  -  0.0001  -  
  λ -  0.74  -  0.71  
  AICc 636.87  561.59  622.97  556.34  
 South slope -0.104 (0.547) 0.85 0.161 (0.537) 0.76 0.066 (0.484) 0.89 0.402 (0.461) 0.39
  intercept 5.549 (0.078) <0.0001 5.629 (0.278) <0.0001 0.029 (0.069) 0.68 0.089 (0.306) 0.77
  R2 0.0004  -  0.0002  -  
  λ -  0.37  -  0.55  
  AICc 214.99  215.58  191.21  187.44  
Rodents North slope 1.476 (0.396) <0.001 1.249 (0.439) 0.005 0.908 (0.396) 0.025 0.899 (0.434) 0.04
  intercept 5.909 (0.066) <0.0001 6.051 (0.162) <0.0001 -0.023 (0.062) 0.71 0.134 (0.174) 0.44
  R2 0.09  -  0.036  -  
  λ -  0.23  -  0.28  
  AICc 320.98  321.47  318.39  315.23  
 Tropics slope -0.631 (0.589) 0.30 -0.029 (0.566) 0.95 -0.528 (0.572) 0.36 -0.280 (0.147) 0.062
  intercept 5.869 (0.085) <0.0001 6.015 (0.267) <0.0001 0.009 (0.086) 0.91 -0.776 (0.161) <0.001
  R2 0.015  -  0.012  -  
  λ -  0.76  -  1.33  
  AICc 160.35  145.94  158.84  80.40  
 South slope 0.734 (0.836) 0.39 0.874 (0.757) 0.25 1.132 (0.783) 0.16 1.432 (0.698) 0.046
  intercept 5.536 (0.107) <0.0001 5.557 (0.232) <0.0001 -0.010 (0.104) 0.92 -0.015 (0.219) 0.95
  R2 0.02  -  0.046  -  
  λ -  0.41  -  0.44  
  AICc 98.54  93.92  92.78  85.70  

All variables were log10 transformed. Standard error of the slope (b) and intercept (a) are in parentheses. Statistically significant (p < 0.05) and “marginally significant” (0.10
< p > 0.05) slopes are indicated by p-values in bold.
doi: 10.1371/journal.pone.0072731.t003
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Figure 5.  Among-species relationship between latitude-independent geographic range size and MIBMR for species whose
range latitudinal midpoint occurs in the (a, d) North, (b, e) Tropics and (c, f) South for all mammals and rodents.  Significant
OLS and PGLS relationships are indicated by an asterisk.
doi: 10.1371/journal.pone.0072731.g005
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regions in any two-space are well-populated by extant species,
whereas others have a dearth or even complete lack of
species. Further, the constraint space approach aims to
decipher the functional constraints that correlate with parts of
the trait-space in which particular types of species are under-
represented or non-existent.

From this perspective, we find that the shapes of the trait-
spaces describing the relationships between range size and
the predictor variables are highly similar (Figure 3). Each trait-
space is roughly triangular and has a positive lower bound
(dotted lines in Figure 3) indicating a constraint on minimum
range size as a function of absolute (mass, BMR) and relative
(MIBMR) energy demand. The finding that trait-spaces
involving metabolic rates as predictors reveal the same positive
lower bound previously observed for mass provides the first
direct macrophysiological evidence that energy limitation per se
constrains the lower right portion of the trait-space, supporting
the Energy Constraint Hypothesis [14,18,62-65,115]. For BMR,
this is not surprising because it is highly correlated with mass,
which is what motivated the Energy Constraint Hypothesis to
explain the body size-range size relationship in the first place
[18]. Nevertheless, our analysis is apparently the first direct test
using metabolic rate data.

The discovery of the triangular trait-space and positive lower
bound in the MIBMR-range size dimension is unexpected and,
because BMR and MIBMR are not highly correlated with each
other, it reveals a second dimension of energetic constraint on
mammal distributions. MIBMR can be thought of as the non-
allometric interspecific variance in BMR. In the context of the
Energy Constraint Hypothesis, the result that the positive lower

bound is also evident for MIMBR indicates that species that
have deviated towards higher metabolic rates are relatively
rare and require among the largest ranges, above and beyond
the increasing energy demands that accrue as an allometric
consequence of evolutionary increases in body size. Figure
3c,f makes clear that low MIBMR does not necessarily restrict
species to small ranges, but high MIBMR constrains species to
large ranges, presumably to satisfy their sustained high per
capita energy demands.

The hypothesis that energy demand per se restricts range
size can be considered further by examining the distribution of
range sizes for modal-sized mammals and how it varies as
body size departs from the mode towards larger body size.
First, consider two proxies of absolute energy demand, namely
body size and non-mass-adjusted BMR. The modal body size
in our data set occurs at log10(1.23) = 17 g for all mammals and
log10(1.51) = 32 g for rodents. The modal body size in the entire
mammal assemblage is ~100 g [111]. Based on the allometry
of BMR to body size, the modal mammal body size can be
construed as evolutionarily “favorable” or “optimal” in terms of
the energetics of converting resources into reproductive power
[116]. Inspection of Figure 3a,d shows that as body size
evolves away from this modal size range towards larger body
size, a constraint on the minimum area needed to support the
species appears to arise almost immediately, a point made in
seminal macroecologcial analyses of birds [18] and mammals
[63]. Similarly, if viewed in terms of absolute energy demand
(BMR; Figure 3b,e), the x-intercept of the lower constraint line
appears to occur at ~log10 (2) = 100 mLO 2/h, which is the
expected BMR for a ~log10 (2) = 100g mammal. Thus, an

Table 4. Partial regression coefficients (bi) of non-phylogenetic (OLS) and phylogenetic (PGLSλ) multiple regressions of
geographic range size as a function of MIBMR, mass and the range latitudinal midpoint in the North (> 23.7° lat), Tropics
(23.7° to -23.7° lat), and South (< -23.7° lat)

Regression model: OLS PGLSλ

Group Region Variable bi SE p-value Model R2 Model AICc bi SE p-value λ Model AICc
Mammals North MIBMR 0.791 0.244 0.02 0.16 475.37 0.557 0.326 0.09 0.36 449.18
  mass 0.181 0.051 0.001   0.130 0.070 0.06   
  latitude 0.016 0.006 0.01   0.022 0.005 <0.001   
 Tropics MIBMR -0.01 0.311 0.97 0.02 636.33 0.032 0.303 0.91 0.72 562.46
  mass 0.094 0.046 0.04   0.068 0.066 0.30   
  latitude 0.003 0.004 0.47   -0.005 0.004 0.20   
 South MIBMR 0.078 0.472 0.87 0.28 188.05 0.416 0.443 0.35 0.61 182.64
  mass -0.022 0.071 0.75   0.085 0.084 0.31   
  latitude -0.069 0.012 <0.001   -0.076 0.011 <0.001   
Rodents North MIBMR 1.051 0.443 0.02 0.13 332.26 0.894 0.448 0.05 0.28 323.24
  mass 0.023 0.107 0.83   0.153 0.128 0.23   
  latitude 0.018 0.008 0.02   0.024 0.008 0.002   
 Tropics MIBMR -0.521 0.589 0.38 0.08 172.68 -0.263 0.309 0.40 1.29 95.45
  mass 0.146 0.137 0.29    0.114  0.073 0.13   
  latitude -0.008 0.006 0.12   -0.001  0.003 0.68   
 South MIBMR 1.420 0.807 0.09 0.20 102.77  1.370 0.699 0.06 0.50 93.31
  mass -0.133 0.153 0.39    0.312 0.188 0.11   
  latitude -0.048 0.017 0.01   -0.052 0.016 0.003   

All variables were log10 transformed. Statistically significant (p < 0.05) and “marginally significant” (0.10 < p > 0.05) coefficients are indicated by p-values in bold.
doi: 10.1371/journal.pone.0072731.t004
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apparent constraint arises as mammal body size, and by
allometric consequence, its absolute energy demand increases
from the modal body size. Second, from the perspective of
relative energy demand, we can ask how departures above
and below expected BMR influence range size. Examination of
the plots of range size versus MIBMR (Figure 3c,e; Figure S3)
and latitude-independent range size versus MIBMR (Figure 5)
suggest that the constraint line crosses the x-axis at ~0.0.
Hence, as soon as MIBMR increases above zero, a constraint
on minimum range size appears to arise such that mammals
with elevated MIBMR (> 0.0) are constrained to have larger
ranges.

General insights from macro-scale analyses:
geographic and phylogenetic scale

Relationships between species traits and measures of
distribution and abundance, like those observed here, are
generally weak in the traditional regression sense at large
spatial and taxonomic scales for a variety of reasons
[14,17,117]. Two findings from our study help explain some of
this unresolved variance, namely, that there are hemispheric
and temperate–tropic differences in functional relationships
(Figure 2b, Figure 5, Table 4, Figure S3), and that the strength
of functional relationships depends on phylogenetic scale
(Figure 3, Figure 6).

Hemispheric differences in latitudinal patterns of range
size.  ‘Rapoport’s rule’ describes an interspecific pattern in

Figure 6.  Among-families relationship between latitude-independent geographic range size and MIBMR and mass for (a)
all mammal families and (b) rodent families only.  Points are average values for a family ± 1 SE. Points without error bars are
families represented by a single species. OLS regression lines are plotted where significant.
doi: 10.1371/journal.pone.0072731.g006
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which range size increases with latitude [6,46]. Although this
pattern has generally been found for terrestrial species in the
Northern hemisphere, it is clearly not a rule because its
existence is not taxonomically or geographically universal
[7,27,118,119]. Where patterns consistent with Rapoport’s rule
have been found, the most frequently proposed mechanism is
the Climatic Variability Hypothesis [43].

Our analysis was the first to use all available data (4,668
species) from the PanTHERIA database [8] to examine the
global latitudinal gradient in mammal range size and it revealed
two notable patterns. First, based on the latitudinal midpoint
method [7], we found that average range size increased with
latitude in the Northern hemisphere from about 40° latitude
towards the pole, but decreased in the Southern hemisphere
from about -20° latitude towards the pole (Figure 2a-c). This
hemispheric asymmetry affirms previous findings that
Rapoport’s rule does not generalize across hemispheres
[27,120].

Second, and more apparent than the trends in average
range size, the variance in range size decreased with latitude
in both hemispheres, so that there was a general absence of
stenotopic species whose geographic ranges are centered at
high latitudes in both hemispheres (Figure 2a). Thus, the global
relationship between latitude and mammal range size can be
summarized as: (1) few species with small ranges exist at high
latitudes in both hemispheres, as predicted by the Climatic
Variability Hypothesis (but also by the idea that the gradient in
range size is linked to the gradient in species richness
[46,120,121]), but (2) range size tends to decrease with latitude
in the Southern hemisphere and increase with latitude in the
Northern hemisphere, as predicted if available land area acts
as a constraint. Indeed, land area decreases dramatically with
latitude in the Southern hemisphere but increases with latitude
in the Northern hemisphere [120].

A similar global pattern between range size and latitude
occurs in birds, which was found to be well-correlated with the
global latitudinal gradient in total land area (Figure 3 in [120]).
Both land area and average range size increase with latitude in
the Northern hemisphere where there is more land overall, but
decrease with latitude in the Southern hemisphere where there
is less land overall. In contrast, the Climatic Variability
Hypothesis predicts a pattern of increasing range size with
latitude in both hemispheres.

Hemispheric and tropic-temperate differences in
functional relationships.  Along with latitudinal variation in
range size, multiple regression indicated that significant
predictors of range size can be region-specific (Table 4). For all
mammals and just rodents, the positive relationship between
MIMBR and range size was most evident in the North where
elevated MIBMR is most common (Figure 2d,e; see below). In
this region, there was a significant positive relationship
regardless of regression method (OLS vs. PGLS) or response
variable (range size vs. latitude-independent range size) (Table
3). By contrast, the evidence for all mammals suggests no
relationship between MIBMR and range size in the Tropics or
South. For rodents, however, the relationship was significant in
the South, but only for PGLS and not for OLS regression. An

obvious question is: why might the positive MIBMR-range size
relationship be most evident at high latitudes in the North?

The Climatic Variability Hypothesis predicts differences in
physiological tolerances and, consequently, range sizes,
between tropic versus temperate organisms [43]. MIBMR can
be viewed as a proxy for thermal tolerance in endotherms
because elevated metabolism increases the capacity for
thermogenesis, which is needed to maintain body temperature
at low environmental temperature (see section Thermal
Plasticity Hypothesis). Consistent with this view and the
predictions of the Climatic Variability Hypothesis, MIBMR
increases with latitude, which explained 20% and 15% of the
variation in all mammals and rodents, respectively (Figure
2c,e). These results corroborate a previous analysis of a
smaller dataset (267 species) of small (< 1 kg) mammals [122].
Other aspects of metabolic capacity, such as nonshivering
thermogenesis in rodents, also increase with latitude and
decrease with environmental temperature [123]. However,
while MIBMR clearly increases with latitude in the Northern
hemisphere, it is not clear from our data whether this also
occurs in the Southern hemisphere. Data are essentially
absent in the Southern hemisphere past -50° latitude likely
because the amount of land area decreases dramatically in this
region [120] and species are unlikely to have geographic
ranges centered at these latitudes. Past -55° latitude, there is
essentially no land available until reaching the frozen Antarctic
continent; the same latitude in the Northern hemisphere covers
approximately 2 x 106 km2 of land [120].

Figure 5 demonstrates more clearly differences in the
distribution of MIBMR among the North, Tropics and South.
Using MIBMR = 0.0 as a reference point, tropical species
(Figure 5b,e) skew towards reduced MIBMR (n = 164, mean
MIBMR = -0.143) versus elevated MIBMR (n = 99, mean =
0.106). By contrast, in the North (Figure 5a,d) more than twice
as many species show elevated MIBMR (n = 147, mean =
0.174) as opposed to reduced MIBMR (n = 67, mean = -0.113).
Thus, the comparison of tropical species to northern species
provides strong empirical support for the Climatic Variability
Hypothesis. However, the pattern does not hold for the South
(Figure 5c,f), where twice as many species exhibit reduced
MIBMR (n = 66, mean = -0.119) as opposed to elevated
MIBMR (n = 31, mean = 0.093). This pattern is both opposite
that of northern mammals and not consistent with the
prediction of the Climatic Variability Hypothesis, a discrepancy
that may relate to the different historical and contemporary
patterns of climatic variability and cold temperatures
experienced at high latitudes in the Northern (colder, more
variable) versus Southern (warmer, less variable) hemispheres
[27,28,76,119].

The fact that species with elevated MIBMR occur
disproportionately in the North likely explains why we find clear
evidence for a positive MIBMR-range size relationship in this
region, but less evidence in the Tropics or South. In short,
northern mammals tend to run “hot” with high relative energy
demands, and thus they densely populate a region of trait-
space close to the positive lower bound invoked by the Energy
Constraint Hypothesis (Figure 1b).
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Phylogeny.  Most macroecological and macrophysiological
analyses to date ignore the biases that arise from phylogenetic
relatedness, which are widely acknowledged in many other
areas of comparative biology [23,24]. In part this is due to the
general lack of resolved phylogenies for the very large groups
of species for which physiological or distributional data are
assembled from the literature, but also by some concerns
about the utility and interpretation of phylogenetic comparative
methods.

Some have asserted that phylogenetic history should not be
considered in the analysis of life historical or physiological traits
because these traits must evolve rapidly and are under such
strong adaptive constraint that it is not possible for phylogeny
to constrain them [124-129]. However, these arguments have
been mathematically falsified [130] or are inconsistent with
other empirical findings of substantial lineage effects on BMR
and its allometric scaling in both mammals and birds
[60,82,131,132].

A more credible issue is that, although phylogenetic
comparative methods aim to statistically separate the
component of trait variation explained by common descent
from that which is typically viewed as the adaptive component
(i.e., that not correlated with phylogeny), phylogenetic signal is
now known to also arise from strong adaptive stasis [100]. This
finding means that because ‘phylogenetic signal’ actually
includes a strong effect of adaptive evolution, current
phylogenetic comparative methods over-compensate for
phylogenetic inertia. Unfortunately, there is no current
methodology for evaluating the contribution of adaptive stasis
to phylogenetic signal, suggesting that phylogenetic
comparative methods are overly conservative. Nonetheless,
relatedness clearly imposes some inertial constraint on
adaptive evolution that must be considered, even if current
methods are overly conservative.

We employed the best-resolved (~50%) species level
phylogeny in our analyses, but found that the results of non-
phylogenetic and phylogenetic regression were qualitatively
similar. However, AICc scores from phylogenetic regression
were consistently lower or comparable to AICc scores from
non-phylogenetic regression, indicating that accounting for
phylogeny generally provided as good or a better fit to the data
than not doing so. It must be noted that the overall poor
resolution of the phylogeny means that the power of the
phylogenetically-grounded analyses was weak. Thus, the lack
of strong phylogenetic signal cannot be taken as a definitive
indication that phylogeny does not play a role in character
covariance among mammal species. This cautious view is
reinforced by the additional analyses we conducted at the
family level (Figure 6). While the overall phylogenetically-
structured analyses were not strikingly different from those not
accounting for phylogeny, the analysis at the family level
revealed much stronger functional relationships than the
species-level analysis (especially for rodents), which is a clear
indication of covariance among species traits and range
properties at the family level.

The value of a macrophysiological approach: predictive
power of PSTs and implications for climate change

Physiological Ecology is the field concerned with
understanding how organisms transduce abiotic environmental
variance into the phenotypes that determine both individual
fitness and demographic dynamics [53-57,133-135]. Although it
had a central role in early-mid 20th century Ecology,
Physiological Ecology was seconded to Community Ecology
(i.e., biotic interactions) as a principal focus of the study of
species distributions [36]. Macrophysiology represents a
conceptual reunification of physiology with ecology [36] and as
such reintegrates these ideas into the ecological mainstream to
address the fundamental ecological problem of understanding
interspecific diversity in and functional constraints on the
distribution and abundance of organisms. It also provides a
theoretical platform for understanding mechanistically how
abiotic factors influence distributions.

Our analysis of PSTs as predictors of mammalian
distributions explained more variance than previous studies
that have used more tangential predictors such as body size
(Table 1), especially at the family level (Figure 6). Moreover,
we found neglected but meaningful ecological signals in the
residuals of the BMR data, indicating that relative energy
demand, above and beyond absolute energy demand, explains
additional variance in mammalian range sizes. This finding of
latent signal in the residuals (MIBMR) reflects functional
divergence (evolutionary excursions) of mammal species
above and below the constraint imposed by allometric scaling,
and shows that our current grasp of how physiological
constraints relate to distributions in mammals and other
lineages is incomplete. Neglected patterns in residuals of PST
relationships deserve careful scrutiny in other systems and are
fertile lines of inquiry for understanding species distributions
[32]. Moreover, the macrophysiological signal emerging from
the residuals invites caution in generalizations that have been
advanced about how endotherms (or ectotherms) should
respond to warming climates [136] and how range size relates
to vulnerability to extinction.

The assumption underlying geographic range size as a key
criterion for extinction vulnerability [107,108] is that small
ranges (stenotopy) are inherently risky while large ranges
(eurytopy) confer resistance to stochastic extinction, an
assumption that may be sound, all else equal. However, our
analyses show that the degree to which stenotopy is risky in
mammals likely depends on body size and comparative
energetics. The previously recognized absence of large-
bodied, stenotopic species has been argued to be due to a
relatively higher likelihood of lethal energy limitation due to the
higher spatio-temporal unpredictability of energy in small
geographic areas (Energy Constraint Hypothesis). Our
analyses demonstrate directly the link between allometric and
non-allometric increases in energy demand (estimated by BMR
and MIBMR) and variation in range size. From this, we infer
that the degree to which stenotopy is risky is greatest in large
mammals with high absolute energy demand. Furthermore, we
infer that because this pattern also holds in the dimension of
relative energy demand, those mammals with higher than
expected BMR for their body size are at heightened
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vulnerability to range size reductions, above and beyond the
vulnerability accrued as a result of large body size or small
range size. Hence, the mammal species most vulnerable to
range size reductions and changes in energy landscapes (e.g.,
from habitat loss and climate change) are inferred to be those
that are both large-bodied and have supra-allometric MIBMR,
but also, small-bodied species with supra-allometric MIBMR
are inferred to be at heightened risk. Other recent findings
further suggest that the smallest mammals (those with the
highest mass-specific BMR) are also at heightened risk from
range size reductions [65]. Put another way, the mammal
species least at risk from range size reductions will
approximate the modal-sized mammal and have a low MIBMR.

Darwin’s [1] challenge to explain interspecific variance in
range sizes among closely related species remains an active
area of inquiry in modern Macroecology, made all the more
pressing by the need to predict how species will respond to
habitat loss and climate change. Macrophysiological
approaches, which directly evaluate relationships between
traits that are closely linked to organismal energetics and
landscape-scale patterns of distribution, are useful for meeting
this challenge, as shown here for analyses of the classic
mammalian geographic range size distribution.

Supporting Information

Figure S1.  Histograms of geographic range size variation
in (a-c) all mammals and (d-f) rodents.  The dashed lines
illustrate the bias in the data set used in this study (c,f) towards
species with large ranges compared to the full distribution of
range sizes found in the entire mammal assemblage (b, e).
(TIF)

Figure S2.  Allometric relationship between mass and BMR
in (a) all mammals and (b) rodents, including plots of the
residuals (MIBMR) versus mass.  (TIF)

Figure S3.  Among-species relationship between
geographic range size and MIBMR for species whose

range latitudinal midpoint occurs in the (a,d) North region,
(b,e) Tropics and (c,f) South region for all mammals and
rodents.  Significant OLS and PGLS relationships are
indicated by an asterisk.
(TIF)
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