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Abstract

Background: Malaria is a major public health issue in much of the world, and the mosquito vectors which drive

transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from

detailed representations of local mosquito populations, their natural dynamics and their response to campaign

pressures.

Methods: A new model is presented for mosquito population dynamics, effects of weather, and impacts of

multiple simultaneous interventions. This model is then embedded in a large-scale individual-based simulation and

results for local elimination of malaria are discussed. Mosquito population behaviours, such as anthropophily and

indoor feeding, are included to study their effect upon the efficacy of vector control-based elimination campaigns.

Results: Results for vector control tools, such as bed nets, indoor spraying, larval control and space spraying, both

alone and in combination, are displayed for a single-location simulation with vector species and seasonality

characteristic of central Tanzania, varying baseline transmission intensity and vector bionomics. The sensitivities to

habitat type, anthropophily, indoor feeding, and baseline transmission intensity are explored.

Conclusions: The ability to model a spectrum of local vector species with different ecologies and behaviours

allows local customization of packages of interventions and exploration of the effect of proposed new tools.

Background

Malaria is transmitted by the blood feeding of infectious

female Anopheles mosquitoes, and understanding mos-

quito ecology and population dynamics can inform how

best to defeat malaria. Malaria is an important global

health issue, causing over half a billion cases and on the

order of one million deaths a year [1], and is the focus

of a global eradication campaign announced in 2007.

Basic vector ecology is a fundamental driver of transmis-

sion patterns, and changes in land usage [2] or land

modification can dramatically change transmission for

better or worse. The growing urbanization in Africa is a

powerful current example of such phenomena [3]. Cli-

mate and weather affect larval development and parasite

maturation within the infected mosquito, and spatial

models are able to predict malaria prevalence based pri-

marily on climate details in the absence of interventions

[4]. This climate-driven predictability has broken down

more recently, possibly due to more widespread

interventions such as insecticide-treated bed nets [5],

but predictive modelling for global eradication incorpo-

rates these geographic effects on baseline transmission.

Geographic variation and spatial effects become increas-

ingly important as heterogeneity in transmission allows

malaria to persist in some areas while other areas

achieve elimination but remain at risk of reintroduction

[6].

A successful global eradication campaign will include

substantial vector control components, and mathemati-

cal models for planning eradication will benefit from

accurate and robust representation of the basic vector

transmission ecology in each area of interest as well as

the ability to incorporate interventions both singly and

in combination. Vector population dynamics exhibit

latencies such as the time required for sporogony. Spa-

tial processes include vector oviposition, larval habitat,

host-seeking, and migration. For aptly modelling eradi-

cation, representation of the steady state is not suffi-

cient; elimination-predictive models may need to be

accurate at very low prevalence. Finally, models must

address sensitivity of results to model parameters and
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assumptions whenever presenting possible routes to

eradication.

Mathematical modelling of the vector-borne transmis-

sion of malaria dates back to the early dynamical models

of Ross and Macdonald [7,8], the classical assumptions

of which have been clearly exposited [9]. Next steps in

vector modelling included cyclical feeding models,

which were easier to parameterize from field data and

more accurately tracked the mosquito life cycle [10,11].

Other models emphasize the effect of rainfall and tem-

perature correlations to transmission [12], or compute

the Entomological Inoculation Rate (EIR) driven by

human infectiousness [13]. Recent work has focused on

the effect of hydrology on larval habitat and vector pre-

valence [14], and on vector population dynamics [15].

Other groups have built comprehensive simulations for

both the vector transmission dynamics and within-

human parasite dynamics [16-19]. Vector population

models have been constructed for other vector-borne

diseases, such as dengue [20].

The present work introduces a vector model which

has detailed vector population resolution for near elimi-

nation phenomena, tracks explicit latencies of larval

development and sporogony, implements closed-loop

population dynamics, and can implement a wide variety

of vector control interventions in combination. Careful

attention is given to vector behaviours, such as host pre-

ference and feeding locations, and the effects of these

parameters on intervention effectiveness are explored.

Alternative implementations of this model are discussed,

along with parameter sensitivities. The present model is

then exercised on several issues of local elimination for

simulations based on transmission patterns for a single-

location in Tanzania, varying baseline transmission and

vector bionomics, and key results are discussed.

Methods: model design

Aquatic habitat

Available larval habitat is a primary driver of local mos-

quito populations, and different mosquito species can

have different habitat preferences, with utilization of an

ecological niche driving speciation in some cases [21].

Classifications of larval habitat include temporary, per-

manent or semi-permanent [22], and some species, such

as Anopheles gambiae ss and Anopheles arabiensis will

share an ecological niche for larval habitat [23]. Humans

can affect available habitat through terrain changes

which affect hydrology, through agricultural practices,

such as rice cultivation [2], or through creating or elimi-

nating standing water. Remote sensing through satellite

imagery is becoming a powerful tool for mapping vector

ecology [2,23], and this trend will most likely continue

to increase as eradication planning drives increasing

data requirements. Several detailed models already exist

of habitat and the impact of rainfall, temperature,

humidity, and soil quality [14,24,25].

Rainfall and humidity can strongly affect available lar-

val habitat [14,22,23], although this depends on the mos-

quito species and its habitat preference. In fact,

preference can be more specific than the species level, as

Anopheles funestus exhibits differences in population

responses to rainfall which are correlated with chromoso-

mal diversity [26]. Rainfall, rather than habitats with

water, is best correlated with numbers of An. gambiae s.l.

This effect is not as strong as it is for culicines, nor is it

universal, since An. gambiae s.l. have been found in

stable aquatic habitats [22]. Even An. funestus, which pre-

fers more semi-permanent larval habitat, has a rainfall

dependence in its larval habitat [27], partly due to vegeta-

tion on edges of water [26] and the interaction of rainfall

with agricultural schedules for crops such as rice.

In the present model, different models for larval habi-

tat are developed for temporary, semi-permanent, per-

manent, and human-driven habitats. Temporary habitat

Htemp in a grid of diameter Dcell increases with rainfall

Prain and decays with a rate τtemp proportional to the

evaporation rate driven by temperature T (K) and

humidity RH:

Htemp+ = PrainKtempD
2
cell − Htemp(

�t

τtemp
)

1

τtemp

= (5.1x1011Pa)e

−5628.1K

TK ktempdecay

√

.018kg/mol

2πRTK
(1 − RH)

in which the exponential results from the Clausius-

Clayperon relation, the root is from the expression for

vapour evaporation rates due to molecular mass given a

partial pressure, and the constant is the Clausius-Clay-

peron integration constant multiplied by a factor ktemp-

decay to relate mass evaporation per unit area to habitat

loss. The value of ktempdecay is initially chosen to set the

habitat half-lives near 1 day for hot and dry conditions

and 2-3 weeks for more typical tropical conditions. The

variation in τtemp with temperature T and humidity RH

can be seen in Figure 1a. Semi-permanent habitat

increases with a constant Ksemi Dcell
2Prain and decays

with a longer time constant τsemi. Permanent habitat is

fixed at Kperm Dcell
2, and human population-driven habi-

tat is calculated as population N* Kpop. The values of

ktempdecay, τsemi, Ksemi, and Ktemp can be fit to local data

on vector abundance by species over time or to local

data on EIR to tailor a simulation to a specific setting.

Larval development and mortality rates are affected by

a variety of factors including weather and densities of

other larvae. Climate and weather affect not only larval

habitat availability but also larval development rates and
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larval mortality [15]. The duration of larval development

is a decreasing function of temperature [4], and the pre-

sent model replaces earlier mathematical formulations

[4] with an Arrhenius temperature-dependent rate a1exp

(a2/TK) as seen in Figure 1b. In some cases, this tem-

perature-dependent rate must be modified by local lar-

val density [28], although the presented results do not

include such a modification. Rainfall and temperature

then combine through habitat creation and larval devel-

opment to create varying local patterns of distribution

by larval instar [23], and larval mortality and develop-

ment duration determine pupal rates [29].

Heavy rainfall can directly kill larvae by dislodging

them from habitat and causing them to dry out [28].

Other factors increasing mortality are cannibalism of 1st

instar larvae by 4th instar larvae and overpopulation of

larval habitat acting to reduce food availability.

The present model includes this preferential survival

of older larvae during overpopulation conditions by only

treating as viable those new larvae, which do not cause

the larval population to exceed capacity. If capacity

shrinks so that the existing population exceeds available

capacity, mortality is increased by the degree of overpo-

pulation. With all these factors taken together, about 2-

8 percent of larvae typically survive egg to adult [28].

The present model includes a daily larval mortality,

which translates into a probability of survival of larval

development as a function of temperature and mortality

rate presented in Figure 2a. The larval survival plotted is

from egg hatch to emergence, not from oviposition to

adult maturity, which is significantly less due to egg sur-

vival and death during the immature phase.

Improved cohort model

There are different possible implementations of the

basic model, each with different computational effi-

ciencies, resolutions, and flexibilities. Possible imple-

mentations include a modified cohort simulation, a

cohort simulation with explicit mosquito ages, a simu-

lation of every individual mosquito in the population,

as well as a simulation of a sampled subset of mosqui-

toes to represent the population as the whole. The

basic model is presented in the context of the modified

cohort simulation with explanations of the modifica-

tions for individual mosquitoes. In the modified cohort

simulation, rather than representing the entire popula-

tion by three compartments for susceptible, latently

infected, and infectious mosquitoes, the simulation

dynamically allocates a cohort for every distinct state,

and the cohort maintains the count of all mosquitoes

in that state. This allows temperature-dependent

Figure 1 Effects of climate and weather on vector populations.

a) Effect of temperature and humidity on time constant τtemp for

temporary rainfall-driven larval habitat. The habitat decay is faster for

warmer and drier weather. b) Temperature effects on duration larval

development, with the functional form from [4] and the present

Arrhenius formulation. c) Temperature effects on duration of

sporogony. The traditional degree-day formula and the present

Arrhenius function are plotted, along with Beier’s data from [49].
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progression through sporogony as described below,

even with a different mean temperature each day, with

no mosquitoes passing from susceptible to infectious

before the full discrete latency. For the cohort simula-

tion with explicit ages to allow modelling of senes-

cence, mosquito age is part of the state definition, and

many more cohorts are required to represent the

population. The overall progression of cohorts or indi-

vidual mosquitoes through different states is outlined

in Figure 3.

Immature mosquito populations

Upon emergence, there is a period of hours to days

before bloodmeal-seeking begins [30]. This period is

represented in the model as a fixed latency, during

which predators and interventions such as outdoor

spraying can still cause mortality. At the end of this

immature interval, before the start of host-seeking,

female mosquitoes mate. Male mosquitoes are included

in the simulation to allow simulation of the mosquito

population genetic structure, as well as interventions

and phenomena such as release of modified males or

mosquitoes with Wolbachia infection. Each female is

mated once, with fertility only if the male is not sterile

and there is no cytoplasmic incompatibility due to Wol-

bachia type [31]. Mating outcomes are based on the

current distribution of male mosquitoes. Sterile-mated

females will blood-feed, but do not produce viable eggs.

Adult mosquito populations

Host-seeking and blood-feeding are key aspects of the

reproductive life of an adult female Anopheles, and these

are also the key aspects for malaria transmission. After

completion of post-emergence maturation, female adults

enter a cycle of feeding and egg-laying which will con-

sume the rest of their lives. Female Anopheles mosqui-

toes bloodfeed every 1/f = 2-4 days [11], and in the

model, a fixed proportion (= f∆t) of all mosquitoes in a

state cohort attempt to feed during a time step ∆t. Sub-

sequent versions of this model include a state with a

timer for blood feed processing, which replaces the

draw for fraction feeding each time step. The total num-

ber of mosquitoes in a cohort that attempt to feed dur-

ing a time step are then stochastically sorted into a

variety of outcomes depending on vector behaviour,

host availability, and interventions, such as insecticide-

treated nets (ITN) and indoor residual spraying (IRS) as

described in Figure 4.

Possible outcomes of an attempted feeding include

death, survival without feeding, successful feed on a

human, or successful feed on an animal. A binary deci-

sion tree is created for progress through a feeding cycle

as seen in Figure 4. If a feed is attempted, the first

branching point is the choice of host type depending on

the vector host preference, and if human is selected, the

location of feeding is chosen based on the vector indoor

feeding probability. Each possible choice is thus condi-

tional on arriving at that stage of the decision tree,

allowing simpler definitions of efficacy. Blocking efficacy

of nets is specified as the probability that a net blocks a

feed, given an attempted indoor feed on a protected

human, rather than the reduction in overall successful

biting. This binary structure allows logical combination

of the effects of ITNs and IRS and makes it simple to

add new interventions to the model. An indoor feed

Figure 2 Intermediate outputs which affect vector population

or disease transmission dynamics. a) Larval survival of

development as a function of temperature and larval mortality.

Survival is from successful egg hatch to emergence; survival from

oviposition would be significantly lower. b) Adult survival of

sporogony as a function of temperature and adult mortality. At

lower temperatures, mosquitoes spend longer in each progress

queue and the overall effect of a daily mortality is greater. Adult

mortality can be artificially increased through interventions such as

bed nets, insecticide spraying, and baited traps.
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only occurs if the net does not block the feed and the

treated net does not kill the mosquito. Mosquitoes that

complete a feed are eligible to rest on an IRS-treated

wall with a specified killing efficacy. Thus the effects of

ITNs and IRS in the same house are not independent,

and blocked feeds reduce the number of mosquitoes

that arrive at the IRS section of the decision tree.

Successful feeds on humans have an additional draw for

whether the mosquito is infected with Plasmodium or

not which depends on human infectiousness, and the

conditional probability of surviving a feed on an infec-

tious individual. En route to assembling the distribution

of feeding outcomes, human biting rate and entomologi-

cal inoculation rate (EIR) are calculated, including all

Figure 3 Vector development state space. All eggs of a similar state (species, gender, habitat, Wolbachia type) hatching in a time step begin

larval development as a cohort. The only changes to this cohort are the population and the progress, and each time step, mortality reduces the

population and progress increments by the Arrhenius temperature-driven rate multiplied by the time step. The progress added can vary

depending on the daily temperature and is not constrained to be constant or an integer number of total days, so n1 would be the total

development period at the mean temperature of the first time step. When progress through development is complete for a cohort, emergence

occurs, and the cohort begins the latency to blood feeding as immature emerged adults. This latency can last for several hours up to several

days, at which point the cohort begins the cycle of blood feeding. Adults infected in a time step are removed from their cohort and a new

cohort is created for newly infected adults. This new cohort then proceeds through the infected development queue, with mortality reducing

the population and temperature-dependent incrementing of progress. Once sporogony is complete, the cohort becomes infectious and remains

so until the population is reduced to zero, at which point the cohort is de-allocated.
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human feeds whether or not the mosquito survives, as

mosquito death can occur before, during, or after feed-

ing, but transmission can occur even for feeds which

the mosquito does not survive. The presented version of

the model, with a draw for number feeding each day

and without the timer for blood feed processing, calcu-

lates the outcomes for the full feeding cycle including

blood meal processing and oviposition survival, but

assembles these into outcomes in a single calculation

with eggs laid that time step for those feeds. The

detailed equations for feeding outcomes are contained

in Additional File 1.

The effect of a local mosquito species population on

disease transmission depends on several species-specific

Figure 4 Calculation of outcomes for each mosquito every time step in the presence of combined interventions. Each choice has a

defined probability, and the conditional probabilities can be summed for each overall possible outcome as described in the Appendix. Bed nets

can kill or not, and vector feeding time can be adjusted to change the proportion of bites during the period protected by nets. Indoor feeding

and resting can be split by adding in an additional decision fork after indoor and outdoor feeds. After a successful indoor feed, a mosquito must

make it to an oviposition site alive to lay eggs and survive. Closed loop egg-laying allows interference by interventions to eventually limit

population sizes. Individual resolution of the human population ensures that only those infectious mosquitoes that successfully pass through a

gauntlet to get to a human successfully can transmit infection.
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characteristics. Among the most important is anthro-

pophily (phumanfeed), the fraction of bites, which are

taken on a human host, or human blood index [32,33].

Indoor versus outdoor feeding and resting, represented

as an probability of feeding indoors (pindoorfeeding), is

another important behaviour of the local mosquito

population, especially when indoor interventions such as

IRS and ITN’s are introduced. Vectors which feed pre-

dominantly indoors can be decimated by these interven-

tions, while those species which feed outdoors will not

experience the same applied mortality. Indoor feeding

and resting are not necessarily equal for a mosquito spe-

cies, and this would be simple to implement in the pre-

sent outcome calculation structures. In the presented

sample simulations, indoor feeds are associated with

indoor resting and outdoor feeds with outdoor resting,

although a given species may have a mixed proportion

of indoor and outdoor feeds.

The most important factor for baseline transmission is

the adult mortality [9,10], which can be calculated per

day or per feeding cycle. Mosquitoes also experience

additional mortality at high temperatures with low

humidity [4]. The formula of Martens for daily survival

to a temperature-dependent mortality rate, with T in

Celsius, is approximated as (.001e(T-32)), which does not

have the mathematical pathologies at the roots of Mar-

tens’ polynomial. Mosquitoes do exhibit age effects and

senescence in laboratory settings, and senescence has

been observed in field studies as well [34]. In fact, mos-

quitoes have not been found in the field having taken

more than 14 feeds [11]. These possible effects are stu-

died by adding age to the state space, which results in a

much larger number of cohorts, and adding an age-

dependent mortality rate to the standard daily or feeding

cycle mortality.

In the cohort model, the number of eggs laid per time

step is calculated from the number of successful feeds

on humans and animals occurring in that time step,

with corrections for number of eggs per feeding type.

There is no delay currently in the present model for

egg-production, and the population growth dynamics

are constrained by the days between feeds and full lar-

val-development latencies. However, oviposition timers

can be incorporated both in the individual-mosquito

based simulations and in the cohort model. Determining

the number of eggs from successful blood feeds allows

second order effects of interventions on the mosquito

population to be captured, which is not possible in

models which utilize a pre-determined temporal pattern

for emergence rate of mosquitoes.

Infection

A bite on an infected human can result in mosquito

infection with Plasmodium, with a probability of

infection dependent on a variety of human and mos-

quito factors [35-44]. In general, human infectivity tends

to increase with gametocyte densities in a typical blood

meal of 1-3 μl [35], but this can be reduced by high

parasitaemia provoking an inflammatory cytokine

response [45,46], by age and immunity of the human

host [13], and by gametocyte-killing drug treatments

[47]. Once within the mosquito gut, Plasmodium pro-

gresses through several stages of development in the

mosquito finally resulting in sporozoites within the sali-

vary glands which can infect human hosts [48]. The

mosquito attempts to avoid infection through various

defenses against Plasmodium gametocytes [49] and mel-

anotic encapsulation of its oocysts [50].

The effect of weather and climate on malaria transmis-

sion is seen again in temperature-dependent latencies in

sporozoite development [4,49,51,52]. The development

times are seen in Figure 1c, and the corresponding survi-

val probabilities are plotted in Figure 2b. These are

included in traditional continuous compartmental mod-

els as a factor for mosquito survival of this latency, which

is multiplied by the rate of change in infectious mosqui-

toes. This effect can be implemented in cyclical model as

a changing probability of surviving incubation with fixed

probability of surviving a feeding cycle [53]. This cohort

implementation avoids instantaneous transport from sus-

ceptible to infected status, even scaled appropriately for

steady state. Steady states are rare to non-existent in

malaria transmission: seasonality in temperature and

rainfall changes vector population sizes and infection

rates, monthly rainfall for the same month varies from

year to year, and human population infectiousness may

not be at the same level at the same time each year, all of

which may affect the impact of interventions as a func-

tion of their timing. Therefore, it is important that full

latencies are enforced, with infectious mosquitoes not

appearing until completion of the intervening stages.

Progress towards infectiousness is included as a state

variable, and the infection state variable is not changed

from infected to infectious until the progress state vari-

able reaches completion. Enforcement of larval and

immature latencies similarly captures the dynamics for

population growth. Mosquitoes of the same state

infected the same evening become a new state cohort in

the simulation, and each time step, progress towards

infectiousness is incremented by the temperature-depen-

dent rate. At infection, the number infected is sub-

tracted from the population of the uninfected cohort,

and a new cohort is allocated with the newly infected

population and zero progress towards sporogony. Upon

completion, either the cohort is either merged with an

identical-state infectious mosquito state cohort, or main-

tained separately if no identical state likely exists, as in

the case of age-tracking.
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Outcome probabilities can change in response to

infection status. Sporozoite infection of the salivary

glands can result in increased feeding mortality when

infectious [54,55]. Fecundity can be affected as smaller

egg-batch size is observed due to maturing oocysts [56]

but not salivary-gland sporozoites [57]. Once infectious,

a mosquito’s bites have a probability of infecting a

human host, whether the mosquito survives the feed or

dies during or after the feed. Probability of human infec-

tion from a sporozoite-positive bite can be calculated

from field data or laboratory experiments, with a value

of approximately 0.5 per bite probably being reasonable

[58].

Interventions

Simulations of vector populations in the absence of

interventions, such as bed nets, are important, but the

purpose of the present model is to evaluate the effects

of interventions singly and in combination, especially in

the global eradication context. Key issues include incor-

poration of the effects of each of the full spectrum of

interventions to examine possible effects and determin-

ing how interventions combine their effects. Some inter-

ventions target adult female Anopheles feeding, and

these include insecticide treated bed nets [59-61], indoor

residual spraying and screening [62]. Figure 4 shows

how each intervention affects the feeding cycle as dis-

cussed above and how total outcomes can be calculated

when interventions are combined, with full equations in

Additional File 1.

Other interventions affect the population through the

larval stage, either directly with larvicides [63,64] and

larval predators or indirectly through habitat destruc-

tion. Land usage modification, either intentional or

unintentional, due to urbanization, agriculture, or drain-

ing swamps can have powerful effects [62,63]. Larval

control options available in the model include tempor-

ary increases in larval mortality through larvicides in a

subset of local habitat, repeated treatments with suffi-

cient mortality to render a fraction of local habitat una-

vailable for longer intervals, or land usage reducing

larval habitat long term. Depending on the option, the

model either implements a temporary increase in larval

mortality in a subset of the habitat carrying capacity, or

proportionately reduces the habitat carrying capacity for

the duration of effect.

Individual mosquito model

In addition to state cohorts, this basic model can be

implemented through simulation of every individual

mosquito or simulation of a subset of individual mos-

quitoes to represent the full population. Each mosquito’s

state contains the same features as the state cohort

model, with status, timers for transition to adult from

immature and infected to infectious, mating status and

Wolbachia infection, and age. An oviposition timer to

enforce a fixed feeding cycle may be included as well. If

mosquitoes are sampled and a subset used to represent

the local population, each sample mosquito will have an

associated sampling weight as well.

Setting up simulations

Vector dynamics are simulated for single human popu-

lations well-mixed with multiple vector populations. All

simulations are based upon a single-location with tem-

perature [19] and rainfall [65] based upon lat-long (-8.5,

36.5) in Tanzania. Three local vector populations are

simulated: An. gambiae s.s., An. arabiensis, and An.

funestus. Anopheles gambiae and An. arabiensis are

modelled to track the rainfall with the short temperature

and humidity-dependent time constant, while An. funes-

tus larval habitat integrates rainfall with a smaller for-

cing term and decays with a much slower time constant,

here set to 100 days to correspond to the length of an

agricultural season. The habitat scaling parameters and

habitat-specific time constants were obtained by simula-

tion of one species at a time, comparing to measure-

ments of local EIR by species. Parameters which exhibit

high uncertainty or geographic variability, such as the

host preference of An. arabiensis, are studied over broad

numerical ranges for their impact on results. A simpli-

fied human disease model is used in all simulations,

with a constant latent period of 22 days from bite to

infectiousness to mosquitoes, and exponentially-distribu-

ted period of infectiousness with mean 180 days. Infec-

tiousness is a constant 0.2, without development of

immunity to allow resolution of vector-specific effects.

Superinfection is allowed, with a maximum of five

simultaneous infections. General model and simulation-

specific parameters and their values are summarized in

Table 1.

Results and Discussion

Baseline vector population and transmission dynamics

are simulated for the single location simulation

described in Methods. The habitat scaling parameters

are varied to show different baseline EIRs with the same

weather-driven seasonality. The total vector population

when summed across all three species is seen in Figure

5a, with the rainfall patterns and temperature in 5 b.

Figure 5a shows the effect of scaling the time series of

available larval habitat, Figure 5c presents the resulting

sporozoite rates, and Figure 5d the entomological inocu-

lation rate, which represents the infectious bites received

per person per night. If mortality increases as a function

of age, the total population numbers do not change

greatly, but the sporozoite rate drops due to the sup-

pression of the older part of the mosquito age-
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distribution. Note that increasing larval habitat has a

second order effect on EIR by allowing the human pre-

valence to rise earlier in the season, which increases the

infectivity of the human population to vectors.

Further simulations demonstrate effects of combined

vector control interventions such as insecticide-treated

nets (ITN), indoor residual spraying (IRS), larval con-

trol, and space spraying. Figures 6 a, c, e show the

changes in vector dynamics as coverage with perfect

IRS is increased, killing all indoor feeding mosquitoes

and maintained at full efficacy for the specified cover-

age without decay. In addition, all mosquitoes are set

to feed indoors, making this an unrealistic scenario,

but a useful boundary case showing the maximum pos-

sible effect. Larval habitat is set to 3.0 for all three spe-

cies, and the simple human disease model is used. The

detailed model outputs can be used to determine the

change in entomologic inoculation rate as described in

[9]. These results can be compared to field results for

bed net campaigns in the presence of multiple vector

species [66]. The size of the local vector population is

reduced, but the effects on sporozoite rate and EIR are

much more dramatic for several reasons, especially the

restructuring of the mosquito population age distribu-

tion. The higher mortality results in fewer old

mosquitoes in the population, which is the segment of

the population with sporozoites. The older cohorts are

thus responsible for the major portion of EIR but only

minor portions of adult populations, human biting,

and fecundity. In many cases, larval habitat remains

the limiting factor in determining the number of emer-

ging mosquitoes and interventions primarily act

through adult mortality, but at high IRS or ITN cover-

age levels, it is possible in simulations to reduce emer-

gence rate by limiting successful feeds. This

phenomenon has been seen in high-coverage field stu-

dies [67], and the disappearance of An. funestus from

parts of its earlier habitat as intervention coverage

increases is the extreme limit of this phenomenon.

The simulations are repeated for IRS with 0.6 killing of

post-feeding mosquitoes and results are shown in Fig-

ures 6 b, d, f. The effects on adult vectors and sporo-

zoite rate are reduced, and these reductions are

compounded in the effect on EIR. Feeds in houses

with IRS now have a 40 percent survival probability in

contrast to the 0 percent survival in the previous simu-

lations. Thus for 60 percent coverage, the survival for

indoor feeds on the population is now 64 percent

instead of 40 percent, and the probability of surviving

three feeds rises to 26 percent from 6 percent.

Table 1 Model and simulation parameters

Parameter Value used in simulations Source, notes

Habitat scalars Ktemp 1.25 × 109 for gambiae ss and 11.25 × 109 for arabiensis Fit to site-specific data through simulation

Habitat scalar Ksemi 6 × 108 for funestus Fit to site-specific data through simulation

Habitat time constants
ktempdecay and τsemi

0.05 (ktempdecay)
0.01/day (τsemi)

Fit through simulation

Larval development Arrhenius
parameters a1, a2

8.42 × 1010, 8.3 × 103 Fit to traditional curve in [4]

Incubation period Arrhenius
parameters a1, a2

1.17 × 1011, 8.4 × 103 Fit to traditional curve in [4]

Duration of immature 4 days Not a very sensitive parameter, given the habitat fit to
adult population

Days between feeds 3 days 2-4 days [11]

Human blood index 0.95 for gambiae ss and funestus, variable for arabiensis [69]. The uncertain value for arabiensis is the focus of
detailed analyses.

Indoor feeding To explore effects, gambiae and funestus were set as highly
endophilic and arabiensis was varied

Female eggs per female
oviposition

100 A more accurate value would be closer to 80

Modification of egg batch
size for infection

0.8

Adult life expectancy 10 days [9-11]

Transmission modifier b 0.5 [58]

Mosquito infection modifier c 0.2 Will in reality depend on human infectiousness [36],
here set to be uniform for simplicity

Human feeding mortality 0.1 Uncertain

Human feeding mortality for
sporozoite positive

0.15 Uncertain
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The effects of co-varying IRS and ITN coverage are

studied and many simulations are run over sections of

campaign and parameter space, with each simulation a

trial for local elimination success or failure. These trials

can be used to estimate the probability of local elimina-

tion as a function over campaign or parameter space. In

Figure 7, coverage with IRS and ITN is varied, and the

trials are assembled into plots, which map the regions of

high probability of success and low probability of suc-

cess. For purposes of this demonstration, both IRS and

ITN kill every single relevant mosquito (pkill, ITN = 1

and pkill, IRSpostfeed = 1) and do not decay. All three mos-

quito species are simulated to feed indoors and take 95

percent of their blood meals on human hosts. The larval

habitat scaling is set to 1.0, and the simple human dis-

ease model is used. Given these assumptions, it is not

surprising that the region of success is large. Decreasing

pkill, ITN and pkill, IRSpostfeed to 0.6 and maintaining bed

nets at 100% blocking of indoor feeding produces the 2-

D plot in Figure 7c. High coverage of bed nets still suc-

cessfully locally eliminates the disease, since all feeds in

this simulation occur indoors at night, but this is a

Figure 5 Baseline population dynamics summed over local populations of An. gambiae ss, An. funestus, and An. arabiensis for different

larval habitat multipliers. a) Local weather will drive both the temporary and semi-permanent larval habitats. b) The adult vector population

changes as a function of the scaling of the larval habitat carrying capacity, which is driven by local weather. c) The sporozoite rate of mosquito

population changes in response to the changing age structure of the vector population over the course of two years. d) Daily EIR combines the

adult vector population and the sporozoite rate.
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Figure 6 Effects of increasing coverage with perfect IRS. Effects of increasing coverage with perfect IRS (pkill, IRSpostfeed = 1) on a) Adult

population c) Sporozoite rate e) EIR. Effects on sporozoite rate and EIR are much more dramatic than on the adult population because of the

restructuring of the age distribution of the mosquito population. For most coverage levels, larval habitat remains the limiting factor in the rate of

emerging mosquitoes, and number of young, unfed mosquitoes remains similar as IRS coverage increases up to a point. However, the increased

feeding mortality results in a decreased life expectancy for mosquitoes, a moderate reduction in total population, but a strong reduction in

mosquitoes older than 10 days. b, d, f) Repeated for IRS with (pkill, IRSpostfeed = 0.6). The effects on sporozoite rate and EIR are not as dramatic

due to improved mosquito survival. The larval habitat multiplier is set to 3.0 for these simulations.
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Figure 7 Effects of combining IRS and ITN. a, b) Probability of Eradication and Estimate Variance for perfect bed nets and IRS, which do not

decay, for fully indoor feeding and resting mosquitoes c, d) Bed nets still prevent all nighttime feeds, but only kill 60% of mosquitoes

attempting to feed. IRS kills 60% of post-indoor feeding mosquitoes in treated houses. Eradication is no longer possible in many previously

possible parameter regions. e, f) Effect of varying indoor feeding and anthropophily of the An. arabiensis population for 90 percent IRS

coverage with no decay of insecticide and pkill, IRSpostfeed = 1. The multiplier for larval habitat set to 1.0 for all three sets of simulations, and

increasing larval habitat increases the level of coverage required, but not as dramatically as changing the adult mortality. Dark blue regions in a,

c, e correspond to parameter regimes in which the estimated probability of local elimination is over 0.9 and dark red less than 0.1. Level sets for

mean estimated probability of elimination and for probability estimate variance are labeled.
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quadratic effect of blocking part of the population from

acquisition and transmission, while the exponential

effect of increasing local mosquito mortality is drasti-

cally reduced with dramatic effects. Even with full IRS

coverage and all mosquitoes feeding indoors, a reduced

killing efficacy may not permit local elimination without

supplemental interventions. The reduced efficacy is

intended to represent an effect of insecticide resistance,

and the effect on elimination has important implications

for campaigns.

Changes in vector behaviours such as indoor feeding

and anthropophily change the results drastically with sev-

eral key implications for eradication. The previous system

is rerun with IRS at 90 percent coverage with full mos-

quito post-feeding mortality for indoor feeds in treated-

houses, and the human feeding and indoor feeding prefer-

ences of the local arabiensis population are varied.

Changes in indoor feeding have a dramatic effect on cam-

paign success as seen in Figure 7 e, f, as would be expected

for interventions which only affect indoor feeding mosqui-

toes. Decreasing anthropophily is often viewed as decreas-

ing transmission, but in the presence of high intervention

coverage, decreasing anthropophily reduces the mortality

during sporogony, allowing a higher proportion of infected

mosquitoes to complete sporogony and thereby reducing

the probability of campaign success. Feeds on animals dur-

ing sporogony are safe compared to the protected human

feeds and increase the probability of surviving the multiple

feeds during sporogony and becoming infectious. At lower

anthropophily, fewer mosquitoes become infected and

infectious mosquitoes bite humans less frequently, and

this effect eventually wins and probability of success

increases with decreasing anthropophily below a certain

value. Detailed model representations of vector behaviour

help explain the failure of elimination campaigns which

only targeted indoor feeding. For eradication to succeed,

the full transmission cycle must be sufficiently broken,

which may involve targeting outdoor-feeding mosquitoes

in some areas.

Other available but currently less-used options for

vector control include larvicides and space spraying for

targeting larval and adult populations, respectively. Fig-

ure 8 shows results for simulations of larval control on

the left and adult-targeting space spraying on the right.

In the presented simulations, larval control is simulated

as a temporary decrease in the larval habitat carrying

capacity for a specified duration, such as a 30 percent

reduction for 180 days. This produces decreases in the

adult population, but not in the adult age-structure-dri-

ven sporozoite rate, except for transients at the start

and conclusion of larval control. Thus the effects on

EIR tend to be linear, but this should not be ignored as

larval control may be one of the only ways to target out-

door feeding mosquitoes.

In order to achieve local elimination of malaria in

areas with high rates of outdoor feeding by the local

vector populations, some form of control of outdoor

mosquitoes may be necessary. Available options can be

costly and logistically difficult, and studies of their

effects can place constraints on required target efficacy,

duration, and frequency of such efforts. In the model,

space spraying increases the mortality for all adult mos-

quitoes, regardless of the stage in the feeding cycle. The

artificial daily mortality probability is calculated as 1-exp

(-killrate*∆t), so that a killrate of 1.0 will tend to kill

approximately 63 percent of adult vectors. As seen in

Figure 8, even one day of spraying with a high killrate

can produce a large several week drop in EIR as it takes

time for the newly emerging mosquitoes to become

infected and infectious. Longer duration efforts, such as

repeated spraying with a given knockdown of adult vec-

tors each cycle, increase the daily mortality and reduce

the number of adult vectors, reshape the age structure

and reduce the sporozoite rate and achieve a strong

multiplicative decrease on the EIR. Such maintained

repetitive space spraying with non-residual insecticides

may be logistically difficult, but it could provide leverage

on the outdoor feeding population if other options fall

through. Simulations such as these can estimate the

effects on vector populations for a given input efficacy,

duration, and frequency of application, providing inputs

to cost-effectiveness analyses.

Conclusions

The present model creates a flexible framework for

exploring the effects of combined vector control inter-

ventions on vector population dynamics and disease

transmission. Campaigns with IRS and ITN are studied

and success of elimination is seen to depend on cover-

age and efficacy as expected, but also on mosquito beha-

viour. As An. arabiensis outdoor feeding increases,

interventions which target indoor feeding become less

effective. Decreasing anthropophily from unity at high

coverage decreases the rate of killing mosquitoes during

sporogony, initially reducing elimination success, but

this returns to the expected relationship of less anthro-

pophily increasing elimination success as anthropophily

continues to decline to low levels. Climate and weather

data with high spatial resolution can help predict spatial

and temporal patterns of vector dynamics and assist the

rational planning of regional campaigns, especially when

included combined with a population transmission

model [16,17,19].

Further work will exhibit the effect of vector migration

and seasonality on interventions such as locally-applied

larvicides. Understanding the role and scale of migration

is important for estimating effect of adult vector inter-

ventions [61,67] and larval control interventions
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[9,59,63,64]. The model supports spatially-distributed

simulations, and future work will explore the effects of

human and vector migration on spatial transmission.

Each individual in the simulation has a relative biting

rate, which allows study of heterogeneous biting as has

been done [37], and link to studies of attractiveness of

humans to mosquitoes versus level of malaria infection

[68]. Improvements will be made to the density-depen-

dence effects of larval dynamics and models for habitat

calculations will be improved. Other future work will

model the response of vector populations to applied

pressure, such as the lower anthropophily of An. gam-

biae ss in The Gambia after extended bed net pressure

[32]. Changes in behavior or development of insecticide

resistance require careful consideration to ensure suc-

cess of a designed Eradication campaign. The effects of

such changes can be seen in the above-presented results,

and the present model has the flexibility to incorporate

dynamic changes. The modular structure of the model

and the implementation of the life and feeding cycles

Figure 8 Larval control and space spraying. Larval control and space spraying introduced to the baseline simulations from Figure 5, with

larval habitat multipliers set to 3.0. a, c, e) Larval control on the left reduces adult vector populations and EIR, but does not affect sporozoite rate

at these high EIRs as the age structure of the vector population is unaffected. b, d, f) Adult mortality affects all three measures, as it reduces the

number of adult vectors, and dramatically changes the age structure so that fewer mosquitoes are old enough to have sporozoites. This creates

a compounded effect on EIR.
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also make it simple to add new potential interventions

to the model. Other species are easy to add provided

that an applicable habitat model has been developed.

Future work can couple this detailed vector transmission

model to a more detailed model of human disease and

immunity.

Campaigns must address the ecology and behaviour of

local mosquito populations in order to ensure that suffi-

cient resources with broad enough effects for all relevant

components of the local mosquito populations are intro-

duced. A one-size-fits-all campaign is not optimal, being

wasteful in some circumstances and insufficient in

others; local tailoring and design are important. Model-

ling can be used to estimate the risk of disease transmis-

sion given reintroduction to areas that had achieved

local elimination before their neighbours [6]. Modelling

at this level of detail also serves to identify basic data

gaps such as local vector ecology and behaviour that

must be answered to reduce uncertainty of campaign

success. Numerical studies can reveal to which para-

meters the results of interest are most sensitive, and

such parameters which are also poorly constrained by

data or are highly geographically-variable can then be

highlighted as important data gaps. Modelling studies

can also explore the extent to which more through and

extensive campaigns can overwhelm data uncertainties

and achieve more robust success.

Additional material

Additional file 1: Detailed equations for A malaria transmission-

directed model of mosquito life cycle and ecology. The detailed

calculations of vector feeding outcomes for feeds on a single individual

and on the full local human population are provided.
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