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harmonization
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Abstract

Traffic flow will harmonize to forward conditions. The time and distance required for harmonization can have a

significant effect on the traffic density behavior. The flow can evolve into clusters of vehicles or become uniform

depending on parameters such as safe time headway and safe distance headway. In this paper, a new model is

presented to provide a realistic characterization of traffic behavior during the harmonization period. Results are

presented for a discontinuous density distribution on a circular road which shows that this model produces more

realistic traffic behavior than other models in the literature.

Keywords: Macroscopic traffic model, Reaction distance, Reaction time, Safe distance headway, Safe time headway,

Traffic flow, Roe decomposition

1 Introduction
This paper considers the behavior of vehicles as they

harmonize to forward traffic conditions. The time for traf-

fic harmonization is based on the front traffic stimuli, i.e.

the time to react and align (harmonize) to the forward

traffic. The time required to react is known as the reaction

time, and the time for traffic alignment (harmonization) is

known as the transition time [1]. The reaction distance is

the distance travelled during the reaction time, while the

transition distance is the distance covered during the

transition time. The sum of the transition and reaction

times is known as the safe time headway. This is the time

required for the safe adjustment of velocity. The distance

travelled during the safe time is known as the safe

distance headway.

Drivers adjust their velocity when a change in traffic flow

is observed in an effort to achieve the equilibrium velocity

distribution. This distribution depends on the traffic density

as well as driver behavior and road characteristics, and will

result in a homogeneous traffic flow [2]. This flow will

evolve into clusters with a large safe distance headway and

small safe time headway. Conversely, a small safe distance

headway and large safe time headway will produce a more

uniform flow. The goal of this paper is to develop a simple,

realistic model to characterize the traffic flow. This will lead

to better control of traffic behavior to mitigate congestion,

reduce pollution levels, and improve public safety. These

models can also be employed for automatic control of traf-

fic flow to reduce travel time.

The main types of traffic models are macroscopic,

mesoscopic and microscopic. Macroscopic models consider

the aggregate behavior of traffic flow while microscopic

models consider the interaction of individual vehicles.

These models include parameters such as driver behavior,

vehicle locations, distance headways, time headways, and

the velocity and acceleration of individual vehicles. Meso-

scopic models share the properties of macroscopic and

microscopic traffic models. These models characterize the

influence of vehicles in close proximity and then approxi-

mate the cumulative temporal and spatial traffic behavior

[3]. Macroscopic traffic models are typically employed due

to their low complexity.

Newel proposed a microscopic traffic model and

acknowledged for the first time that the distance head-

ways varies during traffic harmonization [4], but the

variable distances between vehicles were not explained

[5]. The General Motors model indicates that the

distance headway between vehicles increases with

velocity. However, this model ignores the variable

distances between vehicles at slow speeds [6, 7]. Gipps

characterized variable distance headways using a safety

rule [8]. According to this model, the distance headways
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between vehicles should be sufficient to decelerate and

harmonize speeds. However, the behavior of the driver

population on the distance headway was not considered.

Wiedemann proposed a psychophysical model to

characterize individual driver behavior based on con-

scious and unconscious reaction and perception [9].

Drivers unconsciously harmonize small changes in speed

for small distance headways, so the reaction of these

drivers is slow. Conversely, with large distance headways,

drivers consciously harmonize speeds with large reactions

and perceptions. The limitations of the Wiedemann model

are the constant ranges for perception and reaction which

actually vary depending on the speed harmonization [10].

Driver behavior varies with ethnicity, gender, age,

psychology and intoxication level. People in the age

groups 18–25, 25–55 and 55+ have different cognitive

and physical behavior and thus also different driving be-

havior [11]. Cognitive and physical behavior decline with

age which increases the probability of accidents. The

crash rate between ages 35–64 is three times less than at

65+ [12]. Older people can have difficulties moving their

heads sideways to scan the traffic flow and there can be

memory issues. Thus, reaction to changing conditions

can be sluggish and is a major cause of accidents at in-

tersections [11, 13]. Young drivers often exhibit limited

horizontal road scanning behavior which is similar to

the sluggish behavior of intoxicated drivers [14]. Drugs

and alcohol change thought processes and typically lead

to slow driving behavior. In 1972, teenagers in the US

were five times more likely to die in a traffic accident

than people in the 35–64 age group. Experienced drivers

have a wide horizontal traffic scanning behavior. Thus,

they quickly recognize changes in speed and density and

so take less time to perceive and react than inexperi-

enced drivers. Existing microscopic models do not

characterize differences in driving behavior. To more ac-

curately characterize traffic flow harmonization (align-

ment), a model is required which captures the effect of

driver behavior [5]. This behavior can be characterized

for specific groups such as intoxicated drivers, old and

young drivers, and considering ethnicity and experience.

One of the most popular macroscopic traffic flow

models is the two equation model developed by Payne

[15] and Whitham [16] which is known as the Payne-

Whitham (PW) model. The first equation is based on

the continuity equation for the conservation of vehicles

on a road, while the second models the acceleration be-

havior of traffic based on driver anticipation and relax-

ation. Driver anticipation results from the presumption

of changes in the forward traffic density, while relaxation

is the tendency to adjust velocity based on traffic condi-

tions. The relaxation time can be considered the transi-

tion time. The PW model is based on the assumption

that vehicles on a road have similar behavior. Smooth

traffic velocities and density distributions are employed

[17], and alignment (harmonization) occurs with a con-

stant velocity [18]. Unfortunately, this results in unrealis-

tic velocity and density behavior [19]. Zhang improved

the PW model using the fact that driver anticipation

cannot be constant [20], and considered that drivers

harmonize their speeds based on the density distribu-

tion. However, this model can produce unrealistic results

in some traffic flow situations.

Khan and Gulliver [21] improved the PW model using

the fact that driver anticipation is based on the velocity

of the forward traffic, so that traffic behavior depends on

the velocity during transitions. It was shown that this

model provides more realistic traffic flow and density

than the PW model. The sensitivity of traffic is the rate

at which alignment occurs. The limitation of the Khan-

Gulliver (KG) model is that this sensitivity depends only

on the relaxation time τ. For high velocities, τ is small,

so traffic alignment can occur too quickly, whereas with

low velocities, τ is large so alignment can be very slow.

As a consequence, this model does not have sufficient

flexibility to properly characterize traffic behavior.

In this paper, a new model is proposed to provide

more realistic traffic behavior ranging from vehicle

clusters to a uniform flow. Transitions in the flow occur

when vehicles enter or leave at connecting roads, or

when there are obstructions or bottlenecks on the road.

The resulting harmonization is affected by the flow

behavior and safe velocity given by

υs ¼
ds

ts
ð1Þ

where ds is the safe distance headway and ts is the safe

time headway. The traffic density distribution has a

greater variance at lower safe velocities [21], and

changes in this distribution during alignment depend on

the velocity adjustments required to adapt to the equilib-

rium velocity distribution. In the proposed model, a par-

ameter is introduced to regulate traffic flow behavior so

these adjustments are appropriate. With a large regula-

tion value, the flow evolves into a large number of small

clusters. Conversely, the traffic flow is more uniform

with a small value. This value can be extended to in-

corporate driving behavior due to factors such as intoxi-

cation, experience, ethnicity, and age, to accurately

model traffic behavior. It can also be employed for traffic

during adverse weather and congestion, and movement

in clusters. The effect of this parameter is examined in

Section IV.

The remainder of this paper is organized as follows. Sec-

tion II presents the KG, Zhang and proposed models. In

Section III, the well-known Roe decomposition technique

is used to implement these models, and performance
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results are presented for a circular road in Section IV. Fi-

nally, some concluding remarks are given in Section V.

2 Traffic flow models
The KG model [21] was developed to characterize traffic

flow behavior according to forward velocity conditions.

The KG model in conservation form is given by

ρt þ ρυð Þx ¼ 0 ð2Þ

ρυð Þt þ
ρυð Þ2
ρ

þ υ2 ρð Þ−υ2
2dtr

� �

ρ

 !

x

¼ ρ
υ ρð Þ−υ

τ

� �

; ð3Þ

where the subscripts t and x denote temporal and spatial

derivatives, respectively. ρ and υ are the traffic density and

average velocity, respectively, so that ρυ is the flow. υ(ρ) is

the equilibrium velocity distribution and dtr is the transi-

tion distance. A large average velocity results in a small

relaxation time and thus the alignment (harmonization)

can be too fast and produce unrealistic behavior.

The source term in (3) is

ρ
υ ρð Þ−υ

τ

� �

; ð4Þ

which indicates that traffic alignment (harmonization)

occurs according to the difference between the average

velocity and the equilibrium velocity distribution. In

reality, alignment is faster at higher velocities, so it

should not be a function of only this difference. After

harmonization, the source term is zero, i.e. υ = υ(ρ), and

the traffic flow is smooth. The sensitivity of this term is

given by

ζ1 ¼
1

τ
; ð5Þ

and this determines how quickly harmonization occurs

given the other parameters in (4). Thus, it can have a

significant effect on traffic behavior. However, ζ1 only

depends on the relaxation time τ, which may not be

sufficient to produce appropriate traffic behavior.

The following traffic model based on the forward

traffic stimuli was presented in [21]

ρt þ ρ
υ ρð Þ2−υ2

2υs

 ! !

x

¼ 0: ð6Þ

This model has been used to characterize traffic behav-

ior during transitions as well as when the flow is smooth.

The right-hand side (RHS) of (6) is zero because the traffic

is considered to be on a long infinite road with no transi-

tions due to the ingress or egress of vehicles to the flow.

The anticipation term of this model

ρ
υ2 ρð Þ−υ2

2υs

� �

; ð7Þ

characterizes the driver presumption of changes in the

forward traffic. With this model, traffic alignment

(harmonization) is a quadratic function of velocity. Fur-

ther, the sensitivity of (7) is

ζ2 ¼
1

2υs
; ð8Þ

so it is also a function of the safe distance headway and

safe time headway, and alignment occurs according to

the inverse of the safe velocity.

In this paper, a new model is proposed for transition

harmonization in a traffic flow by characterizing the

driver response using (7). If the equilibrium velocity υ(ρ)

is greater than the average velocity υ there is acceler-

ation and alignment will occur at a velocity greater than

υ. Conversely, if υ(ρ) is smaller than υ there is deceler-

ation, and alignment will occur at a velocity smaller than

υ. This can be characterized by the numerator of (7).

Further, alignment (harmonization) depends on the

physiological and psychological response of the drivers.

This behavior can be characterized by modifying the de-

nominator of (7). Thus, the number 2 in (7) is replaced

with a flow regulation value b. A small value of b will

produce a more uniform flow, while a large value will re-

sult in clustered traffic. The new source term is then

ρ
υ2 ρð Þ−υ2

b
ds

ts

0

B

B

@

1

C

C

A

: ð9Þ

The safe distance headway consists of the reaction

distance dr and transition distance dtr so that

ζ3 ¼
1

b
ds

ts

: ð10Þ

The psychological response of a driver is characterized by

the transition distance, and the physiological response by

the reaction distance. A sluggish driver responds slowly and

takes more time to perceive and process forward traffic

conditions. Thus, they will have large reaction and transi-

tion distances to align to the traffic. Examples of sluggish

drivers are intoxicated or distracted drivers, old and new

drivers, and drivers affected by fatigue [22, 23]. The

reaction time in a fatigued state has been shown to be 17%

longer than in an alert state, and the increase in reaction

time is greater for females than males [24]. Further, old

drivers have longer reaction times than young drivers. For a

sluggish driver, b should be large. Conversely, excited or

aggressive drivers such as commercial or teenage drivers
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will have a small reaction time and corresponding small

transition distance [18], so b should be small.

Replacing the source term in (3) of the KG model with

(9) gives

ρυð Þt þ
ρυð Þ2
ρ

þ υ2 ρð Þ−υ2
2dtr

� �

ρ

 !

x

¼ ρ
υ2 ρð Þ−υ2

bυs

� �

:

ð11Þ

for the new model, while (2) is not changed. The PW

model is given by [15, 16, 21]

ρt þ ρυð Þx ¼ 0

ρυt þ ρυυx þ ρC2
0ρx ¼ ρ

υ ρð Þ−υ
τ

;
ð12Þ

where C0 is the velocity constant which characterizes

driver response. According to this model, driver

response does not depend on the traffic conditions and

is a constant. The relaxation term of the PW model is

the same as that in the KG model, as shown in Table 1.

Several models have been proposed for υ(ρ) [25], but the

most commonly employed is the Greenshields model

which is given by [26]

υ ρð Þ ¼ υm 1−
ρ

ρm

� �

; ð13Þ

where ρm and ρ are the maximum and average traffic

densities, respectively, and υm is the maximum velocity

on the road. Therefore, this model is employed here.

The Zhang model is given by [20]

ρt þ ρυð Þx ¼ 0

ρυt þ ρυυx þ
ρ

∂v ρð Þ
∂ρ

� �2

ρ
ρx ¼ ρ

υ ρð Þ−υ
τ

;

The relaxation term is the same as the PW and KG

models, as shown in Table 1. With this model, the driver

response depends on the traffic density. The next section

presents Roe’s decomposition technique which is used to

implement the KG, PW, Zhang, and proposed models.

3 Roe decomposition
The KG, PW, Zhang and proposed models are discretized

using the decomposition technique developed by Roe [27]

to evaluate their performance. This technique can be used

to approximate the nonlinear system of equations

Gt þ f Gð Þx ¼ S Gð Þ; ð14Þ

where G is the vector of data variables, f(G) is the vector

of functions of these variables, and S(G) is the vector of

source terms. The subscripts t and x denote partial de-

rivatives with respect to time and distance, respectively.

Equation (14) is then given by

∂G

∂t
þ ∂ f

∂G

∂G

∂x
¼ S Gð Þ: ð15Þ

Let A(G) be the Jacobian matrix of the system. Then

(15) can be expressed as

∂G

∂t
þ A Gð Þ ∂G

∂x
¼ S Gð Þ: ð16Þ

Setting the source terms in (16) to zero gives the qua-

silinear form

∂G

∂t
þ A Gð Þ ∂G

∂x
¼ 0: ð17Þ

The data variables are density ρ and flow ρυ in the

KG, PW, Zhang and proposed models. Roe’s technique

is used to linearize the Jacobian matrix A(G) by decom-

posing it into eigenvalues and eigenvectors. This is based

on the realistic assumption that the data variables, eigen-

values and eigenvectors remain conserved for small

changes in time and distance. This technique is widely

employed because it is able to capture the effects of

abrupt changes in the data variables.

Consider a road divided into M equidistant segments

and N equal duration time steps. The total length is xM so

a road segment has length δx = xM/M, and the total time

period is tN so a time step is δt = tN/N. The Jacobian

matrix is approximated for road segments ðxi þ δx
2
; xi−

δx
2
Þ.

This matrix is determined for all M segments in every

time interval (tn + 1, tn), where tn + 1 − tn = δt.

Let ΔG be a small change in the data variables G and

Δf the corresponding change in the functions of these

variables. Further, let Gi be the average value of the data

variables in the ith segment. The change in flux at the

boundary between the ith and (i + 1)th segments is

Δ f iþ1
2
¼ A Giþ1

2

� �

ΔG; ð18Þ

where AðGiþ1
2
Þ is the Jacobian matrix at the segment

boundary, and Giþ1
2
is the vector of data variables at the

boundary obtained using Roe’s technique. The flux

Table 1 Traffic model comparison

Term KG model PW model Proposed model Zhang model

Anticipation ρ ∂

∂x
ðυ2ðρÞ−υ2

2dtr
Þρx ρC2

0ρx ρ ∂

∂x
ðυ2ðρÞ−υ2

2dtr
Þρx ðρ∂vðρÞ

∂ρ
Þ
2

ρ
ρx

Relaxation ρ
υðρÞ−υ

τ
ρ
υðρÞ−υ

τ ρðυ2ðρÞ−υ2
bυs

Þ ρ
υðρÞ−υ

τ
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approximates the change in traffic density and flow at

the segment boundary. We have that AðGiþ1
2
Þ ¼ eΛe−1 ,

where Λ is a diagonal matrix of the eigenvalues [λ1, λ2,

⋯, λp] of the Jacobian matrix and e is the corresponding

eigenvector matrix. From [28], the eigenvalues should be

positive so that

Δ f iþ1
2
¼ e Λj je−1 Giþ1−Gið Þ; ð19Þ

where the approximation ΔG = (Gi + 1 −Gi) is used. The

flux at the boundary between segments i and i + 1 at

time n is then approximated by

f niþ1
2
Gn

i ;G
n
iþ1

� �

¼ 1

2
f Gn

i

� �

þ f Gn
iþ1

� �� �

−
1

2
Δ f iþ1

2
;

ð20Þ

where f ðGn
i Þ and f ðGn

iþ1Þ denote the values of the

functions of the data variables in road segments i and

i + 1 respectively, at time n. Substituting (19) into (20)

gives

f
n
iþ1

2
Gn

i ;G
n
iþ1

� �

¼ 1

2
f Gn

i

� �

þ f Gn
iþ1

� �� �

−

1

2
e Λj je−1 Gn

iþ1−G
n
i

� �

:

ð21Þ

This approximates the change in density and flow

without considering the source.

For the source decomposition of the KG model in (3),

the PW model [15, 20] in (12) and the Zhang model in

(14), we have

S1 Gn
i

� �

¼ ρni
υ ρni
� �

−υni
τ

� �

; ð22Þ

and for the proposed model in (11)

S2 Gn
i

� �

¼ ρni
υ2 ρni
� �

− υni
� �2

bυs

 !

: ð23Þ

The updated data variables for the KG, PW, Zhang

and proposed models are

Gnþ1
i ¼ Gn

i −
δt

δx

 

f n
iþδ

2
− f n

iþδx
2

!

þ δtSyðGn
i Þ; y ¼ 1; 2: ð24Þ

Both the KG and proposed models have the same ex-

pressions on the left-hand side (LHS) as shown in (3)

and (11). Therefore, the Jacobian matrix A(G) is the

same for these models and results in the same eigen-

values and eigenvectors, and also average velocity and

density. A(G) as well as the corresponding eigenvalues

and eigenvectors, average density and velocity for the

KG model were derived in [21]. Assuming the right

hand side (RHS) of the KG and proposed models are in

quasilinear form, traffic flow alignment (harmonization)

is not considered so that SyðGÞ ¼ ð0
0
Þ . Then (24) takes

the form

G ¼ ρ

ρυ

� �

; f Gð Þ ¼ f 1
f 2

� �

¼ ρυ

ρυð Þ2
ρ

þ υ2 ρð Þ−υ2
2dtr

ρ

0

B

B

B

@

1

C

C

C

A

and Sy Gð Þ ¼ 0

0

� �

:

ð25Þ

The LHS of (3) and (11) is approximated using the

Jacobian matrix ðGÞ ¼ ∂ f
∂G

, which is obtained from

(25).

The Jacobian matrix AðGÞ ¼ ∂ f
∂G

from (25) is

A Gð Þ ¼ 0

−υ2 þ υ2 ρð Þ−υ2
2dtr

� �

1

2υ

0

B

B

@

1

C

C

A

: ð26Þ

The eigenvalues obtained from (26) in Appendix A are

λ1;2 ¼ υ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

υ2 ρð Þ−υ2
2dtr

� �

s

: ð27Þ

These show that when a transition occurs, the velocity

changes according to the equilibrium velocity distribu-

tion and the average velocity.

For a traffic flow to be strictly hyperbolic, the eigen-

vectors must be distinct and real [29]. The eigenvectors

corresponding to the eigenvalues in (27) are distinct and

real when the equilibrium velocity is greater than the

average velocity, i.e.

υ ρiþ1
2

� �

> υiþ1
2
:

Conversely, the eigenvectors are imaginary when

υ ρiþ1
2

� �

< υiþ1
2
;

so to maintain the hyperbolic property for the proposed

model, the absolute value of the numerator under the

radical sign in (27) is employed, which gives

λ1;2 ¼ υiþ1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

υ2 ρiþ1
2

� �

−υ2
iþ1

2

	

	

	

	

	

	

2dtr

v

u

u

t

: ð28Þ

The corresponding eigenvectors of the KG and pro-

posed models are
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e1;2 ¼
1

υiþ1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

υ2 ρiþ1
2

� �

−υ2
iþ1

2

	

	

	

	

	

	

2dtr

v

u

u

t

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: ð29Þ

The eigenvalues and eigenvectors, average density and

velocity for the PW model were derived in [18]. The

eigenvalues are

λ1;2 ¼ υiþ1
2
� C0; ð30Þ

where C0 is the velocity constant. This shows that

traffic velocity alignment is at a constant rate C0

during transitions. The corresponding eigenvectors

are

e1;2 ¼
1

υiþ1
2
� C0

 !

: ð31Þ

The average velocity at the boundary of segments i

and i + 1 for the KG, PW and proposed models is

υiþ1
2
¼

υiþ1

ffiffiffiffiffiffiffiffiffiffiffiffi

ρi þ 1
p

þ υi
ffiffiffiffi

ρi
p

ffiffiffiffiffiffiffiffiffiffiffiffi

ρi þ 1
p

þ ffiffiffiffi

ρi
p : ð32Þ

The average density for these models at the boundary

of segments i and i + 1 is given by the geometric mean

of the densities in these segments

ρiþ1
2
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ρiþ1ρi
p

: ð33Þ

The eigenvalues for the Zhang model [25] are

λ1 ¼ υiþ1
2
; ð34Þ

and

λ2 ¼ υiþ1
2
þ ρv ρð Þρ; ð35Þ

where the subscript ρ presents the derivative of the equi-

librium velocity distribution with respect to density. The

corresponding eigenvectors are

e1 ¼
1

υiþ1
2
−v ρiþ1

2

� �

−ρiþ1
2
v ρiþ1

2

� �

ρ

0

B

@

1

C

A
; ð36Þ

e2 ¼
1

υiþ1
2
−v ρiþ1

2

� �

0

@

1

A: ð37Þ

The average density ρiþ1
2
of the Zhang model at the seg-

ment boundary is the same as for the KG, PW and pro-

posed models given in (33). The average velocity viþ1
2
at

the boundary of segments i and i + 1 for the Zhang model

is given in Appendix B.

A. Entropy Fix

Entropy fix is applied to Roe’s technique to smooth

any discontinuities at the segment boundaries. The

Jacobian matrix AðGiþ1
2
Þ is decomposed into its eigen-

values and eigenvectors to approximate the flux in the

road segments (21). The Jacobian matrix for the road

segments is then replaced with the entropy fix solution

given by

e Λj je−1;

where jΛj ¼ ½λ̂1; λ̂2;⋯; λ̂k ;⋯; λ̂n� is a diagonal matrix

which is a function of the eigenvalues λk of the Jacobian

matrix, and e is the corresponding eigenvector matrix.

The Harten and Hayman entropy fix scheme [30] is

employed here so that

λ̂k ¼ δ̂k if λkj j < δ̂k
λkj j if λkj j≥ δ̂k




ð38Þ

with

δ̂k ¼ max 0; λiþ1
2
−λi; λiþ1−λiþ1

2

� �

: ð39Þ

This ensures that the λ̂k are not negative and similar at

the segment boundaries. The Jacobian matrix e|Λ|e−1 for

the proposed, KG and Zhang models are given in

Appendix C. The corresponding flux is obtained from (21)

using f(Gi) and f(Gi+ 1) and substituting e|Λ|e−1 for AðGiþ1
2
Þ

, the updated data variables, ρ and ρυ, are then obtained at

time n using (24).

4 Performance results

The performance of the proposed model is evaluated in

this section and compared with the KG, PW and

Zhang models over a circular road of length xM = 100 m.

A discontinuous density distribution ρ0 at t = 0 with peri-

odic boundary conditions is employed. ρ0 is shown in blue

in the figures. The Greenshields equilibrium velocity dis-

tribution given in (13) is used with υm = 34 m/s and max-

imum density ρm = 1. The safe distance headway is 28 m,

the safe time headway is ts = 1.4 s, and dtr is 20 m. For the

KG and PW models, τ = 1 s. The total simulation time for

the proposed and KG models is 30 s. The total simulation

time for the PW model is 3 s and for the Zhang model is

4 s. Based on δx = 1 m, the time step for the proposed, KG

and Zhang models is chosen as δt = 0.01 s, and the time

step for the PW model is chosen as δt = 0.006 s, to satisfy

the CFL condition [31]. The number of time steps and

road steps are 3000 and 100, respectively, for both the

proposed and KG models, while the number of time steps

Khan and Gulliver European Transport Research Review  (2018) 10:30 Page 6 of 12



for the PW model is 500. The number of road steps and

time steps for the Zhang model are 100 and 400, respect-

ively. The flow regulation parameters considered for the

proposed model are b = 1 and 2. The simulation parame-

ters are summarized in Table 2.

Figure 1 presents the normalized traffic density with

the KG model at four different time instants. This shows

that the traffic evolves into two clusters of vehicles. At

5 s the density behavior is slightly oscillatory. However,

at 15 s the traffic density beyond 50 m has an almost

uniform level of 0.09, and there are two clusters of vehi-

cles between 0 and 50 m. The traffic density of these

clusters ranges from 0.1 to 0.21. Both clusters span a

distance of approximately 20 m. At 30 s, the traffic dens-

ity between 0 and 40 m has an almost uniform density

of 0.09, while beyond 40 m there are two clusters. The

clusters still span a distance of about 20 m, so they have

just moved over time. The first cluster has a maximum

density of 0.25 at 50 m, and the second a maximum

density of 0.2 at 78 m.

Figure 2 presents the normalized traffic density with

the proposed model and b = 1 s at four different time in-

stants. This shows that with a small value of b, the traffic

becomes quite smooth over time. At 5 s, the variation in

traffic density ranges from 0.07 to 0.17, while at 15 s this

variation is 0.1 to 0.14, and at 30 s the range is only 0.12

to 0.13. Figure 3 presents the normalized traffic density

behavior with the proposed model and b = 2 s at four

different time instants. There are larger variations in the

density than with b = 1, but smaller than with the KG

model. The traffic evolves into two clusters with a

smooth density between them. The variation in density

is between 0.09 and 0.16 at 15 s, and between 0.1 and 0.

15 at 30 s.

The traffic velocity behavior with the KG model is

given in Fig. 4 at four different time instants. The great-

est fluctuations in velocity occur at 5 s. At 15 s, the traf-

fic has a nearly uniform velocity beyond 50 m of 31 m/s.

Table 2 Simulation parameters

Name Parameter Value

road step δx 1 m

equilibrium velocity υ(ρ) Greenshields velocity
distribution

maximum velocity υm 34 m/s

time step for the KG, Zhang
and proposed models

δt 0.01 s

time step for the PW model δt 0.006 s

velocity constant C0 4.12 s

safe distance headway ds 28 m

transition distance dtr 20 m

safe time headway ts 1.4 s

safe velocity υs
28
1:4

¼ 20 m/s

normalized maximum density ρm 1

total simulation time for the
KG and proposed models

tN 30 s

total simulation time for the
PW model

tN 3 s

total simulation time for the
Zhang model

tN 4 s

flow regulation parameter B 1, 2

relaxation time constant Τ 1 s

number of time steps for the
PW model

N 500

number of time steps for the KG
and proposed models

N 3000

number of time steps for the
Zhang model

N 400

number of road steps M 100

Fig. 1 The KG model density behavior with τ = 1 s

Fig. 2 The proposed model density behavior with b = 1
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There are two clusters of vehicles from 0 to 50 m. The

velocity in these clusters varies from 27 m/s to 30.2 m/s.

At 30 s, between 0 and 40 m the traffic has a near uni-

form velocity of 31 m/s, and the two clusters are located

beyond 40 m. The first cluster is between 40 and 70 m

and has a velocity which varies from 26 to 30.2 m/s,

while the second cluster is located between 70 and 90 m

and has a velocity which varies from 28 to 30.2 m/s.

Comparing the traffic at 15 and 30 s, the velocity in the

second cluster increases by 1 m/s, whereas the velocity

of the first cluster decreases by 2 m/s.

Figure 5 presents the velocity behavior at four different

time instants for the proposed model with b = 1. This

corresponds to the density shown in Fig. 2. At 5 s, the

variations in velocity are the greatest, ranging from 29 to

31 m/s. At 15 s, this variation is 29.5 to 31.5 m/s, while

at 30 s, the difference is less than 1 m/s. These variations

are smaller than with the KG model. Figure 6 presents

the velocity behavior at four different time instants for

the proposed model with b = 2. This corresponds to the

density shown in Fig. 3. The fluctuations in velocity are

greatest at 5 s, with a range of 28 to 31 m/s, At 15 s, the

range is 29 to 30.5 m/s, while at 30 s it is only 29 to 30.

2 m/s. Thus, the velocity fluctuations are larger than

with b = 1, but smaller than with the KG model.

The traffic flow behavior with the KG model is

presented in Fig. 7 at four different time instants. The

change in flow follows the changes in density and

velocity as it is the product of these two parameters. At

5 s, the flow is more oscillatory, whereas at 15 s the flow

evolves into two clusters between 0 and 50 m. The flow

in the first cluster varies from 6 veh/s to 3.5 veh/s, while

in the second cluster it varies from 6.0 veh/s to 2.8 veh/

s. The flow beyond 50 m aligns to a uniform level of 2.8

Fig. 3 The proposed model density behavior with b = 2

Fig. 4 The KG model velocity behavior with τ = 1 s

Fig. 5 The proposed model velocity behavior with b = 1

Fig. 6 The proposed model velocity behavior with b = 2
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veh/s. At 30 s, the two clusters have moved beyond

40 m. The flow in the first cluster now varies from 2.8

to 7.0 veh/s, while in the second cluster it varies from 3.

0 to 5.2 veh/s. The minimum flow between the clusters

is 3.0 veh/s at 65 m. In the first 40 m, the flow has an

approximately uniform level of 2.8 veh/s.

Figure 8 presents the traffic flow behavior at four dif-

ferent time instants with the proposed model and b = 1.

At 5 s, the flow varies from 2.5 to 4.5 veh/s. The max-

imum and minimum flows occur at 50 m and 40 m, re-

spectively. At 15 s, the flow varies from 3.2 to 4.2 veh/s,

which is less than at 5 s. The maximum and minimum

flows now occur at 70 m and close to 60 m, respectively.

At 30 s, the flow is only in the range 3.5 to 4.0 veh/s,

and the maximum flow occurs at 40 m. Figure 9 pre-

sents the corresponding traffic flow behavior with the

proposed model and b = 2. The behavior is more oscilla-

tory at 5 s, and the flow varies from 2.5 to 6.0 veh/s,

which is greater than with b = 1. At 15 s, the flow varies

from 3.0 to 4.5 veh/s, and it is almost the same at 30 s.

However, the locations of the maximum and minimum

traffic flows are different.

The velocity behavior on the road over a time span of

3 s with the PW model is given in Fig. 10. This shows

that the variations in velocity increase over time. In par-

ticular, the velocity exceeds 300 m/s and goes below −

200 m/s, even though the maximum and minimum vel-

ocities are 34 m/s and 0 m/s, respectively. Thus the PW

model produces unrealistic behavior. Further, the vel-

ocity is more oscillatory with the PW model than with

the proposed model. The traffic velocity behavior with

the Zhang model over a time span of 4 s is shown in Fig.

Fig. 7 The KG model flow with τ = 1 s

Fig. 8 The proposed model flow with b = 1

Fig. 9 The proposed model flow with b = 2

Fig. 10 The PW model velocity behavior
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11. The traffic velocity goes up to 140 m/s, which is

well above the maximum velocity 34 m/s. Over time,

the variations in velocity decrease. The velocity is more

oscillatory than the proposed model and is unrealistic.

The results in this section show that the flow regula-

tion parameter b in the proposed model can be used to

adjust traffic oscillations and cluster behavior. For

smaller values of b, traffic becomes more uniform.

Thus, unrealistic oscillations can be eliminated with

this parameter, and traffic behavior can be properly

characterized.

5 Conclusion
In this paper, a new model was proposed to

characterize the physiological and psychological

response of drivers to changes in the traffic flow. For

a slow response, the traffic becomes clustered, while

for a fast response the traffic flow is more uniform. A

regulation parameter was introduced to characterize

driver response to forward conditions. This allows for

more realistic traffic characterization than with other

models in the literature. With smaller values of the

regulation parameter in the proposed model, changes

in velocity are reduced and the traffic flow becomes

smooth. Pollution emissions increase with changes in

velocity, in particular carbon monoxide, nitric oxide

and hydrocarbon emissions are greater at higher vel-

ocities. However, velocities between 16.7 m/s and 22.

2 m/s result in reduced fuel consumption and

pollution [32]. Variations in velocity can be reduced

with the regulation parameter b in autonomous vehi-

cles to reduce fuel consumption and pollution. The

proposed model can help in analyzing the behavior of

autonomous vehicles. This will lead to more accurate

results which can be employed to reduce fuel con-

sumption and pollution.

6 Appendix

A: Eigenvalues λ1;2 ðEigenvaluesÞ

A Gð Þ ¼ 0

−υ2 þ υ2 ρð Þ−υ2
2dtr

� �

1

2υ

0

B

B

@

1

C

C

A

: ð40Þ

At the road segment boundaries, the eigenvalues λi of

the Jacobian matrix are required to obtain the flux in

(21), and are obtained as the solution of

A Gð Þ−λIj j ¼ −λ

−υ2 þ υ2 ρð Þ−υ2
2dtr

� �

1

2υ−λ

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

¼ 0; ð41Þ

which gives

λ2−2υλþ υ2−
υ2 ρð Þ−υ2
2dtr

� �

¼ 0: ð42Þ

The eigenvalues are then

λ1;2 ¼
2υ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4υ2−4 υ2−
υ2 ρð Þ−υ2
2dtr

� �� �

s

2

¼ υ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

υ2 ρð Þ−υ2
2dtr

� �

s

:

B. Zhang Model Average Velocity

Using Roe scheme, the average velocity at the boundary

of segments i and i+ 1 for the Zhang model is

viþ1
2
¼ −bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2−4ac
p

2a
ð43Þ

where

a ¼ ρiþ1
2
−ρi−1

2
;Fig. 11 The Zhang model velocity behavior
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b ¼ − ρiþ1
2
v ρiþ1

2

� �

−ρi−1
2
v ρi−1

2

� �h i

−v ρð Þ

� ρiþ1
2
−ρi−1

2

� �

−2ρiþ1
2
viþ1

2
−v ρiþ1

2

� �� �

þ 2ρi−1
2
vi−1

2
−v ρi−1

2

� �� �

;

c ¼ v ρð Þ ρiþ1
2
v ρiþ1

2

� �

−ρi−1
2
v ρi−1

2

� �h i

þ v ρð Þ

� ρiþ1
2
viþ1

2
−v ρiþ1

2

� �� �

−ρi−1
2
vi−1

2
−v ρi−1

2

� �� �� �

−

viþ1
2
−v ρiþ1

2

� �� �

ρiþ1
2

� �2

ρiþ1
2

þ v ρiþ1
2

� �

viþ1
2
−v ρiþ1

2

� �� �

ρiþ1
2

� �

0

B

@

1

C

A

þ
vi−1

2
−v ρi−1

2

� �� �

ρi−1
2

� �2

ρi−1
2

þ v ρi−1
2

� �

vi−1
2
−v ρi−1

2
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ρi−1
2

� �

0

B

@

1

C

A
:

C. Jacobian Matrix for Entropy Fix

The Jacobian matrix e|Λ|e−1 for both the proposed

and KG models is

e Λj je−1 ¼ 1

υiþ1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

υ2 ρiþ1
2

� �

−υ2
iþ1

2

	

	

	

	

	

	

2dtr

v

u

u

t

1

υiþ1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

υ2 ρiþ1
2

� �

−υ2
iþ1

2

	

	

	

	

	

	

2dtr

v

u

u

t

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

�

υiþ1
2
þ
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υ2 ρiþ1
2

� �

−υ2
iþ1

2

	

	

	

	

	

	

2dtr

v

u

u
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0

0
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2
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The Jacobian matrix for the PW model is

e Λj je−1 ¼ 1

υiþ1
2
þ C0

1

υiþ1
2
−C0

 !

�

υiþ1
2
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and the Jacobian matrix for the Zhang model is

e Λj je−1 ¼ 1

υiþ1
2
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