
A manifold learning approach for Integrated

Computational Materials Engineering

E. Lopez1, D. Gonzalez2, J.V. Aguado1, E.

Abisset-Chavanne1, F. Lebel3, R. Upadhyay3,

E. Cueto2, C. Binetruy1 F. Chinesta1,∗

Abstract Image-based simulation is becoming an appealing technique to homogenize

properties of real microstructures of heterogeneous materials. However fast computa-

tion techniques are needed to take decisions in a limited time-scale. Techniques based

on standard computational homogenization are seriously compromised by the real-time

constraint. The combination of model reduction techniques and high performance com-

puting contribute to alleviate such a constraint but the amount of computation remains

excessive in many cases. In this paper we consider an alternative route that makes use

of techniques traditionally considered for machine learning purposes in order to extract

the manifold in which data and fields can be interpolated accurately and in real-time

and with minimum amount of online computation. Locallly Linear Embedding – LLE

- is considered in this work for the real-time thermal homogenization of heterogeneous

microstructures.
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1 Introduction

Image-based simulation is an appealing technique to homogenize properties of real

microstructures of heterogeneous materials such as composite materials. Macroscale

homogenized properties constitute useful information to adapt manufacturing parame-

ters to the actual microstructure of the material to be processed. This method is known

as adaptive manufacturing and is acknowledged as a practical way to reduce defects in

parts. However fast computation techniques are needed to take decisions in a limited

time-scale.

Moreover, the possibility of analyzing one part in real time reduces significantly the

uncertainty and consequently allows to make better predictions, limiting the necessity

of quantifying and propagating uncertainty all along the process.

When proceeding with heterogeneous materials consisting of disordered inclusions

(fibers) into a matrix (polymer) the final thermal or mechanical homogenized properties

strongly depend on the fraction of inclusions, their shape and their spatial distribution.

When all of them vary significantly within the part, simulations at the macroscopic

scale must extract homogenized material properties locally by performing efficient mi-

croscopic calculations at different representative volumes.

This procedure implies the necessity of solving complex numerical models in real-

time. While such calculations can be envisaged by using nowadays powerful compu-

tational capabilities, the objective here is to deploy such capabilities in the produc-

tion plant, where accurate solutions are needed in real-time and by using computing

devices as cheap as possible. There have been a number of model order reduction at-

tempts in this direction, see among many others [9,15,13,8,1] and references therein.

However, none of them seem to have accomplished the challenge of real-time analysis

and decision-making because of the multiscale nature of the problem to be solved as

discussed below.

In this paper we consider a linear, homogeneous and isotropic material occupying

the domain Ω ∈ R
2 (the extension to 3D is straightforward) containing a series of

circular inclusions composed of a different linear, homogeneous and isotropic material,

in which a linear thermal problem is defined. It consists of determining the temperature

field T (X, t), with X ∈ Ω, at each time t ∈ (0, T ], fulfilling heat conduction equation

ρC
∂T (X, t)

∂t
= ∇ · (K(X)∇T (X, t)) = 0, t ∈ (0, T ], X ∈ Ω, (1)

with appropriate initial and boundary conditions. In Eq. (1) K(X) refers to the con-

ductivity tensor at position X, ρ is the material density and C the specific heat.

The description of heterogenous materials, when this heterogeneity involves the

fine scale, needs a resolution, high enough for capturing both the distribution of the

material constituents (heterogeneity) and its effects on the temperature field. However,

this high-resolution description requires too many degrees of freedom even for nowadays

computational capabilities.

One possibility for circumventing this issue consists of separating the scales (when-

ever possible) and associating to each point X ∈ Ω a representative volume at the

finest scale ω(X), where the homogenized conductivity K(X) is calculated.
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If the material is assumed to be composed of inclusions immersed into a matrix,

both having a negligible evolution of their conductivities with temperature, then the

resulting thermal model can be assumed linear. However, if the matrix is undergoing

thermochemical or thermophyiscal transformations, the dependence of the conductiv-

ity on the temperature cannot be ignored anymore, and the resulting thermal model

becomes nonlinear.

In the linear case, the calculation of the homogenized conductivity tensor K(X) can

be performed as soon as the spacial distribution and thermal properties of constituents

(matrix and inclusions) are known, as detailed in A, requiring the solution of two (three

in the 3D case) boundary value problems – BVP – in ω(X) at each characteristic

microscopic representative volume Xi, i = 1, · · · ,M . This homogenization procedure

was addressed using model reduction techniques [9,45,26,18,23,27]

Efficient solutions of the thermal problem (1) can be accomplished by considering

any of the available model order reduction technique based on the Proper Orthogonal

Decomposition – POD – [6,32,36,37,38,5,7,16,43], Proper Generalized Decomposition

– PGD – [2,3,10,11,12,22,24,25] or Reduced Bases – RB – [28,29,30,35], that allow

real time simulations with the possibility of integrating them in Dynamic Data Driven

Application Systems – DDDAS – . When the microstructure is perfectly defined ho-

mogenization can be performed a priori and off-line. However, when the microstructure

is only available on-the-fly the situation is radically different because homogenization

must be performed in real-time for the microstructure just acquired, and as just men-

tioned and detailed in A, the calculation of the associated conductivity requires the

solution of two (or three) BVP. The main issue in those solutions is that as the in-

clusion distribution differs from one microstructure to other, the coefficients matrix

associated with the discrete thermal problem, can change substantially, implying its

assemblage and its solution for each new acquired microstructure. In [27] this issue was

deeply addressed and different approaches for alleviate the computational cost related

to these calculations proposed, in both the linear and nonlinear case. However all those

strategies were based in combining model reduction techniques with optimized data

and algebraic manipulation.

In this paper we consider a radically different route. POD, that is equivalent to

PCA – Principal Components Analysis - can be viewed as an information extractor

from a data set that attempts to find a linear subspace of lower dimensionality than

the original space. If the data has more complicated structures which cannot be well

represented in a linear subspace, standard PCA will not be very helpful. Fortunately,

kernel PCA allows us to generalize standard PCA to nonlinear dimensionality reduction

[44,40,41]. Locally Linear Embedding – LLE – [34] results from a particular choice of

the kernel within the kPCA framework [46].

Our main objective in this work is to analyze the possibility of using these kind

of strategies widely employed for machine learning purposes, for performing suitable

interpolations on the data manifold from the last constructed from available offline

information, and like this infer in real-time and with a minimum amount of calculation

homogenized properties in heterogeneous microstructures.

In the next section we revisit LLE for data reconstruction based on the offline ex-

traction of the data manifold in which data, fields and PGD-based parametric solutions

can be safely interpolated. In section 3 different numerical solutions will be described

and discussed, proving the potentiality of the proposed approach.
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2 Robust data reconstructors

It is well known that microstructures do not allow simple reduced descriptions. Imagine

a domain containing a single inclusion. The system can be described by means of the

phase field or the inclusion characteristic function (that takes a unit value at points

located inside the inclusion vanishing outside). Imagine the same domain but now

with the single inclusion located in a different region (with empty intersection with

the region occupied by the one considered in the first system). This last situation can

be described again by using the characteristic function related to the inclusion. Third,

and finally, we consider the same domain containing again a single inclusion but in a

different location that in both previous cases (the regions occupied by the inclusion

in the three cases have null intersection). It is clear that the characteristic function

related to the third inclusion cannot be written, in general, as a linear combination of

the functions associated to the first two inclusions.

When instead of studying the microstructure itself we consider a field (e.g. the

temperature field) the situation is similar. The different fields associated with different

microstructures show some similarity but it is difficult to define an interpolated field

in a new microstructure from the known fields and microstructures. In fact the main

concern is how quantifying similarities or resemblances, and how to take profit of them.

In [27] we tried to extract significant information by considering different mi-

crostructures, solving the thermal models involved in computational homogenization

in each one of them, and then applying a POD on these calculated solutions. When

the number of microstructures is large enough there is only one significative mode

that, as expected, corresponds to the Hill’s mode (affine temperature). The remaining

modes have all similar significance, making impossible the definition of a reduced basis

accurate enough for expressing the solution of a new thermal problem defined in a

different microstructure. For this reason in [27] more than using a reduced basis for

solving the thermal problems involved in the new microstructures we simply improved

the algebraic strategies for speeding-up the solution of those models in the new mi-

crostructures. In the nonlinear case the difficulty was twofold, because one must add

to the previous one the one related to the nonlinear behavior, both making impossible

the solution under the real time constraint.

In this paper we consider and analyze an alternative route based on the use of

the Localy Linear Embedding – LLE – technique [34], a member of the large family

of the so-called machine learning techniques. This technique has been widely used for

performing proper data reconstruction, ensuring that the interpolated solution lives in

the manifold defined by the solutions from which it is reconstructed.

We are describing the procedure directly in the problem we are interested in. The

idea is that from some amount of calculation performed offline on a series of mi-

crostructures, we would like, for a new microstructure, to infer online its homogenized

conductivity without solving any thermal problem in it, under the real-time constraint.

The procedure consists of two steps: the offline analysis of many samples followed by

an online data reconstruction, both described in the sequel.

2.1 Offline construction of the data manifold

First we assume the existence of M microstructures Mm, m = 1, . . . ,M , defined in the

RVE ω. In what follows and without loss of generality we consider 2D microstructures
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and temperature fields. Moreover, and again without loss of generality, we assume the

existence of two phases, the circular inclusions and the continuous phase, occupying the

domains ωm
f and ωm

p respectively, with ωm
f ∪ ωm

p = ω, m = 1, . . . ,M . A regular mesh

is associated to each RVE consisting in N nodes (N = N2
n, with Nn the number of

nodes along the x and y directions). The coordinates of each node are xi, i = 1, . . . , N

(xT
i = (xi, yi)).

For each microstructure Mm we define the phase field χ(x;Mm):

χ(x;Mm) =

{

1 if x ∈ ωm
f

0 if x ∈ ωm
p

(2)

The microstructures can be represented in a discrete way from vectors χm, whose

i-th component writes χm
i = χ(xi;Mm). Vectors χm are defined in R

N , i.e. the

dimension coincides with the number of nodes considered in the discrete microscopic

description.

Thus each vector χm defines a point in a space of dimension N , and then, the

set of microstructures, represents a set of M points in R
N . The question that arises

is: Do all these points belong to a certain low-dimensional manifold embedded in the

high-dimensional space R
N? Imagine that despite the impressive space dimension N ,

the M points belong to a curve, a surface or a hyper-surface of dimension d ≪ N . When

N = 3 a simple observation suffices for checking if these points are located on a curve

(one-dimensional manifold) or on a surface (two-dimensional manifold). However, when

dealing with spaces of thousands of dimensions simple visual observation is unsuitable.

Instead, appropriate techniques are needed to extract the underlying manifold

(when it exists) when proceeding in extremely multidimensional spaces. There is a

variety of techniques for accomplishing this task. The interested reader can refer to

[42,34,33,44,4]. In this work we focus on the LLE – Locally Linear Embedding – tech-

nology [34]. It proceeds as follows.

– Each point χm, m = 1, . . . ,M is linearly reconstructed from its K-nearest neigh-

bors. In principle K should be greater that the expected dimension d of the un-

derlying manifold and the points should be close enough to ensure the validity of

the linear approximation. In general, a large-enough number of neighbors K and

a large-enough sampling M ensures a satisfactory reconstruction as proved later.

For each point χm we can write the locally linear data reconstruction as:

χ
m =

∑

i∈Sm

Wmiχ
i
, (3)

where Wmi are the unknown weights and Sm the set of the K-nearest neighbors of

χm.

As the same weights appears in different locally linear reconstructions, the best

compromise is searched by looking for the weights, all them grouped in vector W,

that minimize the functional

F(W) =

M
∑

m=1

∥

∥

∥

∥

∥

χ
m −

M
∑

i=1

Wmiχ
i

∥

∥

∥

∥

∥

2

(4)

where here Wmi is zero if χi does not belong to the set of K-nearest neighbors of

χm.

The minimization of F(W) allows to determine all the weights involved in all the

locally linear data reconstruction.
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– We suppose now that each linear patch around χm, ∀m, is mapped into a lower

dimensional embedding space of dimension d, d ≪ N . Because of the linear mapping

of each patch, weights remain unchanged. The problem becomes the determination

of the coordinates of each point χm when it is mapped into the low dimensional

space, ξm ∈ R
d.

For this purpose a new functional G is introduced, that depends on the searched

coordinates ξ1, . . . , ξM :

G(ξ1, . . . , ξM ) =

M
∑

m=1

∥

∥

∥

∥

∥

ξ
m −

M
∑

i=1

Wmiξ
i

∥

∥

∥

∥

∥

2

, (5)

where now the weights are known and the reduced coordinates ξm are unknown.

The minimization of functional G results in a M × M eigenvalue problem whose

d-bottom non-zero eigenvalues define the set of orthogonal coordinates in which

the manifold is mapped.

Thus, considering a new point ξ in the reduced space Rd after identifying its neigh-

bors set S(ξ) and calculating the locally linear approximation weights, we can come

back to R
N and reconstruct the phase field χ from its neighbors χi, i ∈ S(ξ). However

the reconstructed microstructure χ is no longer binary because it involves interpola-

tion of binary vectors. Thus, reconstructed microstructures show an amount of spurious

smoothing.

The reconstruction could be improved by substituting the phase field function by a

more regular function able to identify the phase distribution with the same accuracy but

from a continuous description. The simplest choice consists of using a level-set function

φ(x), whose zero level coincides with the inclusion-matrix interfaces and its value in any

other point x is simply the distance to the nearest interface. We proved in our numerical

experiments that instead of using the phase field, when a level set-based description

is employed, microstructures can be interpolated with better accuracy. However, if the

objective is not to reconstruct geometrical data but smoother fields, a phase-field based

description could be accurate enough.

2.2 Temperature field reconstruction

As previously discussed and detailed in A the homogenization process involves two

thermal problems defined in ω(X) to obtain the temperature fields Θ1(x) and Θ2(x),

associated with two particular choices of the boundary conditions, from which the

homogenized thermal conductivity K(X) is defined. Suppose that both thermal prob-

lems have been solved offline for each microstructure Mm, m = 1, . . . ,M . Now, from

Θ1
m(x) and Θ2

m(x), m = 1, . . . ,M we can calculate the localization tensor for each

microstructure and then the resulting homogenized thermal conductivity Km.

The new concern is: for a new microstructure M is it possible to infer, without fur-

ther thermal calculations, the homogenized conductivity tensor? Obviously as soon as

the associated temperature fields Θ1(x;M) and Θ2(x;M) are avalaible, as accurately

as possible, the homogenized thermal conductivity KM can be calculated.

First, we must prove that the new microstructure belongs to the manifold defined

by the M microstructures previously analyzed. For that purpose it suffices to determine

χ and its reduced image ξ and check if ξ belongs to the d-dimensional manifold. If it
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is the case, as previously explained, we can reconstruct ξ from its nearest neighbors

in the set S(ξ) from a local and linear approximation. The reconstruction involves

the weights Wξi, i ∈ S(ξ). It is supposed here that the temperature field related to

the new microstructure Θ1(x;M) and Θ2(x;M) can be linearly interpolated from the

temperature fields Θ1
i (x) and Θ2

i (x), with i ∈ S(ξ) by using the weights Wξi.

2.3 Checking the accuracy

The following test is proposed to check the accuracy of the whole procedure. We

compare the discrete temperature fields known at each microstructure Θ1
m and Θ2

m,

m = 1, . . . ,M , with the ones linearly reconstructed from its neighbors by using the

mapping weights Wmi. For that purpose we define the errors E1(M) and E2(M)

E1(M) =







1

M

M
∑

m=1

∥

∥

∥

∥

∥

∥

Θ
1
m −

∑

i∈Sm

WmiΘ
1
i

∥

∥

∥

∥

∥

∥

2






1

2

(6)

and

E2(M) =







1

M

M
∑

m=1

∥

∥

∥

∥

∥

∥

Θ
2
m −

∑

i∈Sm

WmiΘ
2
i

∥

∥

∥

∥

∥

∥

2






1

2

(7)

with the total error E = E1 + E2.

If the error is low enough then it can be stressed that as soon as ξ falls inside

the convex hull of ξm, m = 1, . . . ,M , the locally linear data reconstruction can be

considered accurate enough.

2.4 Addressing nonlinearities

As described in [27] when addressing nonlinear models, linear homogenization must be

carried out by freezing the thermal conductivity in each phase in ω(X) to the macro-

scopic temperature existing at the position X to which the RVE is attached ω(X). To

avoid the solution of the numerous thermal problems that the nonlinearity involves

until reaching convergence, authors proposed in [26,27] the calculation of the para-

metric solutions Θ1(x, T (X)) and Θ2(x, T (X)) where T (X) refers to the macroscopic

temperature existing at point X where the RVE ω(X) is located. This parametric so-

lution was performed within the PGD framework using the rationale described in [11].

The resulting strategy consists of solving both temperature fields for any macroscopic

temperature within a certain predefined interval I.

As soon as both parametric solutions are known, the homogenized conductivity

can be calculated in real time for a given macroscopic temperature T (X). Thus, all

the difficulties related to the nonlinearity can be efficiently circumvented, however a

major issue remains. Both parametric solutions cannot be computed in real-time for

any possible microstructure.

Following the rationale described in the previous sections we could compute 2×M

parametric solutions related to the M microstructures: Θ1
m(x, T ) and Θ2

m(x, T ), m =

1, . . . ,M . Given a new microstructure M, expressed form χ, and after checking it
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belongs to the samples manifold by calculating its image ξ. Then, weights Wξi with

respect to its K-nearest neighbors in the set S(ξ) are calculated and from them the

parametric solution is reconstructed (locally and linearly) according to

Θ
1(x, T ;M) =

∑

i∈S(ξ)

WξiΘ
1
i (x, T ), (8)

and

Θ
2(x, T ;M) =

∑

i∈S(ξ)

WξiΘ
2
i (x, T ), (9)

that define an appropriate interpolation of the parametric solution on the manifold.

This procedure was successfully employed in [17] for interpolating parametric solutions

in nonlinear elastic problems.

3 Numerical results

In the numerical tests we consider first M = 30 microstructures consisting of 100

circular inclusions randomly distributed in ω. The inclusions volume fraction being r =
|ωf |
|ωp|

≈ 0.5. The temperature fields Θ1
m(x) and Θ2

m(x) were calculated by discretizing

the thermal problems using a regular finite element mesh consisting of N = 104 nodes.

The M samples were described by the phase field vectors χm, all of them defined

in R
N . Then the weights involved in the linear data reconstruction were calculated

as well as the mapping to the reduced space. The dimension of the manifold where

the different microstructures χm were mapped results in d = 2. Figure 1 depicts the

resulting points ξm ∈ R
3, m = 1, . . . ,M , from which one can realize that the dimension

of the manifold is d = 2 since it corresponds to a plane. Fig. 2 represents these points

on the plane. In order to check that by considering more microstructures the manifold

is better filled M = 100 microstructures are now considered. Fig. 3 depicts the resulting

reduced points in R
3 and on the plane that constitutes the manifold.

Now, one of these points is randomly chosen, for instance the one surrounded by a

red square in Figure 4. Fig. 5 shows the selected microstructure. As this point is related

to one of the microstructures that were analyzed, the reference temperature field Θ1(x)

depicted in Figure 6 is actually known. The temperature at this microstructure is lin-

early interpolated from the K-nearest neighbors by considering the weights associated

to the microstructure mapping

Θ̃
1(x) =

∑

i∈S(ξ)

WξiΘ
1
i (x). (10)

Fig. 7 shows the K-nearest microstructures (in our case we considered K = 9). A very

good match between both solutions is found: ‖Θ̃1(x)−Θ1(x)‖ = 0.0033.

The same procedure was repeated many times in order to evaluate if the resulting

error varies significantly when considering the different points on the manifold. Fig.

8 shows the errors (defined as previously) when reconstructing the temperature fields

at indicated positions with respect to the reference thermal solutions. As it can be

noticed the error does not evolve significantly even if for M = 30 microstructures the

distribution of samples is rather heterogeneous.
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Fig. 1 Two views of points ξm in R
3

Finally we consider a new microstructure different to all the previously analyzed. As

expected, its reduced coordinates ξ belong to the previously reconstructed manifold,

being its coordinates ξT = (−1.14,−0.82,−1). This safety check, to verify that the

new microstructure belongs to the manifold making possible further calculations, in

particular the temperature fields interpolation, was carried out in about 0.3 seconds

in a standard laptop using Matlab. The interpolation itself was performed in about 6

milliseconds. Both thermal problems were then solved in order to evaluate the accuracy

of the interpolated fields, and the errors were again quite small, of around 10−3.

4 Conclusions

The proposed method employs manifold learning techniques for a near-optimal charac-

terization of the microstructure composed of circular inclusions randomly distributed
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Fig. 3 Two views of points ξm in R
3 (left) and on the plane (right) when considering M = 100

microstructures
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Fig. 4 Selected microstructure were the temperature field is being reconstructed
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Fig. 5 Microstructures ξm on the two-dimensional manifold

Fig. 6 Temperature reference solution for the selected microstructure

in an homogeneous matrix. We have demonstrated that the employ of locally linear

embedding techniques allows for a very efficient embedding of the microstructures in a

way in which it is possible to properly interpolate between carefully selected ”reference

microstructures”. It is thus avoided a costly and detailed analysis of every possible

microstructure found by imaging techniques.
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Fig. 7 K-nearest microstructures (K = 9) from which the temperature field related to mi-
crostructure depicted in Fig. 5 is reconstructed

This method proves to be reasonably efficient and to render accurate enough results

with minimal computational cost. In fact, the application of LLE techniques to costly

2D or 3D images has proven to run in a few seconds, much less than the usual cost of

a full, non-linear, finite element simulation.
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23. P. Ladevèze, A. Nouy, On a multiscale computational strategy with time and space ho-
mogenization for structural mechanics, Computer Methods In Applied Mechanics and
Engineering, 192/28-30, 3061-3087, 2003.

24. P. Ladevèze, D. Néron, P. Gosselet, On a mixed and multiscale domain decomposition
method, Computer Methods in Applied Mechanics and Engineering, 96, 1526-1540, 2007.
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A On computational homogenization

In this section the simplest procedure related to computational homogenization is revisited.
Due to the microscopic heterogeneity, the macroscopic thermal modeling needs a homogenized
thermal conductivity which depends on the microscopic details. To compute this homogenized
thermal conductivity an appropriate RVE is considered at position X ∈ Ω, ω(X) [20,?,?] in
which the microstructure is perfectly defined at this scale.

In the linear case the local microscopic conductivity k(x) is known at each point x in the
microscopic domain ω(X).

We can define the macroscopic temperature gradient at position X, G(X), from:

G(X) = 〈g〉 =
1

|ω(X)|

∫

ω(X)
g(x) dx (11)

where the temperature gradient writes g(x) = ∇T (x).
We also assume the existence of a localization tensor L(x,X) such that

g(x) = L(x,X) ·G(X) (12)

The microscopic heat flux q writes according to Fourier’s law

q(x) = −k(x) · g(x) (13)

and its macroscopic counterpart Q(X) reads:

Q(X) = 〈q(x)〉 = −〈k(x) · g(x)〉 = −〈k(x) · L(x,X)〉 ·G(X) (14)

from which the homogenized thermal conductivity can be defined from

K(X) = 〈k(x) · L(x,X)〉 (15)

Since k(x) is perfectly known everywhere in the representative volume element ω(X), the
definition of the homogenized thermal conductivity tensor only requires the computation of
the localization tensor L(x,X). Several approaches are proposed in the literature to define this
tensor, according to the choice of boundary conditions. The objective here is not to discuss this
choice. The interested reader can find some details in [39,19,20,14]. For the sake of simplicity,
we use essential boundary conditions on ∂ω(X) corresponding to the assumption of uniform
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Fig. 9 Homogenization procedure of linear heterogeneous models.

temperature gradient on the RVE ω(X). We consider the general 3D case that involves the
solution of the three boundary-value problems related to the steady state heat transfer model
in the microscopic domain ω(X) for three different boundary conditions on ∂ω(X):

{

∇ ·
(

k(x) · ∇Θ1(x)
)

= 0
Θ1(x ∈ ∂ω(X)) = x

, (16)

{

∇ ·
(

k(x) · ∇Θ2(x)
)

= 0
Θ2(x ∈ ∂ω(X)) = y

, (17)

and
{

∇ ·
(

k(x) · ∇Θ3(x)
)

= 0
Θ3(x ∈ ∂ω(X)) = z

(18)

It is easy to prove that these three solutions verify







G1 = 〈∇Θ1(x)〉 = (1, 0, 0)T

G2 = 〈∇Θ2(x)〉 = (0, 1, 0)T

G3 = 〈∇Θ3(x)〉 = (0, 0, 1)T
(19)

where (·)T denotes the transpose. Thus, the localization tensor results finally:

L(x,X) =
(

∇Θ1(x) ∇Θ2(x) ∇Θ3(x)
)

(20)

The resulting non-concurrent homogenization procedure is illustrated in Fig. 9. As soon
as tensor L(x,X) is known at each position x, the constitutive law relating the macroscopic
temperature gradient and the macroscopic heat flux becomes fully defined.


