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A MAP-Based Algorithm for Destriping and
Inpainting of Remotely Sensed Images

Huanfeng Shen and Liangpei Zhang, Member, IEEE

Abstract—Remotely sensed images often suffer from the com-
mon problems of stripe noise and random dead pixels. The
techniques to recover a good image from the contaminated one
are called image destriping (for stripes) and image inpainting
(for dead pixels). This paper presents a maximum a posteriori
(MAP)-based algorithm for both destriping and inpainting prob-
lems. The main advantage of this algorithm is that it can constrain
the solution space according to a priori knowledge during the
destriping and inpainting processes. In the MAP framework, the
likelihood probability density function (PDF) is constructed based
on a linear image observation model, and a robust Huber–Markov
model is used as the prior PDF. The gradient descent optimization
method is employed to produce the desired image. The proposed
algorithm has been tested using moderate resolution imaging spec-
trometer images for destriping and China–Brazil Earth Resource
Satellite and QuickBird images for simulated inpainting. The
experiment results and quantitative analyses verify the efficacy of
this algorithm.

Index Terms—Destriping, inpainting, maximum a posteriori
(MAP), remotely sensed image.

I. INTRODUCTION

IN A LARGE number of spaceborne and airborne multide-

tector spectrometer images, the so-called bad pixels com-

monly exist. Bad pixels are pixels that either do not respond

electrically or have a behavior that is statistically different

from surrounding pixels. The causes of the bad pixels include

nonresponse of detector, relative gain and/or offset variations

of detectors, calibration errors, and so on. Generally, bad pixels

can be classified into warm and dead pixels. Warm pixels

are those pixels which are, to some extent, brighter or darker

than the healthy pixels. Dead pixels are those pixels whose

measurement does not have any correlation with the true scene

that is being measured [1]. Since linear charge-coupled devices

are commonly employed, the bad pixels are often linearly

distributed in the image in strips. Furthermore, the existence
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of randomly distributed dead pixels is also possible. These

severely degrade the quality of the imagery. The correction

of image stripes is commonly called image destriping. The

recovery of the dead pixels sometimes goes by the name of

dead pixel replacement. In this paper, however, another more

attractive name is used, i.e., image inpainting, which has been

widely used in the field of digital image processing [2]–[4].

The simplest destriping technique is to process the image

data with a low-pass filter in the frequency domain using the

discrete Fourier transform. This method has the advantage of

being usable on georectified images, but it often does not

remove all stripes and leads to significant blurring within the

image. Some researchers remove the stripes using wavelet

analysis, which takes advantage of the scaling and directional

properties to detect and eliminate striping patterns [5], [6].

However, the blurring problem also exists in this type of method

[7]. To overcome the disadvantage of the conventional filtering-

based methods, Chen et al. [8] proposed a method to distinguish

the striping-induced frequency components using the power

spectrum, and then, the stripes are removed using a power

finite-impulse response filter.

Another destriping approach examines the distribution of

digital numbers (DNs) for each sensor and adjusts this distribu-

tion to some reference distribution [7], [9]. Obviously, this ap-

proach assumes similarity of the data. Algazi and Ford [10] use

the equalization method for destriping National Oceanic and

Atmospheric Administration (NOAA)-3 and NOAA-4 satellite

data. Corsini et al. [11] remove the stripes in MOS-B data

by estimating the equalization curve on homogeneous targets.

Gadallah et al. [9] use a moment matching method to re-

move the stripes in Landsat thematic mapper (TM) remote

sensing images. Liu et al. [12] eliminate the horizontal and

vertical striping patterns in enhanced TM imageodesy images

by semiautomatic fast Fourier transform selective and adaptive

filtering procedures. Horn and Woodham [13] and Wegener [14]

discussed histogram matching for destriping problems. More

recently, Rakwatin et al. [7] combined histogram matching

with a facet filter for stripe noise reduction (NR) in moderate

resolution imaging spectrometer (MODIS) data.

For the inpainting problem, the nearest neighbor, average, or

median value replacement methods are commonly employed

[1]. The main disadvantage of these methods is that they are

employable only when the dead area is small (for example, the

width of the dead line is only one or two pixels). Even for dead

areas just a little larger, these methods will produce obvious

artifacts. Wang et al. [15] provide a method to retrieve Aqua

MODIS band 6 using other bands based on their relationships

in Terra MODIS.
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It is worth noting that both destriping and inpainting are ill-

posed inverse problems because it is necessary to the recovery

of a high-quality image from a degraded image. The problem

is typically that a multiplicity of possible solutions exists. The

accepted approach to tackling such problems is to constrain

the solution space according to a priori knowledge on the

form of the solution [16]. To our knowledge, few publications

include the prior (or regularization) constraint for destriping or

inpainting of remotely sensed images. In this paper, a maximum

a posteriori (MAP)-based algorithm is proposed for both de-

striping and inpainting problems. This algorithm can effectively

make use of the neighbor a priori constraint of the image and

produces the desired results.

The remainder of this paper is organized as follows. In

Section II, the image observation model and the MAP-based

recovery model are formulated. The optimization method is

presented in Section III. In Section IV, the parameter de-

termination methods are described. Experimental results are

provided in Section V, and Section VI concludes this paper.

II. PROBLEM FORMULATION

A. Image Observation Model

The first step to comprehensively analyze the destriping and

inpainting problems is to assume an image observation model

with which we can relate the desired image to the degraded

image. Letting zx,y and gx,y denote the input radiance to be

measured and the sensor output of location (x, y), respectively,

the relationship between zx,y and gx,y is of the form

gx,y = fx,y(zx,y) (1)

where fx,y is a linear or nonlinear function. For regular image

stripes, the function fx,y is commonly assumed to be only

dependent on the line index [17]. However, in order to include

random dead pixels in the model, it will still be denoted on

the pixel-by-pixel basis, as shown in (1). In this paper, it is

assumed that the degradation process can be linearly described

as in [9] and [17], but the existence of linear-assumption error

is permitted. Thus, (1) can be rewritten as

gx,y = Ax,yzx,y + Bx,y + nx,y (2)

where Ax,y and Bx,y are the relative gain and offset parameters,

respectively, and nx,y is the sum of linear-assumption error and

sensor noise. In matrix-vector form, the relation between the

observed image and the desired image can be expressed as

g = Az + B + n. (3)

In the model, g is the lexicographically ordered vector of the

observed image, z represents the desired image, A is a diagonal

matrix with diagonal elements being the gains of all pixels, B

is the offset vector, and n represents the noise vector.

B. Map-Based Recovery Model

In recent years, the MAP estimation method, which in-

herently includes a priori constraints in the form of prior

probability density functions (PDFs), has enjoyed increasing

popularity. It has been central to the solution of ill-posed inverse

problems in a wide range of applications [16], such as image

denoising [18], deblurring [19], super resolution reconstruction

[20], and others. Inspired by these, an attempt was made to use

the MAP framework for the destriping and inpainting problems

of remotely sensed images. The purpose is to realize the MAP

estimate of a destriped or inpainted image z, given the degraded

image g. It can be computed by

ẑ = arg max
z

p(z|g). (4)

Applying Bayes’ rule, (4) becomes

ẑ = arg max
z

p(g|z)p(z)

p(g)
. (5)

Since p(z|g) is independent of g, p(g) can be considered a

constant, and hence, (5) can be rewritten as

ẑ = arg max
z

p(g|z)p(z). (6)

Using the monotonic logarithm function, (6) can be ex-

pressed as

ẑ = arg max
z

{log p(g|z) + log p(z)} . (7)

It is seen that two PDFs need to be constructed. The first

is the likelihood density function, which provides a measure

of the conformance of the estimated image to the observed

image according to the image observation model. It is deter-

mined by the probability density of the noise vector in (3),

i.e., p(g|z) = p(n). The zero mean Gaussian independent and

identically distributed (IID) noise is often assumed. However,

the IID assumption is not appropriate for the destriping and

inpainting problems because different pixels may be degraded

to different degrees (they may be healthy, warm, or dead). With

this in mind, the noise is assumed not to be identical but still

independent. Under these assumptions, the probability density

is given by

p(g|z)=
1

M1

exp

{

−1

2
(g−Az−B)TK−1(g−Az−B)

}

(8)

where M1 is a constant, and K is the covariance matrix that

describes the noise. Since the noise is assumed to be indepen-

dent, K is a diagonal matrix containing the noise variances.

Rewriting (8) gives

p(g|z) =
1

M1

exp

{

−1

2
‖Q(g − Az − B)‖2

}

. (9)

In this expression, Q is also a diagonal matrix with

qii = (kii)
−1/2. (10)

Here, qii and kii are the diagonal elements of Q and K,

respectively.

The second density function in (7) is the image prior,

which imposes the spatial constraints on the image. This may
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Fig. 1. Huber function with different µ’s.

include such constraints such as positivity, smoothness, and

so on. Some conventional models such as Laplacian prior

and Gauss–Markov prior regularize the corresponding ill-posed

problem by forcing spatial smoothness on the image. For exam-

ple, the general form of the Markov prior is denoted by

p(z) =
1

M2

exp

(

− 1

2λ

∑

x,y

∑

c∈C

ρ (dc(zx,y))

)

. (11)

In this expression, M2 is a constant, c is a clique within the set

of all image cliques C, and the quantity dc(zx,y) is a spatial

activity measure to pixel zx,y , which is often formed by first-

or second-order differences. When ρ(·) is a quadratic potential

function as in (12), the corresponding prior is regarded as

Gauss–Markov

ρ(i) = i2. (12)

The criticism of the use of the Gauss–Markov prior (and the

Laplacian prior) is that some high-frequency energy in the

image tends to be removed. Therefore, an edge-preserving

Huber–Markov image prior is employed in this paper. This prior

can effectively preserve the edge and detailed information in the

image [21], [22]. The difference between the Huber–Markov

prior and the Gauss–Markov prior is only the potential function

ρ(·). The Huber function is defined as

ρ(i) =

{

i2, |i| ≤ µ
2µ|i| − µ2, |i| > µ

(13)

where µ is a threshold parameter separating the quadratic and

linear regions [21], as shown in Fig. 1. It is easy to see that the

Gauss–Markov prior can be regarded as a special case of the

Huber–Markov prior when µ approaches +∞.

As for the dc(zx,y), the following finite second-order differ-

ences are computed in four adjacent cliques for every location

(x, y) in the image:

d1
c(zx,y) = zx−1,y − 2zx,y + zx+1,y (14)

d2
c(zx,y) = zx,y−1 − 2zx,y + zx,y+1 (15)

d3
c(zx,y) =

1√
2
[zx−1,y−1 − 2zx,y + zx+1,y+1] (16)

d4
c(zx,y) =

1√
2
[zx−1,y+1 − 2zx,y + zx+1,y−1]. (17)

Substituting (9) and (11) in (7), after some manipulation, M1

and M2 can be safely dropped, and the maximization of this

posterior probability distribution is equivalent to the following

regularized minimum problem [20]:

ẑ = arg min [E(z)] (18)

where

E(z) = λ ‖Q(g − Az − B)‖2 +
∑

x,y

∑

c∈C

ρ (dc(zx,y)) (19)

is the cost function in which the first term ‖Q(g − Az − B)‖2

is the data fidelity term and
∑

x,y

∑

c∈C ρ(dc(zx,y)) acts as the

regularization term. The two competing terms correspond to the

energy of PDF (9) and prior function (11), respectively. These

are balanced by λ, which can now be called the regularization

parameter.

III. OPTIMIZATION METHOD

The gradient descent optimization method is used for the

minimum problem in (18). Differentiating E(z) with respect

to z gives

∇E(z) = −2λATQTQ(g − Az − B) + 2DTρ′(Dz) (20)

where Dz is a vector comprising all elements of clique set

C with D being the corresponding large sparse matrix. The

corresponding gradient element of the prior term is given by

ρ′(i) =

{

2i, |i| ≤ µ
2µ sign(i), |i| > µ.

(21)

Then, the desired image is solved by employing the successive

approximations iteration

ẑn+1 = ẑn − βn∇E(zn) (22)

where n is the iteration number, and βn is the step size. If βn is

too small, the convergence will be very slow. On the other hand,

if it is too large, the algorithm will be unstable or divergent.

By making a second-order Taylor series approximation to the

objective function at the current state ẑn, a quadratic step size

approximation becomes [21]

βn =
(∇E(zn))T ∇E(zn)

(∇E(zn))T (∇2E(zn))∇E(zn)
(23)

where ∇2E(z) is the Hessian matrix of the cost function E(z).
The iteration is terminated when

‖zn+1 − zn‖2/‖zn‖2 ≤ d (24)

where d is a predetermined coefficient.
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It is worth noting that (21) can be performed only on

bad pixels to retain the original brightness of healthy pixels.

However, if the original image was contaminated by random

noise, the proposed algorithm can also be used for denoising by

performing (22) on all pixels. Furthermore, it is not necessary

to construct the big matrices A and Q and their corresponding

transposes during the solution process. Since they are diagonal,

the matrix-vector multiplication operations can be substituted

by scalar multiplications pixel by pixel.

IV. PARAMETER DETERMINATION

In order to use the observation model (3), A (gains) and

B (biases) should first be determined. It is easily understood

that, for healthy pixels, the gain and bias should be one and

zero, respectively. For dead pixels in image inpainting, the

gain can be regarded as zero and the bias as the pixel value.

For the destriping problem, the parameters of pixels in a row

or a column are often assumed to be the same. Any linear

adjustment method can be used to obtain the gains and biases

of the stripe pixels. In this paper, the moment matching method

is used [9]. Given a reference row (column), the gain and bias

of the striped row (column) can be solved by

A =
σs

σr
(25)

B =µs − µr
σs

σr
(26)

where µs and σs are the mean and standard deviation, respec-

tively, of the striped row (column), and µr and σr are the

mean and standard deviation, respectively, of the reference row

(column). It can now be seen that the moment matching method

is a special case of the proposed algorithm with λ → ∞ and Q

being a unit matrix in (19).

The regularization parameter λ balances the data fidelity (the

first term) and the image regularization (the second term). Some

approaches [23], [24] have been developed to determine this

parameter automatically. However, the universal applicability

of these approaches for different types of images and regular-

ization problems has not been effectively validated. Therefore,

this parameter is determined heuristically in this paper.

It has been mentioned that matrix Q is diagonal, and its

elements represent the reciprocals of the noise standard devi-

ation in different pixel locations [see (10)]. For convenience,

the element values are scaled to the range of zero to one. The

difference caused by the scaling can be balanced by λ. Thus,

the function of Q can be regarded as the relative adjustment of

regularization at each pixel location. For all the healthy pixels,

the corresponding elements are set to the maximum value of

one. On the contrary, the elements should be zero for dead

pixels because they do not have any correlation with the true

scene. The elements of warm pixels are between zero and one,

and they correlate with the local activity level, the validity of

moment matching, and so on. Using the moment matching

method, the stripes in smooth regions are often not perfectly

removed. Therefore, small element values can be selected to

recover the information from the neighbors using the prior

constraint. On the other hand, larger element values should be

Fig. 2. MODIS subimages before destriping. (a) Aqua MODIS band 26.
(b) Aqua MODIS band 30. (c) Terra MODIS band 28. (d) Terra MODIS
band 30.

chosen for sharp regions in order to retain the high-frequency

information. In this paper, the standard deviation is used as

the activity measure, and the following equation determines the

diagonal elements in Q:

qii = ln

[

(e − 1)(std − min)

max−min
+ 1

]

. (27)

In this equation, std represents the standard deviation, max and

min are the std thresholds corresponding to the maximum value

of one and the minimum value of zero, respectively. It is noted

that the std value should be computed on a neighbor region that

does not contain any stripes or dead pixels.

V. EXPERIMENTS

A. Destriping Experiments

The proposed algorithm was tested for destriping on images

of the MODIS aboard the Terra and Aqua platforms. The

experimental results of bands 28 and 30 of Terra MODIS data

and bands 26 and 30 of Aqua MODIS data are presented in this

paper. The Aqua MODIS data used in this paper were acquired

on December 28, 2003, and the Terra MODIS data were ac-

quired on September 24, 2007. Sections of size 400 × 400 were

extracted from the original images as experimental data. These

subimages are shown in Fig. 2(a)–(d). For calculation and

display convenience, the original data are coded to an 8-B scale.

In order to show that the proposed algorithm is not very

sensitive to the parameter set, the same parameters were used

in the four series of destriping experiments, i.e., λ = 15, µ = 5,

min = 3, max = 255, and d = 1 × 10−6. The Butterworth

low-pass filtering, moment matching, and histogram matching
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Fig. 3. Destriped results of Aqua MODIS band 26. (a) Butterworth filtering.
(b) Moment matching. (c) Histogram matching. (d) Proposed algorithm.

Fig. 4. Destriped results of Aqua MODIS band 30. (a) Butterworth filtering.
(b) Moment matching. (c) Histogram matching. (d) Proposed algorithm.

destriping methods were also tested to make a comparative

analysis with the proposed algorithm. Experimental results of

the four test images are shown in Figs. 3–6. It can be seen

that Butterworth filtering does not remove all stripes in the

image and leads to significant blurring. Moment matching and

histogram matching can greatly improve the image quality,

but there are still considerable radiance fluctuations within the

Fig. 5. Destriped results of Terra MODIS band 28. (a) Butterworth filtering.
(b) Moment matching. (c) Histogram matching. (d) Proposed algorithm.

Fig. 6. Destriped results of Terra MODIS band 30. (a) Butterworth filtering.
(b) Moment matching. (c) Histogram matching. (d) Proposed algorithm.

resulting image. The proposed algorithm, however, provides a

much more robust destriping from the visual perspective.

Fig. 7 shows the mean cross-track profiles of the original

test images. The horizontal axis represents the line number,

and the vertical axis represents the mean DN of each line.

Due to the existence of stripes, there are rapid fluctuations at

constant frequency in the curves. Fig. 8 shows the profiles of

Authorized licensed use limited to: Wuhan University. Downloaded on November 23, 2009 at 22:43 from IEEE Xplore.  Restrictions apply. 
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Fig. 7. Mean cross-track profiles of MODIS images before destriping. (a) Aqua MODIS band 26. (b) Aqua MODIS band 30. (c) Terra MODIS band 28.
(d) Terra MODIS band 30.

Fig. 8. Mean cross-track profiles of the destriped MODIS images using the proposed algorithm. (a) Aqua MODIS band 26. (b) Aqua MODIS band 30. (c) Terra
MODIS band 28. (d) Terra MODIS band 30.

destriped images processed by the proposed algorithm. It can

be seen that the fluctuations are very much reduced. Figs. 9

and 10 show the Fourier transforms of the test images and

the destriped images of the proposed algorithm. The horizontal

axis represents the normalized frequency, and the vertical axis

represents the averaged power spectrum of all columns. For
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Fig. 9. Mean column power spectrum of the MODIS images before destriping. (a) Aqua MODIS band 26. (b) Aqua MODIS band 30. (c) Terra MODIS
band 28. (d) Terra MODIS band 30.

Fig. 10. Mean column power spectrum of the destriped MODIS images using the proposed algorithm. (a) Aqua MODIS band 26. (b) Aqua MODIS band 30.
(c) Terra MODIS band 28. (d) Terra MODIS band 30.

better visualization of NR, very high spectral magnitudes are

not plotted. Since the MODIS senor has ten detectors, the pulses

caused by (detector-to-detector) stripes are located at the fre-

quencies of 1/10, 2/10, 3/10, 4/10, and 5/10 cycles (see Fig. 9).

In Fig. 10, it is easily recognized that the value of the power

spectrum of the frequency components where the pulses exist

has been strongly reduced. Fig. 11 shows the power spectrum

of the destriped results of Fig. 11(b) using the Butterworth

Authorized licensed use limited to: Wuhan University. Downloaded on November 23, 2009 at 22:43 from IEEE Xplore.  Restrictions apply. 
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Fig. 11. Mean column power spectrum of the destriped images (Aqua MODIS band 30) using (a) Butterworth filtering, (b) moment matching, and (c) histogram
matching.

TABLE I
ICVs AND MRDs OF THE ORIGINAL AND DESTRIPED MODIS DATA

filtering, moment matching, and histogram matching. Fig. 11(a)

shows that Butterworth filtering loses most high-frequency

components during the destriping. Fig. 11(b) and (c) shows that

moment matching and histogram matching have the ability to

retain frequency components but cannot effectively remove the

frequency pulse caused by stripes.

To give a quantitative measure of these images, three quality

indexes are employed. These are the inverse coefficient of

variation (ICV), mean relative deviation (MRD), and ratio of

NR. The ICV used in [7], [25], and [26] is defined as

ICV =
Ra

Rsd

(28)

where Ra is the signal response of a homogeneous image region

and is calculated by averaging the pixels within a window of a

given size, and Rsd refers to the noise components estimated

by calculating the standard deviation of the pixel [7]. It is easily

understood that the ICV index evaluates the level of stripe

noise and so would be calculated for homogeneous striped

regions. On the contrary, the MRD index is used to evaluate

the performance of the algorithms to retain the information of

image regions that are not affected by stripes. It is calculated by

MRD =
1

MN

MN
∑

i=1

|ẑi − gi|
gi

× 100% (29)

where gi is the pixel value of the original image, ẑi is the

pixel value of the destriped image, and MN is the total number

of pixels. In the experiments, two 10 × 10 homogeneous

regions were selected for the ICV evaluation and one sharp

region with about 100 pixels for the MRD evaluation. The

ICV and MRD evaluation results are shown in Table I. Since
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TABLE II
NR RATIOS OF THE ORIGINAL AND DESTRIPED MODIS DATA

the moment matching, histogram matching, and the proposed

algorithm do not change the brightness of healthy pixels, the

corresponding MRDs are all 0.0%. The Butterworth low-pass

filtering, however, corresponds to poor MRDs, which is the

root of image blurring. From the ICV perspective, the proposed

algorithm greatly outperforms other destriping algorithms.

The NR method [7], [8] is used to evaluate the destriped

image in the frequency domain. It is defined by

NR =
N0

N1

(30)

where N0 is the power of the frequency components produced

by stripes in the original image and N1 for the destriped image.

N0 and N1 can be calculated by

Ni =
∑

℘

Pi(D) (31)

where Pi(D) is the averaged power spectrum down the columns

of an image with D being the distance from the origin in Fourier

space, and ℘ is the stripe noise region of the spectrum. The

NR evaluation results are shown in Table II. The proposed

algorithm always obtains the highest NR value, except in the

case of Terra band 30. Since the stripe noise is relatively

small, Butterworth filtering obtains higher NR values than the

proposed algorithm. However, it pays the price of blurring the

image [see Fig. 6(a)].

B. Inpainting Experiments

In the inpainting experiments, the first test of the algorithm

was for the recovery of vertical dead lines using a China–Brazil

Earth Resource Satellite (CBERS) image. Fig. 12(a) shows the

original subimage. In general, the wider is the dead region,

the more difficult is the inpainting. This experiment tested two

simulated images, which are contaminated by dead lines of

five- and eight-pixel widths. They are shown in Fig. 12(b)–(e),

respectively. To make a comparative analysis, the average

algorithm was implemented using the “Replace Bad Lines”

function in ENVI 4.4 and the results compared with those of

the proposed algorithm. Since ENVI 4.4 can only deal with

horizontal dead lines, the image was first rotated through 90◦,

and then, an inverse rotation was performed on the resulting

image. Fig. 12(c) and (d) are the inpainted results of Fig. 12(b)

using the average and proposed algorithms, respectively. The

inpainted results of Fig. 12(e) are shown in Fig. 12(f) (average

algorithm) and Fig. 12(g) (the proposed algorithm). In the

results using the average algorithm, strong artifacts appear

Fig. 12. Inpainting experimental results for the recovery of vertical dead lines.
(a) Original image. (b) Simulated image contaminated by dead line of five-pixel
width. (c) Inpainted image of (b) using the average algorithm in ENVI 4.4.
(d) Inpainted image of (b) using the proposed algorithm. (e) Simulated image
contaminated by dead line of eight-pixel width. (f) Inpainted image of (e)
using the average algorithm in ENVI 4.4. (g) Inpainted image of (e) using the
proposed algorithm.

because the dead region is relatively wide. The proposed al-

gorithm, however, is more robust for the increase in width

of the dead region. Although the lost information cannot be

completely recovered, the visual quality of the results is more

convincing. For the convenience of visual judgment, a series

of detailed regions cropped from Fig. 12(a)–(g) are shown in

Fig. 13(a)–(g). The following peak signal-to-noise ratio (PSNR)

was employed as a quantitative measure:

PSNR = 10 log10

(

2552 ∗ MN

‖ẑ − z‖2

)

(32)

where MN is the total number of pixels in the image, and ẑ and

z represent the inpainted and original images, respectively. The

PSNRs of Fig. 12(b)–(g) are shown in Table III.

Next, the proposed algorithm was tested for another type of

inpainting problem in which dead pixels are randomly distrib-

uted. Fig. 14(a) shows an original QuickBird subimage whose

dimensions are 256 × 256. Fig. 14(b) shows the contaminated
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Fig. 13. (a)–(g) Detailed regions cropped from Fig. 12(a)–(g).

TABLE III
PSNR VALUES OF THE CONTAMINATED AND INPAINTED

CBERS DATA (IN DECIBELS)

Fig. 14. Inpainting experiment for the recovery of random dead pixels.
(a) Original image. (b) Image contaminated by 50% dead pixels. (c) Inpainted
image of (b) using the proposed algorithm. (d) Image contaminated by 90%
dead pixels.

image in which the percentage of dead pixels is 50%. The

inpainted image using the proposed algorithm is shown in

Fig. 14(c). It is seen that most of the lost information has been

recovered. In the experiment, the percentage of dead pixels

was further increased to 90%. The corresponding contaminated

image is shown in Fig. 14(d), in which no objects can really

be seen. Fig. 14(e) shows the inpainted result of Fig. 14(d).

Although the image quality is not very good because of the high

percentage of dead pixels in this case, it is sufficient for the

ground objects to be distinguished. The PSNR measurements

are shown in Table IV. This experiment validates the strong

performance of the proposed algorithm. Although such random

distribution of dead pixels is not very familiar to many remote

sensing users, it is often met in remote sensing preprocessing

before data distribution.

VI. CONCLUSION

In order to constrain the solution space according to

a priori knowledge, this paper presents a MAP-based algorithm

for both destriping and inpainting problems. The proposed

TABLE IV
PSNR VALUES OF THE CONTAMINATED AND INPAINTED

QUICKBIRD DATA (IN DECIBELS)

algorithm was first tested on Terra and Aqua MODIS images

for destriping. The image quality indexes of ICV, MRD, and

ratio of NR were employed to evaluate the resulting images.

Experimental results confirmed that the proposed algorithm

outperforms the conventional destriping methods of low-pass

filtering, moment matching, and histogram matching in terms

of both the quantitative measurements and visual evaluation.

However, it should be mentioned that the proposed algorithm

is not easily applied to georectified data for destriping. The

inpainting experiments simulated dead pixels on CBERS and

QuickBird images. Experimental results indicate that the pro-

posed algorithm is more robust than the conventional average

method for wider dead regions. The proposed algorithm also

has good performance when dealing with a very high percent-

age of random dead pixels. Nevertheless, there may still be

room for the improvement of our proposed method. Using some

unsymmetrical regularization models in which the knowledge

that striping artifacts only exist in one direction is considered

may further improve the destriping results.
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