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We investigate the mathematical modelling of maintenance and repair of components
that can fail due to a variety of failure mechanisms. Our motivation is to build a model,
which can be used to unveil aspects of the quality of the maintenance performed. The
model we propose is motivated by imperfect repair models, but extended to model pre-
ventive maintenance as one of several “competing risks”. This helps us to avoid problems
of identifiability previously reported in connection with imperfect repair models. Param-
eter estimation in the model is based on maximum likelihood calculations. The model
is tested using real data from the OREDA database, and the results are compared to
results from standard repair models.

1. Introduction

In this paper we employ a model for components which fail due to one of a series
of “competing” failure mechanisms, each acting independently on the system. The
components under consideration are repaired upon failure, but are also preventively
maintained. The preventive maintenance (PM) is performed periodically with some
fixed period τ , but PM can also be performed out of schedule due to casual observa-
tion of an evolving failure. The maintenance need not be perfect; we use a modified
version of the imperfect repair model by Brown and Proschan1 to allow a flexi-
ble yet simple maintenance model. Our motivation for this model is to estimate
quantities which describe the “goodness” of the maintenance crew; their ability to
prevent failures by performing thorough maintenance at the correct time. The data
required to estimate the parameters in the model we propose are the intermediate
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failure times, the “winning” failure mechanism associated with each failure (i.e. the
failure mechanism leading to the failure), as well as the maintenance activity. This
data is found in most modern reliability data banks.

The rest of this paper is outlined as follows: We start in Section 2 with the
problem definition by introducing the type of data and parameters we consider.
Next, the required theoretical background is sketched in Section 3, followed by a
complete description of the proposed model in Section 4. Empirical results are
reported in Section 5, and we make some concluding remarks in Section 6.

2. Problem definition, typical data and model parameters

Consider a mechanical component which may fail at random times, and which after
failure is immediately repaired and put back into service. In practice there can
be several root causes for the failure, e.g. vibration, corrosion, etc. We call these
causes failure mechanisms and denote them by M1, . . . , Mk. It is assumed that each
failure can be classified as the consequence of exactly one failure mechanism.

Critical
Failure

Performance

Degraded

Good as new

Unacceptable

t

Figure 1: Component with degrading performance.

The component is assumed to undergo preventive maintenance (PM), usually
at fixed time periods τ > 0. In addition, the maintenance crew may perform
unscheduled preventive maintenance of a component if required. The rationale
for unscheduled PM is illustrated in Figure 1: We assume that the component is
continuously deteriorating when used, so that the performance gradually degrades
until it falls outside a preset acceptable margin. As soon as the performance is
unacceptable, we say that the component experiences a critical failure. Before
the component fails it may exhibit inferior but admissible performance. This is a
“signal” to the maintenance crew that a critical failure is approaching, and that
the inferior component may be repaired. When the maintenance crew intervenes
and repairs a component before it fails critically, we call it a degraded failure, and
the repair action is called (an unscheduled) preventive maintenance. On the other
hand, the repair activity performed after a critical failure is called a corrective
maintenance.

The history of the component may in practice be logged as shown in Table 1.
The events experienced by the component can be categorized as either (i) Critical
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Time Event Failure mech. Severity
0 Put into service — —

314 Failure Vibration Critical
8.760 (Periodic) PM External —

17.520 (Periodic) PM External —
18.314 Failure Corrosion Degraded
20.123 Taken out of service External —

Table 1: Example of data describing the history of a fictitious component.

failures, (ii) Degraded failures, or (iii) External events (component taken out of
service, periodic PM, or other kind of censoring).

The data for a single component can now formally be given as an ordered se-
quence of points

(Yi, Ki, Ji); i = 1, 2, . . . , n , (1)

where each point represents an event (see Figure 2). Here

Yi = inter-event time, i.e. time since previous event

(time since start of service if i = 1)

Ki =
{

m if failure mechanism Mm (m = 1, . . . , k)
0 if external event

Ji =




0 if critical failure
1 if degraded failure
2 if external event .

(2)

The data in Table 1 can thus be coded as (with M1 = Vibration, M2 = Corro-
sion),

(314, 1, 0), (8446, 0, 2), (8760, 0, 2), (794, 2, 1), (1809, 0, 2) .

A complete set of data will typically involve events from several similar compo-
nents. The data can then be represented as

(Yij , Kij , Jij); i = 1, 2, . . . , nj ; j = 1, . . . , r , (3)

where j is the index which labels the component.
In practice there may also be observed covariates with such data. The models

considered in this paper will, however, not include this possibility even though they
could easily be modified to do so.

Our aim is to present a model for data of type (1) (or (3)). The basic ingredients
in such a model are the hazard rates ωm(t) at time t for each failure mechanism
Mm, for a component which is new at time t = 0. We assume that ωm(t) is a
continuous and integrable function on [0,∞). In practice it will be important to
estimate ωm(·) since this information may, e.g., be used to plan future maintenance
strategies.



4 H. Langseth and B. H. Lindqvist

The most frequently used models for repairable systems assume either perfect re-
pair (renewal process models) or minimal repair (nonhomogeneous Poisson-process
models). Often none of these may be appropriate, and we shall here adopt the
idea of the imperfect repair model presented by Brown and Proschan1. This will
introduce two parameters per failure mechanism:

pm = probability of perfect repair for a preventive maintenance of Mm

πm = probability of perfect repair for a corrective maintenance of Mm.

These quantities are of interest since they can be used as indications of the quality
of maintenance. The parameters may in practice be compared between plants and
companies, and thereby unveil maintenance improvement potential.

Finally, our model will take into account the relation between preventive and
corrective maintenance. It is assumed that the component gives some kind of “sig-
nal”, which will alert the maintenance crew to perform a preventive maintenance
before a critical failure occurs. Thus it is not reasonable to model the (potential)
times for preventive and corrective maintenance as stochastically independent. We
shall therefore adopt the random signs censoring of Cooke2. This will eventually
introduce a single new parameter qm for each failure mechanism, with interpreta-
tion as the probability that a critical failure is avoided by a preceding unscheduled
preventive maintenance.

In the cases where there is a single failure mechanism, we shall drop the index
m on the parameters above.

3. Basic ingredients of the model

In this section we describe and discuss the two main building blocks of our final
model. In Section 3.1 we consider the concept of imperfect repair, as defined by
Brown and Proschan1. Then in Section 3.2 we introduce our basic model for the
relation between preventive and corrective maintenance. Throughout the section
we assume that there is a single failure mechanism (k = 1).

3.1. Imperfect repair

Our point of departure is the imperfect repair model of Brown and Proschan1,
which we shall denote BP in the following. Consider a single sequence of failures,
occurring at successive times T1, T2, . . . As in the previous section we let the Yi be
times between events, see Figure 2. Furthermore, N(t) is the number of events in
(0, t], and N(t−) is the number of events in (0, t).

For the explanation of imperfect repair models it is convenient to use the con-
ditional intensity

λ(t | F t−) = lim
∆t↓0

P (event in [t, t + ∆t) | F t−)
∆t

,

where F t− is the history of the counting process3 up to time t. This notation enables
us to review some standard repair models. Let ω(t) be the hazard rate of a com-
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ponent of “age” t. Then perfect repair is modelled by λ (t | F t−) = ω
(
t − TN(t−)

)
which means that the age of the component at time t equals t − TN(t−), the time
elapsed since the last event. Minimal repair is modelled by λ (t | F t−) = ω (t), which
means that the age at any time t equals the calendar time t. Imperfect repair can
be modelled by λ (t | F t−) = ω

(
ΞN(t−) + t − TN(t−)

)
where 0 ≤ Ξi ≤ Ti is some

measure of the effective age of the component immediately after the ith event, more
precisely, immediately after the corresponding repair. In the BP model, Ξi is defined
indirectly by letting a failed component be given perfect repair with probability p,
and minimal repair with probability 1 − p.

Ξ1

Y1

Ξ3

Ξ2

0 T3Y3
T2Y2

T1

t

Figure 2: In imperfect repair models there are three time dimensions to measure
the age of a component: Age versus calendar time Ti, age versus inter-event times
Yi, and effective age Ξi. The values of Ξi, i > 1, depend upon both inter-event
times and maintenance history. This is indicated by dotted lines for the Ξi.

For simplicity of notation we follow Kijima4 and introduce random variables Di

to denote the outcome of the repair immediately after the ith event. If we put
Di = 0 for a perfect repair and Di = 1 for a minimal one, it follows that

Ξi =
i∑

j=1


 i∏

k=j

Dk


Yj . (4)

The BP model with parameter p corresponds to assuming that the Di are i.i.d. and
independent of Y1, Y2, . . ., with P (Di = 0) = p, P (Di = 1) = 1 − p, i = 1, . . . , n.

BP type models have been considered by several authors, including Block et al.5

who extended the model to allow the parameter p to be time varying, Kijima4 who
studied two general repair models for which BP is a special case, Hollander et al.6

who studied statistical inference in the model, Dorado et al.7 who proposed a more
general model with BP as a special case, and most notably for the present work,
Whitaker and Samaniego8 whose results we discuss in further detail below.

Whitaker and Samaniego8 found non-parametric maximum likelihood estima-
tors for (p, F ) in the BP model, where F is the distribution function corresponding
to the hazard ω(·). They noted that p is in general not identifiable if only the inter-
event times Yi are observed. The problem is related to the memoryless property
of the exponential distribution, and is hardly a surprise. To ensure identifiability,
Whitaker and Samaniego made strong assumptions about data availability, namely
that the type of repair (minimal or perfect) is reported for each repair action (i.e.,
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50 44 102 72 22 39 3 15
197 188 79 88 46 5 5 36
22 139 210 97 30 23 13 14

Table 2: Proschan’s air conditioner data; inter-event times of plane 7914.

the variables Dj are actually observed). In real applications, however, exact in-
formation on the type of repair is rarely available. As we shall see in Section 4.2,
identifiability of p is still possible in the model by appropriately modelling the
maintenance actions.

In order to illustrate estimation in the BP model based on the Yi alone, we
consider the failure times of Plane 7914 from the air conditioner data of Proschan9

given in Table 2. These data were also used by Whitaker and Samaniego8. The joint
density of the observations Y1, . . . , Yn can be calculated as a product of conditional
densities,

f(y1, . . . , yn) = f(y1)f(y2|y1) · · · f(yn|y1, . . . , yn−1) .

For computation of the ith factor we condition on the unobserved D1, . . . , Di−1,
getting

f(yi | y1, . . . , yi−1) =
∑

d1,...,di−1

f(yi | y1, . . . , yi−1, d1, . . . , di−1)

× f(d1, . . . , di−1 | y1, . . . , yi−1)

=
i∑

j=1

f(yi | y1, . . . , yi−1, dj−1 = 0, dj = · · · = di−1 = 1)

× P (Dj−1 = 0, Dj = · · · = Di−1 = 1)

=
i∑

j=1

ω


 i∑

k=j

yk


 e

−
[
Ω
(∑

i

k=j
yk

)
−Ω

(∑
i−1

k=j
yk

)]
(1 − p)i−j pδ(j>1) ,

where Ω(x) =
∫ x

0
ω(t)dt is the cumulative hazard function and δ(j > 1) is 1 if j > 1

and 0 otherwise. The idea is to partition the set of vectors (d1, . . . , di−1) according
to the number of 1s immediately preceding the ith event.

Let the cumulative hazard be given by Ω(x) = µxα for unknown µ and α. The
profile log likelihoods of the single parameter p and the pair (α, p) are shown in
Figure 3a) and Figure 3b) respectively. The maximum likelihood estimates are
α̂ = 1.09, µ̂ = exp(−4.81), and p̂ = 0.01. However, the data contain very little
information about p; this is illustrated in Figure 3a). It is seen that both p = 0,
corresponding to an NHPP, and p = 1, corresponding to a Weibull renewal process
are “equally” possible models here. The problem is closely connected to the problem
of unidentifiability of p, noting that the maximum likelihood estimate of α is close to
1. Indeed, the exponential model with α = 1 fixed gives the maximum log likelihood
−123.86 while the maximum value in the full model (including µ, α and p) is only
marginally larger, −123.78.
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a) Profile log likelihood of p b) Profile log likelihood of (α, p)

Figure 3: Profile log likelihoods for the data in Table 2. Figure 3a) shows the profile
likelihood of p, Figure 3b) shows the (α, p)-profile likelihood.

3.2. Modelling preventive versus corrective maintenance

Recall from Section 2 that PM interventions are basically periodic with some fixed
period τ , but that unscheduled preventive maintenance may still be performed
within a PM period, reported as degraded failures. Thus degraded failures may
censor critical failures, and the two types of failure may be highly correlated.

A number of possible ways to model interaction between degraded and critical
failures are discussed by Cooke2. We adopt one of these, called random signs cen-
soring. In the notation introduced in Section 2 we consider here the case when we
observe pairs (Yi, Ji) where the Yi are inter-event times whereas the Ji are indi-
cators of failure type (critical or degraded). For a typical pair (Y, J) we let Y be
the minimum of the potential critical failure time X and the potential degraded
failure time Z, while J = I(Z < X) is the indicator of the event {Z < X} (assum-
ing that P (Z = X) = 0 and that there are no external events). Thus we have a
competing risk problem. However, while X and Z would traditionally be treated
as independent, random signs censoring makes them dependent in a special way.

The basic assumption of random signs censoring is that the event of successful
preventive maintenance, {Z < X}, is stochastically independent of the potential
critical failure time X . In other words, the conditional probability q(x) = P (Z <

X |X = x) does not depend on the value of x.
Let X have hazard rate function ω(x) and cumulative hazard Ω(x). In addition

to the assumption of random signs censoring, we will assume that conditionally,
given Z < X and X = x, the distribution of the intervention time Z satisfies

P (Z ≤ z | X = x, Z < X) =
Ω(z)
Ω(x)

, 0 ≤ z ≤ x . (5)

To see why (5) is reasonable, consider Figure 4. When “Nature” has chosen in
favour of the crew and has selected the time to critical failure, X = x, which the
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crew will have to beat, she first draws a value u uniformly from [0, Ω(x)]. Then
the time for preventive maintenance is chosen as Z = Ω−1(u), where Ω−1(·) is the
inverse function of Ω(·). Following this procedure makes the conditional density
of Z proportional to the intensity of the underlying failure process. This seems
like a coarse but somewhat reasonable description of the behaviour of a competent
maintenance crew.

t

Z X

Ω(t)

Ω(X)

u

Ω−1(u)

Figure 4: Time to PM conditioned on {Z < X, X = x}.

Our joint model for (X, Z) is thus defined from the following:

(i) X has hazard rate ω(·).

(ii) {Z < X} and X are stochastically independent.

(iii) Z given Z < X and X = x has distribution function (5).

These requirements determine the distribution of the observed pair (Y, J) as
follows. First, by (ii) we get

P (y ≤ Y ≤ y + dy, J = 0) = P (y ≤ X ≤ y + dy, X < Z)

= (1 − q)ω(y) exp(−Ω(y)) dy

where we introduce the parameter q = P (Z < X). Next,

P (y ≤ Y ≤ y + dy, J = 1)

= P (y ≤ Z ≤ y + dy, Z < X)

=
∫ ∞

y

P (y ≤ Z ≤ y + dy|X = x, Z < X)

× P (Z < X |X = x)ω(x) exp(−Ω(x)) dx

= q ω(y) dy

∫ ∞

y

ω(x) exp(−Ω(x)) / Ω(x) dx

= q ω(y) Ie(Ω(y)) dy ,

where Ie(t) =
∫ ∞

t
exp(−u)/u du is known as the exponential integral10.
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It is now straightforward to establish the density and distribution function of Y ,

fY (y) = (1 − q) ω(y) exp (−Ω(y)) + q ω(y) Ie(Ω(y)) (6)

and
FY (y) = P (Y ≤ y) = 1 − exp(−Ω(y)) + q Ω(y) Ie(Ω(y)) . (7)

Note that the proposed maintenance model introduces only one new parameter,
namely q. We can interpret this parameter in terms of the alertness of the mainte-
nance crew; a large value of q corresponds to a crew that is able to prevent a large
part of the critical failures.

The distribution (6) for Y is a mixture distribution, with one component repre-
senting the failure distribution one would have without preventive maintenance, and
the other mixture component being the conditional density of time for PM given
that PM “beats” critical failure. It is worth noticing that the distribution with
density ω(y) Ie(Ω(y)) is stochastically smaller than the distribution with density
ω(y) exp(−Ω(y)); this is a general consequence of random signs censoring.

4. General model

Recall that the events in our most general setting are either critical failures, de-
graded failures or external events; consider Figure 2. We shall assume that correc-
tive maintenance is always performed following a critical failure, while preventive
maintenance is performed both after degraded failures and external events. More-
over, in the case of several failure mechanisms, any failure is treated as an external
event for all failure mechanisms except the one failing.

4.1. Single failure mechanism

In this case the data for one component are (Yi, Ji); i = 1, . . . , n with Ji now defined
as in (2) with three possible values. Suppose for a moment that all repairs, both
corrective and preventive, are perfect. Then we shall assume that the (Yi, Ji) are
i.i.d. observations of (Y, J) where Y = min(X, Z, U), (X, Z) is distributed as in
Section 3.2, and U is the (potential) time of an external event. The U is assumed
to be stochastically independent of (X, Z) and to have a distribution which does
not depend on the parameters of our model. It follows that we can disregard the
terms corresponding to U in the likelihood calculation. The likelihood contribution
from an observation (Y, J) will therefore be as follows (see Section 3.2):

f(y, 0) = (1 − q)ω(y) exp (−Ω(y))

f(y, 1) = q ω(y) Ie(Ω(y)) (8)

f(y, 2) = exp (−Ω(y)) − q Ω(y) Ie(Ω(y)) .

The last expression follows from (7) and corresponds to the case where all we know
is that max(X, Z) > y.

To the model given above we now add imperfect repair. Recall that in the BP
model there is a probability p of perfect repair (Di = 0) after each event. We shall
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here distinguish between preventive maintenance and corrective maintenance by let-
ting Di equal 0 with probability p if the ith event is a preventive maintenance or an
external event, and with probability π if the ith event is a critical failure. Moreover,
we shall assume that for all i we have D1, . . . , Di conditionally independent given
y1, . . . , yi, j1, . . . , ji.

From this we are able to write down the likelihood of the data as a product of the
following conditional distributions. The derivation is a straightforward extension of
the one in Section 3.1.

f
(
(yi, ji) | (y1, j1), . . . , (yi−1, ji−1)

)
=

∑
d1,...,di−1

f((yi, ji) | (y1, j1), . . . , (yi−1, ji−1), d1, . . . , di−1)

× f(d1, . . . , di−1|(y1, j1), . . . , (yi−1, ji−1))

=
i∑

j=1

f


(yi, ji)

∣∣∣∣∣∣ξi−1 =
i−1∑
k=j

yk




× P (Dj−1 = 0, Dj = · · · = Di−1 = 1|j1, . . . , ji−1) .

Here P (Dj−1 = 0, Dj = · · · = Di−1 = 1 | j1, . . . , ji−1) is a simple function of p and
π. Thus, what remains to be defined are the conditional densities f ((yi, ji)|ξi−1), i.e.
the conditional densities of (Yi, Ji) given that the age of the component immediately
after the (i − 1)th event is ξi−1. We shall define these to equal the conditional
densities given no event in (0, ξi−1), of the distribution given in (8). Thus we have

f ((yi, 0) | ξi−1) =
(1 − q)ω(ξi−1 + yi) exp(−(Ω(ξi−1 + yi)))

exp(−Ω(ξi−1)) − q Ω(ξi−1) Ie(Ω(ξi−1))

f ((yi, 1) | ξi−1) =
q ω(ξi−1 + yi) Ie(Ω(ξi−1 + yi))

exp(−Ω(ξi−1)) − q Ω(ξi−1) Ie(Ω(ξi−1))

f ((yi, 2) | ξi−1) =
exp(−Ω(ξi−1 + yi)) − q Ω(ξi−1 + yi) Ie(Ω(ξi−1 + yi))

exp(−Ω(ξi−1)) − q Ω(ξi−1) Ie(Ω(ξi−1))
.

If we have data from several independent components, the complete likelihood
is given as the product of the individual likelihoods.

The model for a single failure mechanism is displayed as a directed acyclic
graph11,12 in Figure 5. Due to the imperfect repair we do not have guaranteed
renewals at each event, hence we have to use a time evolving model to capture the
dynamics in the system. For clarity, only time-slice r (i.e., the time between event
r − 1 and r) is shown.

4.2. Identifiability of parameters

The present discussion of identifiability is inspired by the corresponding discussion
by Whitaker and Samaniego8, who considered the simple BP model.

Refer again to the model of the previous subsection. We assume here that,
conditional on (Y1, J1), (Y2, J2), . . . , (Yi−1, Ji−1), the (potential) time to the next
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Ξr−1

Zr

Xr Yr Ξr

Jr

Figure 5: The model for a single failure mechanism, when only time-slice r is shown.
The double-lined nodes represent the observable variables. Ξr is the effective age
immediately after the rth repair, Ξr depends on Ξr−1 together with what happens
during the rth time-slice. Xr is the potential time to critical failure (given the
history), and Zr is the corresponding potential time to a degraded failure. Yr is the
rth inter-event time, and Jr = I(Zr < Xr).

external event is a random variable U with continuous distribution G and support
on all of (0, τ ] where τ as before is the regular maintenance interval. Moreover, the
distribution G does not depend on the parameters of the model, and it is kept fixed
in the following.

We also assume that ω(x) > 0 for all x > 0 and that 0 < q < 1. The parameters
of the model are ω, q, p, π. These, together with G, determine a distribution of
(Y1, J1), . . . , (Yn, Jn) which we call F(ω,q,p,π). Here n is kept fixed.

The question of identifiability can be put as follows: Suppose

F(ω,q,p,π) = F(ω∗,q∗,p∗,π∗) , (9)

which means that the two parameterizations lead to the same distribution of the
observations (Y1, J1), . . . , (Yn, Jn). Can we from this conclude that ω = ω∗, q = q∗,
p = p∗, π = π∗?

First note that (9) implies that the distribution of (Y1, J1) is the same under
the two parameterizations; Y1 = min(X, Z, U). It is clear that each of the following
two types of probabilities are the same under the two parameterizations,

P (x ≤ X ≤ x + dx, Z > x, U > x)

P (z ≤ Z ≤ z + dz, X > z, U > z).

By independence of (X, Z) and U , and since P (U > x) > 0 if and only if x < τ , we
conclude that each of the following two types of probabilities are equal under the
two parameterizations,

P (x ≤ X ≤ x + dx, Z > x); x < τ

P (z ≤ Z ≤ z + dz, X > z); z < τ.

These probabilities can be written respectively

(1 − q)ω(x) e−Ω(x) dx; x < τ

q ω(z) Ie(Ω(z)) dz; z < τ .
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Thus, by integrating from 0 to x we conclude that (9) implies for x ≤ τ

(1 − q)
(
1 − e−Ω(x)

)
= (1 − q∗)

(
1 − e−Ω∗(x)

)
(10)

q
(
1 − e−Ω(x) + Ω(x)Ie(Ω(x))

)
= q∗

(
1 − e−Ω∗(x) + Ω∗(x)Ie(Ω∗(x))

)
. (11)

We shall now see that this implies that q = q∗ and Ω(x) = Ω∗(x) for all x ≤ τ .
Suppose, for contradiction, that there is an x0 ≤ τ such that Ω(x0) < Ω∗(x0). Then
since both 1−exp(−t) and 1−exp(−t)+ t Ie(t) are strictly increasing in t, it follows
from respectively (10) and (11) that 1 − q > 1 − q∗ and q > q∗. But this is a
contradiction. In the same manner we get a contradiction if Ω(x0) > Ω∗(x0). Thus
Ω(x) = Ω∗(x) for all x ≤ τ (so ω(x) = ω∗(x) for all x ≤ τ) and hence also q = q∗.

We shall see below that in fact we have Ω(x) = Ω∗(x) on the interval (0, nτ),
but first we shall consider the identifiability of p and π. For this end we consider the
joint distribution of (Y1, J1), (Y2, J2). In the same way as already demonstrated we
can disregard U in the discussion, by independence, but we need to restrict y1, y2

so that y1 + y2 ≤ τ . First, look at

P
(
y1 ≤ Y1 ≤ y1 + dy1, J1 = 0, y2 ≤ Y2 ≤ y2 + dy2, J2 = 0

)
(12)

= (1 − q)ω(y1) e−Ω(y1)
[
π(1 − q)ω(y2)e−Ω(y2)

+(1 − π) (1 − q)
ω(y1 + y2) exp(−Ω(y1 + y2))

exp(−Ω(y1)) − q Ω(y1) Ie(Ω(y1))

]
dy1 dy2 .

This is a linear function of π with coefficient of π proportional to

ω(y2) exp(−Ω(y2)) − ω(y1 + y2) exp(−Ω(y1 + y2))
exp(−Ω(y1)) − q Ω(y1) Ie(Ω(y1))

. (13)

Using the assumption that 0 < q < 1 we thus conclude that π = π∗ unless (13)
equals 0 for all y1 and y2 with y1+y2 ≤ τ . Making the similar computation, putting
J2 = 1 instead of J2 = 0 in (12), we can similarly conclude that π = π∗ unless

ω(y2)Ie(Ω(y2)) − ω(y1 + y2) Ie(Ω(y1 + y2))
exp(−Ω(y1)) − q Ω(y1) Ie(Ω(y1))

(14)

equals 0 for all y1 and y2 with y1 + y2 ≤ τ . Now, if both (13) and (14) were 0 for
all y1 and y2 with y1 + y2 ≤ τ , then we would necessarily have

exp(−Ω(y2))
Ie(Ω(y2))

=
exp(−Ω(y1 + y2))

Ie(Ω(y1 + y2))
(15)

for all y1 and y2 with y1 + y2 ≤ τ . Since we have assumed that ω(·) is strictly
positive, (15) would imply that exp(−t)/Ie(t) is constant for t in some interval
(a, b). This is of course impossible by the definition of Ie(·), and it follows that not
both of (13) and (14) can be identically zero. Hence π is identifiable.

Identifiability of p is concluded in the same way by putting J1 = 1 instead of
J1 = 0 in (12).
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So far we have concluded equality of the parameters q, p, π under the two pa-
rameterizations, while we have concluded that Ω(x) = Ω∗(x) for all x ≤ τ . But
then, putting y1 = τ in (12), while letting y2 run from 0 to τ , it follows that
Ω(x) = Ω∗(x) also for all τ < x ≤ 2τ . By continuing we can eventually conclude
that Ω(x) = Ω∗(x) for all 0 < x ≤ nτ .

If τ = ∞, then of course the whole function ω(·) is identifiable. However, even if
τ < ∞ we may have identifiability of all of ω(·). For example, suppose Ω(x) = µxα

with µ, α positive parameters. Then the parameters are identifiable since (10) in
this case implies that

µxα = µ∗xα∗

for all x ≤ τ . This clearly implies the pairwise equality of the parameters.

4.3. Several failure mechanisms

We now look at how to extend the model of Section 4.2 to k > 1 failure mechanisms
and data given as in (1) or (3).

Our basic assumption is that the different failure mechanisms M1, . . . , Mk act
independently on the component. More precisely we let the complete likelihood
for the data be given as the product of the likelihoods for each failure mechanism.
Note that the set of events is the same for all failure mechanisms, and that failure
due to one failure mechanism is treated as an external event for the other failure
mechanisms.

The above assumption implies a kind of independence of the maintenance for
each failure mechanism. Essentially we assume that the pairs (X, Z) are indepen-
dent across failure mechanisms. This is appropriate if there are different mainte-
nance crews connected to each failure mechanisms, or could otherwise mean that
the “signals” of degradation emitted from the component are independent across
failure mechanisms.

Another way of interpreting our assumption is that, conditional on

(y1, k1, j1), . . . , (yi−1, ki−1, ji−1)

the next vector (Yi, Ki, Ji) corresponds to a competing risk situation involving m

independent risks, one for each failure mechanism, and each with properties as for
the model given in Section 4.1.

The parameters (ω, q, p, π) may (and will) in general depend on the failure mech-
anism. As regards identifiability of parameters, this will follow from the results for
single failure mechanisms of Section 4.2 by the assumed independence of failure
mechanisms.

If we have data from several independent components of the same kind, given
as in (3), then the complete likelihood is given as the product of the likelihoods for
each component.

Figure 6 depicts the complete model for time-slice r represented by a directed
acyclic graph, confer also Figure 5.
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Figure 6: The complete model, but only showing time-slice r. The random variables
are given a subscript index indicating the time-slice, and a superscript index showing
the failure mechanism. For example, Ξm

r is the effective age of the m’th failure
mechanism immediately after the r’th event. Only nodes drawn with double-line
are observed.

Deformation Leakage Breakage Other
# Critical failures 4 1 1 2
# Degraded failures 8 2 0 4

Table 3: Number of failures per failure mechanism.

5. Parameter estimation

5.1. Calculation scheme

The complete model as described in Section 4 involves some important conditional
independence properties that both special purpose maximum-likelihood estimator
algorithms as well as Markov Chain Monte Carlo simulations can benefit from. In
this section we have used maximum likelihood methods.

5.2. A case study

To exemplify the merits of the proposed model, we use Phase IV of the Gas Turbine
dataset from the Offshore Reliability Database13. Only the Gas Generator subsys-
tem is included in the study. We analyse data from a single offshore installation
to ensure maximum homogeneity of the data sample. The dataset consists of 23
mechanical components, which are followed over a total of 603.690 operating hours.
There are 22 failures, out of which 8 are classified as critical and 14 as degraded. The
failures are distributed over four different failure mechanisms (so k = 4), namely
deformation, leakage, breakage and other mechanical failure.
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Deformation Leakage Breakage Other
Hazard (µm) 2.5 · 10−6 1.3 · 10−5 8.3 · 10−7 5.6 · 10−6

Preventive maint. (pm) 0.6 0.3 1.0 0.8
Corrective maint. (pκ

m) 1.0 1.0 1.0 1.0

Table 4: Estimated hazard rate and probability of successful maintenance.

Deformation Leakage Breakage Other̂MTTFFNaked 4.0 · 105 7.7 · 104 1.2 · 106 1.8 · 105̂MTTFFOFR 6.0 · 105 1.5 · 105 6.0 · 105 3.0 · 105

Table 5: Estimated MTTFF in our model and the “observed failure rate” model.

The PM history for the gas turbines consists of 78 PM events. The PM intervals
(“τ”) for the different components vary between 8 and 12 calendar months.

5.3. Results

The data can be put on the form (3) so the complete likelihood can be calculated
as described in Section 4. Having a small number of critical failures, the estimates
of π1, . . . , π4 will not be reliable; the number of critical failures is simply too small.
To reduce the number of parameters we introduce κ > 0 defined so that πm = pκ

m

for m = 1, . . . , 4. Here κ indicates the difference between the effect of preventive
and corrective maintenance. A small value of κ means that corrective maintenance
is much more beneficial than the preventive, and a value close to 1 judges the two
maintenance operations about equal. In the same way, we assume that q1 = · · · = q4,
and use q to denote these variables.

We also use a simple parametric forms of the ωi(·), namely the constant haz-
ards ωi(t) = µi, i = 1, . . . , 4. The results of maximum likelihood estimation are
presented in Table 4. The estimated value of q is q̂ = .4, while κ̂ = 1 · 10−2. The
latter value indicates that corrective maintenance actions are highly effective.

It is also interesting to calculate the mean time to first failure (MTTFF ) had
there been no maintenance. This value, which we name MTTFFNaked, shows the
nature of the underlying failure process unbiased by the maintenance regime; it
can be estimated directly by 1/µ̂i in the present setting. In Table 5 we comparêMTTFFNaked to the “observed failure rate” estimators given by

̂MTTFFOFR =
#Total Operating Time

#Critical Failures

to see the effect of including maintenance in the model.
It is worth noticing that the OFR-estimates are inclined to be more optimistic

than the estimators from our model. This is because degraded failures tend to
censor potential critical failures, and this influences the OFR-estimate.
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6. Concluding remarks

In this paper we have proposed a simple but flexible model for maintained compo-
nents which are subject to a variety of failure mechanisms. The proposed model
has the standard models of perfect and minimal repair as special cases. Moreover,
some of the parameters we estimate (namely pm, πm and qm) can be used to ex-
amine the sufficiency of these smaller models. “Small” values of q̂m accompanied
by “extreme” values of all p̂m and π̂m (either “close” to one or zero) indicate that
reduced models are detailed enough to capture the main effects in the data. Mak-
ing specific model assumptions regarding the preventive maintenance we are able
to prove identifiability of all parameters.

We note that many models simpler than ours may be useful if explicit notion
of maintenance quality is considered unimportant14,15,16. In our experience, the
model of Lawless and Thiagarajah17,

λ(t | F t−) = exp
(
α + β g1(t) + γ g2(t − TN(t−)

)
, (16)

where α, β and γ are unknown parameters, and g1 and g2 are known functions,
offers good predictive ability in the setting corresponding to Section 3.2. Observe
that the conditional intensity in (16) depends both on the age t and the time since
last failure t − TN(t−); hence it can be considered to be an imperfect repair model
with perfect and minimal repair as special cases. However, the model is difficult to
interpret with respect to the physical meaning of the parameters, and is therefore
not satisfactory in our more general setting. Our motivation has been to build a
model that could be used to estimate the effect of maintenance, where “effect” has
been connected to the model parameters qm, pm and πm. Here qm is indicative of
the crew’s eagerness, their ability to perform maintenance at the correct times to try
to stop evolving failures. The pm and πm indicate the crew’s thoroughness; their
ability to actually stop the failure development. The proposed model indirectly
estimates the naked failure rate, and on a specific case using real life data these
estimates are significantly different from those found by “traditional” models.

We make modest demands regarding data availability: Only the inter-failure
times and the failure mechanisms leading to the failure accompanied by the pre-
ventive maintenance program are required. This information is available in most
modern reliability data banks.
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