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Abstract 17 

Annotating all cis-regulatory modules (CRMs) and transcription factor (TF) binding sites(TFBSs) in 18 

genomes remains challenging. We tackled the task by integrating putative TFBSs motifs found in 19 

available 6,092 datasets covering 77.47% of the human genome. This approach enabled us to partition 20 

the covered genome regions into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). 21 

Intriguingly, like known enhancers, the predicted 1,404,973 CRMCs are under strong evolutionary 22 

constraints, suggesting that they might be cis-regulator. In contrast, the non-CRMCs are largely 23 

selectively neutral, suggesting that they might not be cis-regulatory. Our method substantially 24 

outperforms three state-of-the-art methods (GeneHancers, EnhancerAtlas and ENCODE phase 3) for 25 

recalling VISTA enhancers and ClinVar variants, as well as by measurements of evolutionary constraints. 26 

We estimated that the human genome might encode about 1.46 million CRMs and 67 million TFBSs, 27 

comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. 28 

Therefore, the cis-regulatory genome appears to be more prevalent than originally thought. 29 

 30 

Introduction 31 

cis-regulatory sequences, also known as cis-regulatory modules (CRMs) (i.e., promoters, enhancers, 32 

silencers and insulators), are made of clusters of short DNA sequences that are recognized and bound by 33 

specific transcription factors (TFs)[1]. CRMs display different functional states in different cell types in 34 

multicellular eukaryotes during development and physiological homeostasis, and are responsible for 35 

specific transcriptomes of cell types[2].  A growing body of evidence indicates that CRMs are at least as 36 

important as coding sequences (CDSs) to account for inter-species divergence[3, 4]  and intra-species 37 

diversity[5], in complex traits. Recent genome-wide association studies (GWAS) found that most 38 

complex trait-associated single nucleotide polymorphisms (SNPs) do not reside in CDSs, but rather lie in 39 

non-coding sequences (NCSs)[6, 7], and often overlap or are in linkage disequilibrium (LD) with TF 40 
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binding sites (TFBSs) in CRMs[8]. It has been shown that complex trait-associated variants systematically 41 

disrupt TFBSs of TFs related to the traits [8], and that variation in TFBSs affects DNA binding, chromatin 42 

modification, transcription[9-11], and susceptibility to complex diseases[12, 13] including cancer[14-17]. 43 

In principle, variation in a CRM may result in changes in the affinity and interactions between TFs and 44 

their binding sites, leading to alterations in histone modifications and target gene expressions in 45 

relevant cells[18, 19]. These alterations in molecular phenotypes can lead to changes in cellular and 46 

organ-related phenotypes among individuals of a species[20, 21]. However, it has been difficult to link 47 

non-coding variants to complex traits[18, 22], largely because of our lack of a good understanding of all 48 

CRMs, their constituent TFBSs and target genes in genomes[23].  49 

 50 

Fortunately, the recent development of ChIP-seq techniques for locating histone marks[24] and 51 

TF bindings in genomes in specific cell/tissue types[25] has led to the generation of enormous amount of 52 

data by large consortia such as ENCODE[26], Roadmap Epigenomics[27] and Genotype-Tissue Expression 53 

(GTEx)[28], as well as individual labs worldwide[29]. These increasing amounts of ChIP-seq data for 54 

relevant histone marks and various TFs in a wide spectrum of cell/tissue types provide an 55 

unprecedented opportunity to predict a map of CRMs and constituent TFBSs in the human genome. 56 

Many computational methods have been developed to explore these data individually or jointly[30].  For 57 

instance, as the large number of binding-peaks in a typical TF ChIP-seq dataset dwarfs earlier motif-58 

finding tools (e.g., MEME[31] and BioProspector[32]) to find TFBSs of the ChIP-ed TF, new tools (e.g., 59 

DREME[33], MEME-ChIP[34], XXmotif [35] and Homer[36]) have been developed.  However, some of 60 

these tools (e.g. MEME-ChIP) were designed to find primary motifs of the ChIP-ed TF in short sequences 61 

(~200bp) around the binding-peak summits in a small number of selected binding peaks in a dataset due 62 

to their slow speed. Some faster tools (e.g. Homer, DREME, and XXmotif) are based on the 63 

discriminative motif-finding schema[37] by finding overrepresented k-mers in a ChIP-seq dataset, but 64 
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they often fail to identify TFBSs with subtle degeneracy. As TFBSs form CRMs for combinatory regulation 65 

in higher eukaryotes [1, 38], tools such as SpaMo [39], CPModule [40] and CCAT [41] have been 66 

developed to identify multiple closely located motifs as CRMs in a single ChIP-seq dataset. However, 67 

these tools cannot predict CRMs containing novel TFBSs, because they all depend on a library of known 68 

motifs (e.g., TRANSFAC [42] or JASPAR [43]) to scan for cooperative TFBSs in binding peaks. Due 69 

probably to the difficulty to find TFBS motifs in a mammalian TF ChIP-seq dataset that may contain tens 70 

of thousands of binding peaks,  few efforts have been made to explore entire sets of an increasing 71 

number of TF ChIP-seq datasets to simultaneously predict CRMs and constituent TFBSs [44-47]. 72 

 73 

On the other hand, as a single histone mark is not a reliable CRM predictor, a great deal of 74 

efforts have been made to predict CRMs based on multiple histone marks and chromatin accessibility 75 

(CA) data from the same cell/tissue types using various machine-learning methods, including hidden 76 

Markov models[48], dynamic Bayesian networks[49], time-delay neural networks[50], random 77 

forest[51], and support vector machines (SVMs)[52]. Many enhancer databases have also been created 78 

either by combining results of multiple such methods[53-55], or by identifying overlapping regions of CA 79 

and histone mark tracks in the same cell/tissue types[56-60]. In particular, the ENCODE phase 3 80 

consortium[26] recently identified 926,535 candidate cis-regulatory elements (cCREs) based on overlaps 81 

between millions of DNase I hypersensitivity sites (DHSs)[61] and transposase accessible sites (TASs)[62], 82 

active promoter histone mark H3K4me3[63] peaks, active enhancer mark H3K27ac[64] peaks, and 83 

insulator mark CTCT[65] peaks in a large number of  cell/tissue types. Although CRMs predicted by these 84 

methods are often cell/tissue type-specific, their applications are limited to cell/tissue types for which 85 

the required datasets are available[26, 48, 49, 66]. The resolution of these methods is also low[48, 49, 86 

66] and often lacks TFBSs information[26, 48, 49, 66], particularly for novel motifs,  although some 87 

predictions provide TFBSs locations by finding matches to known motifs[54, 55, 59].  Moreover, results 88 
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of these methods are often inconsistent[67-70], e.g., even the best-performing tools (DEEP and CSI-89 

ANN) have only 49.8% and 45.2%, respectively, of their predicted CRMs overlap with the DHSs in Hela 90 

cells[52]; and only 26% of predicted ENCODE enhancers in K562 cells can be experimentally verified[67]. 91 

The low accuracy of these methods might be due to the fact that CA and histone marks alone are not 92 

reliable predictors of active CRMs [52, 67, 68, 70].  93 

 94 

It has been shown that TF binding data are more reliable for predicting  CRMs than CA and 95 

histone mark data, particularly, when multiple closely located  binding sites for key TFs were used [52, 96 

67, 68, 70]. Moreover, although primary binding sites of a ChIP-ed TF tended to be enriched around the 97 

summits of binding peaks, TFBSs of cooperators of the ChIP-ed TFs tend to appear at the two ends of 98 

binding peaks[71, 72]. With this recognition, instead of predicting cell/tissue type specific CRMs using CA 99 

and histone marks data,  we proposed to first predict a largely cell-type agnostic or static map of CRMs 100 

and constituent TFBBs in the genome by integrating all available TF ChIP-seq datasets for different TFs in 101 

various cell/tissue types[46, 47], just as has been done for identifying all genes encoded in the genome 102 

using gene expression data from all cell/tissue types[73]. We also proposed to appropriately extend 103 

short binding peaks to the typical length of enhancers, so that more TFBSs for cooperators of the ChIP-104 

ed TF could be included [71, 72], and thus, full-length CRMs could be identified[46, 47]. Once a map of 105 

CRMs and constituent TFBSs is available, the specificity of CRMs in any cell/tissue type can be 106 

determined using one or few epigenetic mark datasets collected in the cell/tissue type[26], because 107 

when anchored by correctly predicted CRMs, the accuracy of epigenetic marks for predicting active 108 

CRMs could be largely improved [68]. Although our earlier implementation of this strategy, dePCRM, 109 

resulted in promising results using even insufficient datasets available then[46, 47], we were limited by 110 

three technical hurdles. First, although existing motif-finders such as DREME used in dePCRM worked 111 

well for relatively small ChIP-seq datasets from organisms with smaller genomes such as the fly [47], 112 
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they are unable to work on very large entire datasets from mammalian cells/tissues, so we had to split a 113 

large dataset into smaller ones for motif finding in the entire dataset[46], which may compromise the 114 

accuracy of motif finding and complicate subsequent data integration. Second, although the distances 115 

and interactions between TFBSs in a CRM are critical, both were not considered in our earlier scoring 116 

functions [46, 47], potentially limiting the accuracy of predicted CRMs. Third, the earlier “branch-and-117 

bound” approach to integrate motifs found in different datasets is not efficient enough to handle a 118 

much larger number of motifs found in an ever increasing number of large ChIP-seq datasets from 119 

human cells/tissues[46, 47]. To overcome these hurdles, we developed dePCRM2 based on an ultrafast, 120 

accurate motif-finder ProSampler[72], a novel effective combinatory motif pattern discovery method, 121 

and scoring functions that model essentials of both the enhanceosome and billboard models of 122 

CRMs[74-76]. Using available 6,092 ChIP-seq datasets covering 77.47% of the human genome after 123 

extending the binding peaks, dePCRM2 was able to partition the covered genome regions into a CRM 124 

candidate (CRMC) set and a non-CRMC set, and predict 201 unique TF binding motif families in the 125 

CRMCs. Both evolutionary and independent experimental data indicate that at least the vast majority of 126 

the predicted 1,404,973 CRMCs might be functional, while at least the vast majority of the predicted 127 

non-CRMCs might not be functional. 128 

 129 

Results 130 

The dePCRM2 pipeline 131 

TFs in higher eukaryotes tend to cooperatively bind to their TFBSs in CRMs[1]. Different CRMs of the 132 

same gene are structurally similar and closely located[77]. For example, in the locus control region 133 

(LCR) of the hemoglobin genes in the mouse genome, multiple enhancers with similar combinations of 134 

TFBSs regulate the expression of different hemoglobin genes in different tissues and developmental 135 

stages [78]. Moreover, functionally related genes are often regulated by the same sets of TFs in different 136 
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cell types during development and in maintaining physiological homeostasis[1]. Due to the clustering 137 

nature of TFBSs of cooperative TFs in a CRM, if we extend the called short binding peaks of a TF ChIP-seq 138 

dataset from the two ends and reach the typical size of a CRM (500~3,000bp)[79], the extended peaks 139 

would have a great chance to contain TFBSs of cooperative TFs[46, 47, 72]. For instance, if two different 140 

TFs cooperatively regulate the same regulons in several cell types, then at least some of the extended 141 

peaks of datasets for the two TFs from these cell types should contain the TFBSs of both TFs, and even 142 

have some overlaps if  the CRMs are reused in different cell types. Therefore, if we have a sufficient 143 

number of ChIP-seq datasets for different TFs from the same and different cell types, we are likely to 144 

include datasets for some cooperative TFs, and their TFBSs may co-occur in some extended peaks. Based 145 

on these observations, we designed dePCRM[46, 47] and dePCRM2 to predict CRMs and constituent 146 

TFBSs by identifying overrepresented co-occurring patterns of motifs found by a motif-finder in a large 147 

number of TF ChIP-seq datasets.  dePCRM2 overcomes the aforementioned shortcomings of dePCRM as 148 

follows. First, using an ultrafast and accurate motif-finder ProSampler[72], we can find significant motifs 149 

in available ChIP-seq datasets of any size (Figures 1A and 1B) without the need to split large datasets 150 

into small ones[46]. Second, after identifying highly co-occurring motifs pairs (CPs) in the extended 151 

binding peaks in each dataset (Figure 1C), we cluster highly similar motifs in the CPs and find a unique 152 

motif (UM) in each resulting cluster (Figure 1D). Third, we model distances and interactions among 153 

cognate TFs of the binding sites in a CRM by constructing interaction networks of the UMs based on the 154 

distance between the binding sites and the extent to which biding sites in the UMs cooccur to improve 155 

prediction accuracy (Figure 1E). Fourth, we identify as CRMCs closely located clusters of binding sites of 156 

the UMs along the genome (Figure 1F), thereby partitioning genome regions covered by the extended 157 

binding peaks into a CRMCs set and a non-CRMCs set. Fifth, we evaluate each CRMC using a novel score 158 

that considers not only the number of TFBSs in a CRM, but also the distances between the TFBSs, their 159 

quality scores and all pair-wise cooccurring frequencies between their motifs (Figure 1G). Lastly, we  160 
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compute a p-value for each 𝑆𝐶𝑅𝑀 score, so that CRMs and constituent TFBSs can be predicted at 161 

different significant levels using different 𝑆𝐶𝑅𝑀  score or p-value cutoffs. Clearly, as the number of UMs 162 

is a small constant number constrained by the number of TF families encoded in the genome, the 163 

downstream computation based on the set of UMs runs in a constant time, thus dePCRM2 is highly 164 

scalable. The source code of dePCRM2 is available at http://github.com/zhengchangsulab/pcrm2 165 

 166 

Figure 1. Schematic of the dePCRM2 pipeline. A. Extend each binding peak in each dataset to its two ends to reach 167 
a preset length, i.e., 1,000bp. B. Find motifs in each dataset using ProSampler. C. Find CPs in each dataset. For 168 
clarity, only the indicated CPs are shown, while those formed between motifs in pairs P1 and P2 in dataset d1, and 169 
so on, are omitted. D. Construct the motif similarity graph, cluster similar motifs and find UMs in the resulting 170 
motif clusters. Each node in the graph represents a motif, while weights on the edges are omitted for clarity. 171 
Clusters are connected by edges of the same color and line type. E. Construct UM interaction networks. Each node 172 
in the networks represents a UM, while weights on the edges are omitted for clarity. F. Project binding sites in the 173 
UMs back to the genome and link adjacent TFBSs along the genome, thereby identifying CRMCs and non-CRMCs. 174 
G. Evaluate each CRMC by computing its 𝑆𝐶𝑅𝑀  score and the associated p-value. 175 
 176 
 177 
Unique motifs recall most known TF motifs families and have distinct patterns of interactions. 178 

ProSampler identified at least one motif in 5,991 (98.70%) of the 6092 ChIP-seq datasets 179 
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(Supplementary Note) but failed to find any motifs in the remaining 101 (1.66%) datasets that all contain 180 

less than 310 binding peaks (Table S1), indicating that they are likely of low quality. As shown in Figure 181 

2A, the number of motifs found in a dataset generally increases with the increase in the number of 182 

binding peaks in the dataset, but enters a saturation phase and stabilizes around 250 motifs when the 183 

number of binding peaks is beyond 40,000.  In total, ProSampler identified 856,793 motifs in the 5,991 184 

datasets. dePCRM2 found co-occurring motif pairs (CPs) in each dataset (Figure 1C) by computing a 185 

cooccurring score Sc for each pair of motifs in the dataset (formula 2). As shown in Figure 2B, Sc scores 186 

show a trimodal distribution. dePCRM2 selected as CPs the motif pairs that accounted for the mode 187 

with the highest Sc scores, and discarded those that accounted for the other two modes with lower Sc 188 

scores, because these low-scoring motif pairs were likely to co-occur by chance. In total, dePCRM2 189 

identified 4,455,838 CPs containing 226,355 (26.4%) motifs from 5,578 (93.11%) of the 5,991 datasets. 190 

Therefore, we further filtered out 413 (6.89%) of the 5,991 datasets because each had a low Sc score 191 

compared with other datasets. Clearly, more and less biased datasets are needed to rescue their use in 192 

the future for more complete predictions. Clustering the 226,355 motifs in the CPs resulted in 245 193 

clusters consisting of 2~72,849 motifs, most of which form a complete similarity graph or clique, 194 

indicating that member motifs in a cluster are highly similar to each other (Figure S1A). dePCRM2 found 195 

a UM in 201 (82.04%) of the 245 clusters (Figure S1B and Table S1) but failed to do so in 44 clusters due 196 

to the low similarity between some member motifs (Figure S1A). Binding sites of the 201 UMs were 197 

found in 39.87~100% of the sequences in the corresponding clusters, and in only 1.49% of the clusters 198 

binding sites were not found in more than 50% of the sequences due to the low quality of member 199 

motifs (Figure S2). Thus, this step retained most of putative binding sites in most clusters. The UMs 200 

contain highly varying numbers of binding sites ranging from 64 to 13,672,868 with a mean of 905,288 201 

(Figure 2C and Table S1), reminiscent of highly varying number of binding peaks in the datasets 202 

(Supplementary Note). The lengths of the UMs range from 10 to 21bp with a mean of 11bp (Figure 2D), 203 
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which are in the range of the lengths of known TF binding motifs, although they are biased to 10bp due 204 

to the limitation of the motif-finder to find longer motifs. As expected, a UM is highly similar to its 205 

member motifs that are highly similar to each other (Figure S1A). For example, UM44 contains 250 206 

highly similar member motifs (Figure 2E). Of the 201 UMs, 117 (58.2%) match at least one of the 856 207 

annotated motifs in the HOCOMOCO [80] and JASPAR[81] databases, and 92 (78.63%) match at least 208 

two (Table S2), suggesting that most UMs might consist of motifs of different TFs of the same TF 209 

family/superfamily that recognize highly similar motifs, a well-known phenomenon[82, 83]. Thus, a UM 210 

might represent a motif family/superfamily for the cognate TF family/superfamily. For instance, UM44 211 

matches known motifs of nine TFs of the “ETS” family ETV4~7, ERG, ELF3, ELF5, ETS2 and FLI1, a known 212 

motif of NFAT5 of the “NFAT-related factor” family, and a known motif of ZNF41 of the “more than 3 213 

adjacent zinc finger factors” family (Figure 2F and Table S2). The high similarity of these motifs suggest 214 

that they might form a superfamily. The remaining 84 (43.28%) of the 201 UMs might be novel motifs 215 

recognized by unknown TFs (Figure S1B and Table S1). On the other hand,  64 (71.91%) of the 89 216 

annotated motif TF families match one of the 201 UMs (Table S3), thus, our predicted UMs include most 217 

of the known TF motif families.  218 

To model interactions between cognate TFs of the UMs, we computed an interaction score 219 𝑆𝐼𝑁𝑇𝐸𝑅 based on distances and cooccurrence levels between binding sites of two UMs (formula 3), which 220 

largely improves our earlier score (data not shown) that only considers cooccurring frequencies of 221 

binding sites in two motifs [46, 47]. As shown in Figure 2G, there are clear interaction patterns between 222 

putative cognate TFs of many UMs, many of which are supported by experimental evidence. For 223 

example, in a cluster formed by 10 UMs (Figure 2H), seven of them (UM126, UM146, UM79, UM223, 224 

UM170, UM103 and UM159) match known motifs of MESP1/ZEB1, TAL1::TCF3, ZNF740, 225 

MEIS1/TGIF1/MEIS2/MEIS3, TCF4/ZEB1/CTCFL/ZIC1/ZIC4/SNAI1, GLI2/GLI3 and KLF8, respectively. At 226 

least a few of them are known collaborators in transcriptional regulation. For example, GLI2 cooperates 227 
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with ZEB1 to repress the expression of CDH1 in human melanoma cells via directly binding to two close 228 

binding sites at the CDH1 promoter[84]; ZIC and GLI cooperatively regulate neural and skeletal 229 

development through physical interactions between their zinc finger domains [85]; and ZEB1 and TCF4 230 

reciprocally modulate their transcriptional activities to regulate the expression of WNT[86], to name a 231 

few. 232 

 233 

Figure 2. Prediction of UMs. A. Relationship between the number of predicted motifs in a dataset and the size of the 234 
dataset (number of binding peaks in the dataset). The datasets are sorted in ascending order of their sizes. B. 235 
Distribution of cooccurrence scores (Sc) of motif pairs found in a dataset. The dotted vertical line indicates the 236 
cutoff value (0.7) of Sc for predicting cooccurring pairs (CPs).  C. Number of putative binding sites in each of the 237 
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UMs sorted in ascending order. D. Distribution of the lengths of the UMs and known motifs in the HOCOMOCO 238 
and JASPAR databases. E. The logo and similarity graph of the 250 member motifs of UM44. In the graph, each 239 
node in blue represents a member motif, and two member motifs are connected by an edge in green if their similarity 240 
is greater than 0.8 (SPIC score).  Four examples of member motifs are shown in the right panel.  F. UM44 matches 241 
known motifs of nine TFs of the “ETS”, “NFAT-related factor”, and “more than 3 adjacent zinc finger factors” 242 
families.  G. Heatmap of the interaction networks of the 201 UMs, while names of the UMs are omitted for clarity. 243 
H.  A blowup view of the indicated cluster in G, formed by 10 UMs, of which UM126, UM146, UM79, UM223, 244 
UM170, UM103 and UM159 match known motifs of MESP1|ZEB1, TAL1::TCF3, ZNF740, 245 
MEIS1|TGIF1|MEIS2|MEIS3, TCF4|ZEB1|CTCFL|ZIC1|ZIC4|SNAI1, GLI2|GLI3 and KLF8, respectively. Some 246 
of these TFs are known collaborators in transcriptional regulation.   247 
 248 
 249 
An appropriate extension of original binding peaks greatly increases the power of datasets  250 

By concatenating closely located binding sites of the UMs along the genome, dePCRM2 partitioned the 251 

77.47% of the genome that are covered by the extended binding peaks (Supplementary Note) in two 252 

exclusive sets (Figure 1F ), i.e., the CRMC set containing 1,404,973 CRMCs with a total length of bp 253 

(56.84%) covering 44.03% of the genome, and the non-CRMC set containing 1,957,936 sequence 254 

segments with a total length of 1,032,664,424bp (43.16%) covering 33.44% of the genome. Interestingly, 255 

only 57.88% (776,999,862bp) of genome positions of the CRMCs overlap those of the original binding  256 

peaks. Hence, dePCRM2 only retained 61.40% of genome positions covered by the original peaks, and 257 

abandoned the remaining 38.60% of nucleotide position. These abandoned positions covered by 258 

originally called binding peaks might not enrich for TFBSs, which is in agreement with earlier findings 259 

about the noisy nature of TF ChIP-seq data [87-89]. On the other hand, the remaining 42.12% 260 

(565,448,583bp) genome positions of the CRMCs overlap those of the extended parts of the original 261 

peaks, indicating that TFBSs of cooperative TFs are indeed enriched in the extended parts as has been 262 

shown earlier[46, 47, 71, 72], and dePCRM2 is able  predict CRMs that are not covered by any binding 263 

peaks. Thus, by appropriately extending original binding peaks, we could greatly increase the power of 264 

datasets. Based on the overlap between a CRMC and original binding peaks in a cell/tissue type 265 

(Materials and Methods), dePCRM2 predicted functional states of the 57.88% of the CRMCs in at least 266 

one of the cell/tissue types from which binding peaks were called. However, dePCRM2 was not able to 267 

predict the functional states of the remaining 42.12% of the CRMCs that do not overlap any original 268 
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binding peaks in the datasets. The predicted CRMCs and constituent TFBSs are available at https://cci-269 

bioinfo.uncc.edu/ 270 

The CRMCs are unlikely predicted by chance  271 

To further evaluate the predicted CRMCs, we computed a 𝑆𝐶𝑅𝑀 score for each CRMC (formula 272 

4). As shown in Figure 3A, the distribution of the 𝑆𝐶𝑅𝑀 scores of the CRMCs is strongly right-skewed 273 

relative to that of the Null CRMCs (Materials and Methods), indicating that the CRMCs generally score 274 

much higher than the Null CRMCs, and thus are unlikely produced by chance. Based on the distribution 275 

of the 𝑆𝐶𝑅𝑀 scores of the Null CRMCs, dePCRM2 computed a p-value for each CRMC (Figure 3A). With 276 

the increase in the 𝑆𝐶𝑅𝑀 cutoff α (𝑆𝐶𝑅𝑀 ≥ α), the associated p-value cutoff drops rapidly, while both the 277 

number of predicted CRMs and the proportion of the genome covered by the predicted CRMs decrease 278 

slowly (Figure 3B), indicating that most CRMCs have low p-values. For instance, with α increasing from 279 

56 to 922, p-value drops precipitously from 0.05 to 1.00x10-6 (5x105 fold),  while the number of 280 

predicted CRMs decreases from 1,155,151 to 327,396 (3.53 fold), and the proportion of the genome 281 

covered by the predicted CRMs decreases from 43.47% to 27.82% (1.56 fold) (Figure 3B). Predicted 282 

CRMs contain from 20,835,542 (p-value ≤ 1x10-6) to 31,811,310 (p-value ≤ 0.05) non-overlapping 283 

putative TFBSs that consist of from 11.47% (p-value≤ 1x10-6) to 16.54% (p-value ≤ 0.05) of the genome 284 

(Figure 3C). In other words, dependent on p-value cutoffs (1x10-6 ~0.05), 38.05~41.23% of nucleotide 285 

positions of the predicted CRMs are made of putative TFBSs (Figure 3C), and most of predicted CRMs 286 

(93.99~95.46%) and constituent TFBSs (93.20~94.67%) are located in non-exonic sequences (NESs) 287 

(Figure 3C), comprising 26.66~42.47% and 10.94~16.03% of NESs, respectively (Figure 3D). Surprisingly, 288 

dependent on p-value cutoffs (1x10-6 ~0.05), the remaining 4.54~6.01% and 5.33~6.80%  of the 289 

predicted CRMs and constituent TFBSs, respectively, are in exonic sequences (ESs, including CDSs, 5’- 290 

and 3’-untranslated regions), respectively (Figure 3C), in agreement with an earlier report[90].  291 
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 292 

Figure 3.  Prediction of CRMs using different SCRM cutoffs. A. Distribution of SCRM scores of the CRMCs and Null 293 
CRMCs. The inset is a blowup view of the indicated region. The vertical dashed lines indicate the associated p-294 
values of the SCRM cutoffs mentioned in the main text. B. Number of the predicted CRMs, proportion of the genome 295 
predicted to be CRMs and the associated p-value as functions of the SCRM cutoff α. C. Percentage of the genome 296 
that are predicted to be CRMs and TFBSs in ESs and NESs using various SCRM cutoffs and associated p-values. 297 
D. Percentage of NESs that are predicted to be CRMs and TFBSs using various SCRM cutoffs and associated p-values. 298 
E. Distribution of the lengths of CRMs predicted using different SCRM cutoffs and associated p-values.   299 
 300 
 301 
The 𝑺𝑪𝑹𝑴 score captures the length feature of enhancers 302 
 303 
As shown in Figure 3E, the CRMCs with a mean length of 981bp are generally shorter than VISTA 304 

enhancers with a mean length of 2,049bp. Specifically,  621,842 (44.26%) of the 1,404,973 CRMCs are 305 

shorter than the shortest VISTA enhancer (428bp), suggesting that they might be short CRMs (such as 306 

promoters or short enhancers) or components of long CRMs. However, these shorter CRMCs (< 428bp) 307 

comprise only 7.42% of the total length of the CRMCs. The remaining 733,132 (55.74%) CRMCs  308 

comprising 92.58% of the total length of the CRMCs are longer than the shortest VISTA enhancer 309 

(428bp), thus most of them are likely full-length CRMs. Therefore, predicted CRMC positions in the 310 
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genome are mainly covered by full-length or longer CRMCs. As expected, with the increase in α 311 

(decrease in p-value cutoff), the distribution of the lengths of the predicted CRMs shifts to right and 312 

even surpass that for VISTA enhancers (Figure 3E), indicating shorter CRMCs can be effectively filtered 313 

out by a higher 𝑆𝐶𝑅𝑀 cutoff α (a smaller p-value). The remaining CRMCs might be different type of CRMs 314 

with different length features. For instance, at a rather stringent 𝑆𝐶𝑅𝑀cutoff α =676 (p=5X10-6), 976,345 315 

(69.49%) shorter CRMCs with a mean length of 387bp were filtered out (Figure 3E), the remaining 316 

428,628 (30.51%) CRMCs have similar length distribution (mean length of 2292bp) to that of VISTA 317 

enhancers (mean length of 2049bp) (Figure 3E), which are mainly involved in development-related 318 

functions and are generally longer than other types of enhancers [91].  However, it is worth noting that 319 

VISTA enhancers may not necessarily all be in their full-length forms, because even a portion of an 320 

enhancer could be still partially functional[1], and it is still technically difficult to validate very long 321 

enhancers in transgene animal models in a large scale. Therefore, it is not surprising that with even 322 

more stringent 𝑆𝐶𝑅𝑀 cutoffs, the predicted CRMs could be longer than VISTA enhancers (Figure 3C), and 323 

they are likely super-enhancers for cell differentiation of development[92].  Taken together, these 324 

results suggest that the 𝑆𝐶𝑅𝑀 score captures the length feature of enhancers. 325 

 326 

The CRMCs and non-CRMCs show dramatically distinct evolutionary behaviors 327 

To see how effectively dePCRM2 partitions the covered genome regions into the CRMC set and the non-328 

CRMC set, we compared their evolutionary behaviors with those of the entire set of VISTA enhancers 329 

using the GERP[93] and phyloP[94] scores of their nucleotide positions in the genome.  Both the GERP 330 

and the phyloP scores quantify conservation levels of genome positions based on nucleotide 331 

substitutions in alignments of multiple vertebrate genomes. The larger a positive GERP or phyloP score 332 

of a position, the more likely it is under negative/purifying selection; and a GERP or phyloP score around 333 

zero means that the position is selectively neutral or nearly so[93, 94]. However, a negative GERP or 334 
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phyloP score is cautiously related to positive selection[93, 94]. For convenience of discussion, we 335 

consider a position with a GERP or phyloP score within an interval centering on 0 [-𝛿,+ 𝛿] (𝛿 >0) to be 336 

selectively neutral or nearly so, and a position with a score greater than 𝛿 to be under negative 337 

selection. We define proportion of neutrality of a set of positions to be the size of the area under the 338 

density curve of the distribution of the scores of the positions within the window [-𝛿,+ 𝛿].  Because ESs 339 

evolve quite differently from NESs, we focused on the CRMCs and constituent TFBSs in NESs, and left 340 

those that overlap ESs in another analysis (Jing Chen, Pengyu Ni, Jun-tao Guo and Zhengchang Su). The 341 

choice of 𝛿 = 0.1, 0.2, 0.3, 0.4 ,0.5, 1 and 2 gave similar results (data not shown), so we choose 𝛿 =1 in 342 

the subsequent analyses. As shown in Figure 4A, GERP scores of VISTA enhancers show a trimodal 343 

distribution with a small peak around score -5, a blunt peak around score 0, a sharp peak around score 344 

3.5, and a small proportion of neutrality of 0.23, indicating that most nucleotide positions of VISTA 345 

enhancers are under strong evolutionary selection, particularly, negative selection. This result is 346 

consistent with the fact that VISTAT enhancers are mostly ultra-conserved[95], development-related 347 

enhancers[96, 97]. The 0.23 proportion of neutrality of the VISTA enhancer positions indicates that this 348 

proportion of positions might simply serve as non-functional spacers between adjacent TFBSs.  349 

Interestingly, there are 942 genome regions in the VISTA database, which failed to be validated as active 350 

enhancers in transgenic assays, and we found that they had similar GERP and phyloP score distributions 351 

as VISTA enhancers, although the former set is slightly less conserved than the latter set (Figure S3),  352 

suggesting that most of these “validated negative regions (VNRs) might actually have cis-regulatory 353 

functions under conditions that might have not be tested.  In contrast, the distribution of the GERP scores 354 

of the non-CRMCs (1,034,985,426 bp) in NESs displays a sharp peak around score 0, with low right and 355 

left shoulders, and a high proportion of neutrality of 0.71 (Figure 4A), suggesting that most positions of 356 

the non-CRMCs are selectively neutral or nearly so, and thus are likely to be nonfunctional. The 357 

remaining 0.29 portion of positions of the non-CRMCs seem to be under varying levels of selection 358 
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(Figure 4A), so they might have other functions than cis-regulation.  Intriguingly, the distribution of the 359 

GERP scores of the 1,292,356 CRMCs (1,298,719,954bp) in NESs has a blunt peak around score 0, with 360 

high right and left shoulders, and a small proportion of neutrality of 0.31 (Figure 4A). Thus, like VISTA 361 

enhancers, most positions of the CRMCs are also under strong evolutionary selections, and thus, are 362 

likely to be functional, while the small proportion (0.31) of neutrality indicates that this proportion of 363 

positions in the CRMCs might simply serve as non-functional spacers, instead of TFBSs. Notably, the 364 

distribution of GERP scores of the CRMCs lack obvious peaks around scores -5 and 3.5 (Figure 4A), 365 

therefore, the average selection strength on the CRMCs  is weaker than that on VISTA enhancers (but 366 

see the section “The higher the SCRM score of a CRMC, the stronger evolutionary constraint it is under” 367 

). Nonetheless, this is expected considering the ultra-conversation nature of the small set of 368 

development-related VASTA enhancers[95-97].  In any rate, the dramatic differences between the 369 

evolutionary behaviors  of the non-CRMCs and those of the CRMCs strongly suggests that dePCRM2 370 

largely partitions the covered genome regions into a cis-regulatory CRMC set and a non-cis-regulatory 371 

non-CRMC set. Similar results were obtained using the phyloP scores, although they display quite 372 

different distributions than the GERP scores (Figure S4A). 373 

 374 

To see why dePCRM2 abandoned the 38.60% nucleotide positions covered by the original 375 

binding peaks in predicting the CRMCs, we plotted the distribution of their conservation scores.  As 376 

shown in Figure 4A, these abandoned positions have a GERP score distribution almost identical to those 377 

in the non-CRMCs, indicating that, like the non-CRMCs, they are largely selectively neutral, and thus, 378 

unlikely to be cis-regulatory, strengthening our earlier argument that they might not contain TFBSs. 379 

Therefore, dePCRM2 is able to accurately distinguish cis-regulatory and non-cis-regulatory parts in both 380 

the original binding peaks and their extended parts. As shown in Supplementary Note, the 10 CRM 381 

function-related elements datasets (Tables S4~S8) that we collected for validating the predicted CRMCs 382 
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are strongly biased to the covered genome regions relative to the uncovered regions. To see why this is 383 

possible, we plotted the distributions of conservation scores of the positions of the covered and 384 

uncovered regions in NESs. Interestingly, the uncovered regions have a GERP score distribution and a 385 

proportion of neutrality (0.59) in between those of the covered regions (0.49) and those of the non-386 

CRMCs (0.71) (Figure 4A), indicating that the uncovered regions are more evolutionarily selected than 387 

the non-CRMCs as expected, but less evolutionary selected than the covered regions. This implies that 388 

the uncovered regions contain functional elements such as CRMs, but their density could be lower than 389 

that of the covered regions.  Assuming that the total length of CRMs in a region is proportional to the 390 

total length of evolutionarily constrained parts in the region, the proportion of uncovered regions that 391 

might be CRMs could be estimated to be (1-0.59)/(1-0.49)=80.04% of that in the covered regions. 392 

Therefore, it appears that existing studies are strongly biased to more evolutionary constrained regions 393 

due probably to their large effect sizes and more critical functions. Similar results were obtained using 394 

the phyloP scores (Figure S4A).  395 
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 396 

Figure 4. CRMCs and non-CRMCs in NESs show different evolutionary behaviors measured by GERP scores. 397 
A. Distributions of the GERP scores of nucleotide positions of VISTA enhancers, CRMCs, non-CRMCs, abandoned 398 
genome regions covered by original binding peaks, genome regions covered by extended binding peaks  and 399 
genome regions uncovered by extended binding peaks.  The area under the density curves in the score interval [-1, 400 
1] is defined as the proportion of neutrality of the sequences. B. Proportion of neutrality of CRMCs with a 401 
SCRM score in different intervals in comparison with that of the non-CRMCs (a). The inset shows the 402 
distributions of the GERP scores of the non-CRMCs and CRMCs with SCRM scores in the intervals indicted by color 403 
and letters.  C. Proportion of neutrality of CRMs predicted using different SCRM score cutoffs and associated p-404 
values in comparison with those of the non-CRMCs (a) and CRMCs (b).  The inset shows the 405 
distributions of the GERP scores of the non-CRMCs, CRMCs and the predicted CRMs using the 406 
SCRM score cutoffs and p-values indicated by color and letters. The dashed lines in B and C indicate the saturation 407 
levels. 408 
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The higher the SCRM score of a CRMC, the stronger evolutionary constraint it is under 409 

To see whether the 𝑆𝐶𝑅𝑀 score of a CRMC captures the strength of evolutionary selection that it is 410 

under, we plotted the distributions of the conservation scores of subsets of the CRMCs with a 𝑆𝐶𝑅𝑀 411 

score in different non-overlapping intervals. Remarkably, even the subset with 𝑆𝐶𝑅𝑀 scores in the lowest 412 

interval [0, 1) has a smaller proportion of neutrality (0.56) than the non-CRMCs (0.71) (Figure 4B), 413 

indicating that even these low-scoring CRMCs with short lengths (Figure 3E) are more likely to be under 414 

strong evolutionary constraints than the non-CRMCs, and thus might be more likely cis-regulatory. With 415 

the increase in the lower bound of  𝑆𝐶𝑅𝑀  intervals, the proportion of neutrality of the corresponding 416 

subsets of CRMCS drops rapidly, followed by a slow linear decrease around the interval [1000,1400) 417 

(Figure 4B). Therefore, the higher the 𝑆𝐶𝑅𝑀  score of a CRMC, the more likely it is under strong 418 

evolutionary constraint, suggesting that the 𝑆𝐶𝑅𝑀 score indeed captures the evolutionary behavior of a 419 

CRM as a functional element, in addition to its length feature (Figure 3E). The same conclusion can be 420 

drawn from the phyloP scores (Figure S4B).   421 

 422 

We next examined the relationship between the conservation scores of the predicted CRMs and 423 𝑆𝐶𝑅𝑀  score cutoffs α (or p-value cutoffs) used for their predictions. As shown in Figure 4C, even the 424 

CRMs predicted at a low α have a much smaller proportion of neutrality (e.g., 0.31 for the smallest α=0, 425 

i.e., the entire CRMC set) than the non-CRMCs (0.71), suggesting that most of the predicted CRMs might 426 

be authentic although some short ones may not be in full-length, while the non-CRMCs might contain 427 

few false negative CRMCs. With the increase in α (decrease in p-value cutoff), the proportion of 428 

neutrality of the predicted CRMs decreases but slowly, entering a saturation phase (Figure 4C). 429 

Interestingly, at very high 𝑆𝐶𝑅𝑀  score cutoffs, the predicted CRMs evolve like VISTA enhancers, with a 430 

trimodal GERP score distribution, and thus might be involved in development[98, 99]. For instance, at α= 431 

13,750, the distribution of GERP scores of the predicted CRMs displays a peak around score -5 and a 432 
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peak around score 3.5, with a small proportion of neutrality of 0.24 (Figure 4C) (it is 0.23 for VISTA 433 

enhancers, Figure 4A). Thus, the higher α (i.e., the smaller the p-value cutoff), the more likely the 434 

predicted CRMs are under strong evolutionary constraints. The infinitesimal decrease in the proportion 435 

of neutrality of predicted CRMs with the increase in 𝑆𝐶𝑅𝑀 cutoffs (Figure 4C) strongly suggests that the 436 

predicted CRMs, particularly those at a low p-value cutoff, are under similarly strong evolutionary 437 

constraints, close to the possibly highest saturation level to which ultra-conserved VISTA enhancers are 438 

subject.  Therefore, it is highly likely that at low p-value cutoffs, specificity of the predicted CRMs might 439 

approach the possibly highest level that the VISTA enhancers achieve.  However, without the availability 440 

of a gold standard negative CRM set in the genome[23], we could not explicitly calculate the specificity 441 

of the predicted CRMs at different p-value cutoffs.  Similar results are observed using the phyloP scores 442 

(Figure S4C). 443 

  444 
dePCRM2 achieves high sensitivity and likely high specificity for recalling functionally validated CRMs 445 

and non-coding SNPs  446 

To further evaluate the accuracy of dePCRM2, we calculated the sensitivity (recall rate or true positive 447 

rate (TPR)) of CRMs predicted at different 𝑆𝐶𝑅𝑀  cutoffs α and associated p-values for recalling a variety 448 

of CRM function-related elements located in the covered genome regions in the 10 experimentally 449 

determined datasets in various cell/tissue types (Tables S4~S8, Materials and Methods). Here, if a 450 

predicted CRM and an element overlap each other by at least 50% of the length of the shorter one, we 451 

say that the CRM recalls the element.  As shown in Figure 5A, with the increase in the p-value cutoff, the 452 

sensitivity for recalling the elements in all the 10 datasets increases rapidly and becomes saturated well 453 

before p-value increases to 0.05 (α ≥ 56). Figures S5A~S5J show examples of the predicted CRMs 454 

overlapping and recalling the elements in the 10 datasets. Particularly, at p-value cutoff 5x10-5 (α=412), 455 

the predicted 593,731 CRMs covering 36.63% of the genome (Figure 3C) recall 100% of VISTA 456 

enhancers[79] and 91.61% of ClinVar SNPs[79] (Figure 5A). The rapid saturation of sensitivity for 457 
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recalling these two types of validated functional elements at such a low p-value cutoff once again 458 

strongly suggests that dePCRM2 also achieves very high specificity, although we could not explicitly 459 

compute it for the aforementioned reason. On the other hand, even at the higher p-value cutoff 0.05 460 

(α=56), the predicted 1,155,151 CRMs covering 43.47% of the genome (Figure 3C) only achieve varying 461 

intermediate levels of sensitivity for recalling FANTOM5 promoters (FPs)(88.77%)[100], FANTOM5 462 

enhancers (FEs) (81.90%)[101], DHSs (74.68%)[61], TASs (84.32%)[29], H3K27ac (82.96%)[29], H3K4me1 463 

(76.77%)[29], H3K4me3 (86.96%)[29] and GWAS SNPs (64.50%)[102], although all are significantly higher 464 

than that (15%) of randomly selected sequences with matched lengths from the covered genome 465 

regions (Figure 5A).  466 

 467 

To find out the reasons for such varying sensitivity of dePCRM2 for recalling different types 468 

elements in the 10 datasets, we plotted the distribution of GERP scores of the recalled and uncalled 469 

elements in each dataset by our predicted CRMs at p-value <0.05.  Since we have already plotted the 470 

distribution of the entire set of VISTA enhancers (Figure 4A), to avoid redundancy, we instead plotted 471 

the distribution for the CRMs (VISTA-CRMs) that overlap and recall the 785 VISTA enhancers in the 472 

covered regions. As shown in Figure 5B, like the predicted CRMs, the recalled elements in all the 473 

datasets are under strong evolutionary selections (at p-value <0.05), thus are likely functional. However, 474 

VISTA-CRMs, recalled ClinVar SNPs and recalled FPs evolve more like VISTA enhancers with a trimodal 475 

GERP score distribution (Figure 4A), suggesting that they are under stronger evolution constraints than 476 

the other recalled element types. These results are not surprising, as we mentioned earlier VISTA 477 

enhancers are mostly ultra-conserved, development related enhancers[95-97], while  ClinVar SNPs were 478 

identified for their conserved critical functions[103],  and promoters are well-known to be more 479 

conserved than are enhancers[104]. In stark contrast, like the non-CRMCs, all unrecalled elements in the 480 

10 datasets are largely selectively neutral, and thus, are unlikely to be functional, with the exception 481 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.05.15.098988doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.098988


   
 

 23 

that the 10,350 (2.57%) unrecalled ClinVar SNPs display a trimodal distribution and there are no 482 

unrecalled VISTA enhancers (Figure 5B). Notably, proportions of neutrality of unrecalled PEs (0.59) and 483 

PFs(0.63) are smaller than that of the non-CRMCs (0.71) (Figure 5B), suggesting we might miss a small 484 

portion of authentic PEs and PFs (see below for false negative rate (FNR) estimations of our CRMs). 485 

Nevertheless, assuming that at least most of unrecalled elements in the datasets except the VISTA and 486 

ClinVar datasets, are non-cis-regulatory, we estimated that the false discovery rate (FDR) of the 487 

remaining eight datasets might be up to from 11.23% (1-0.8877) for FPs to 35.50% (1-0.6450) for GWAS 488 

SNPs. Such high FDRs for CA (DHSs and TASs) and histone marks are consistent with an earlier study[68].  489 

Interestingly, the trimodal distribution of GERP scores of the 2.57% of unrecalled ClinVar SNPs displays a 490 

large peak around score 0 and two small peaks around -5 and 3.5, with a proportion of neutrality 0.40 491 

(Figure 5B), indicating that about 40% of the relevant SNPs might be selectively neutral, and thus non-492 

functional. We therefore estimated the FDR of the ClinVar SNP dataset to be about 0.40*2.57%=1.03%. 493 

Hence, like VISTA enhancers, ClinVar SNPs are a reliable set for evaluating CRM predictions. The peak of 494 

the unrecalled ClinVar SNPs around score 3.5 (Figure 5B), indicates that the relevant SNPs are under 495 

strong purifying selection, and thus might be functional, but were missed by dePCRM2. We therefore 496 

estimate our predictions (at p-value <0.05) might have a FNR < 2.57%-1.03%=1.54%. In other words, the 497 

real sensitivity (=1-FNR) for dePCRM2 to recall authentic ClinVar SNPs might be higher than the 498 

calculated 97.54% (Figure 5A). These estimates are supported by the zero FNR and 100% sensitivity for 499 

our predicted CRMs to recall VISTA enhancers (Figure 5A) and a simulation to be described later.  500 

 501 

The zero, very low (<1.03%) and low (11.23%) FDRs of  VISTA enhancers, ClinVar SNPs and FPs 502 

datasets, respectively, are clearly related to the high reliability of the experimental methods used to 503 

characterize them. However, the low FDRs might also be related to the highly conserved nature of these 504 

elements (Figure 5B), as their critical functions and large effect sizes may facilitate their correct 505 
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characterization. In this regard, we note that the intermediately high FDRs of the FEs(18.10%), 506 

DHSs(25.32), TASs (15.68%), H3K4m3 (13.04%), H3K4m1 (23.23%) and H3K27ac (17.04%) datasets might 507 

be due to the facts that bidirectional transcription[105], CA[68, 70, 106] and histone marks[68, 70] are 508 

not unique to active enhancers. The very high FDR of GWAS SNPs (35.5%) might be due to the fact that a 509 

lead SNP associated with a trait may not necessarily be located in a CRM and causal; rather, some 510 

variants in a CRM, which are in LD with the lead SNP, are the culprits[102, 107]. Example of GWAS SNPs 511 

in LD with positions in a CRM are shown in Figures S5K and S5L.  Interestingly, many recalled ClinVar 512 

SNPs (42.59%) and GWAS SNPs (38.18%) are located in critical positions in predicted binding sites of the 513 

UMs (e.g., Figures S5D and S5F). 514 

 515 

In addition, we found that 722 (76.65%) of the 942 VNRs in the VISTA database fall in the 516 

covered 77.47% genome regions. At a p-value cutoff of 0.05, the predicted CRMs recall 711 (98.48%) of 517 

the 722 VNRs. Interestingly, recalled VNR positions evolve similarly to the VISTA enhancer positions, 518 

while unrecalled VNR positions evolve similarly to the non-CRMC positions (Figure S3). These results 519 

strongly suggest that recalled VNRs might be true enhancers that function in conditions yet to be tested, 520 

as acknowledged by the VISTA team [108]. On the other hand, most unrecalled VNRs might not be cis-521 

regulatory.   522 

 523 
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 524 

Figure 5.  Validation of the predicted CRMs by 10 experimentally determined sequence elements datasets. A. 525 
Sensitivity (recall rate or TPR ) of the predicted CRMs and control sequences as a function of p-value cutoff for 526 
recalling the sequence elements in the datasets. The dashed vertical lines indicate the p-value ≤0.05 cutoff. B. 527 
Distributions of GERP scores of the recalled and unrecalled elements in each dataset in comparison with those of the 528 
predicted CRMs at p≤0.05 and non-CRMCs. Note that there are no unrecalled VISTA enhancers, and the 529 
distribution of the recalled 785 VISTA enhancers in the covered genome regions (not shown) is almost identical to 530 
the entire set of 976 VISTA enhancers (Figure 4A). The curve labeled by VISTA-CRMs is the distribution of CRMs 531 
that overlap and recall the 785 VISTA enhancers. 532 
 533 
 534 
dePCRM2 outperforms state-of-the-art methods for predicting CRMs 535 

We compared our predicted CRMs at p-value ≤ 0.05 (SCRM < 56) with three most comprehensive sets of 536 
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predicted enhancers/promoters, i.e., GeneHancer 4.14[55], EnhancerAtals2.0[59] and cCREs[26]. For 537 

convivence of discussion, we call these three sets enhancers or cCREs.  GeneHancer 4.14 is the most 538 

updated version containing 394,086 non-overlapping enhancers covering 18.99% (586,582,674bp) of the 539 

genome (Figure 6A). These enhancers were predicted by integrating multiple sources of both predicted 540 

and experimentally determined CRMs, including VISTA enhancers[79], ENCODE phase 2 enhancer-like 541 

regions[109], ENSEMBL regulatory build[53], dbSUPER[110], EPDnew promoters[111], UCNEbase[112], 542 

CraniofacialAtlas[113], FPs[100] and FEs [101]. Enhancers from ENCODE phase 2 and ESEMBL were 543 

predicted based on multiple tracks of epigenetic marks using the well-regarded tools ChromHMM[48] 544 

and Segway[114]. Of the GeneHancer enhancers, 388,407 (98.56%) have at least one nucleotide located 545 

in the covered genome regions, covering 18.89% of the genome (Figure 6A).  EnhancerAtlas 2.0 contains 546 

7,433,367 overlapping cell/tissue-specific enhancers in 277 cell/tissue types, which were predicted by 547 

integrating 4,159 TF ChIP-seq, 1,580 histone mark, 1,113 DHS-seq, and 1,153 other enhancer function-548 

related datasets, such as FEs[115]. After removing redundancy (identical enhancers in difference 549 

cell/tissues), we ended up with 3,452,739 EnhancerAtlas enhancers that may still have overlaps, 550 

covering 58.99% (1,821,795,020bp) of the genome (Figure 6A), and 3,417,629 (98.98%) of which have at 551 

least one nucleotide located in the covered genome regions, covering 58.78% (1,815,133,195bp) of the 552 

genome (Figure 6A). cCREs represents the most recent CRM prediction by the ENCODE phase 3 553 

consortium[26], containing 926,535 non-overlapping cell type agnostic enhancers and promoters 554 

covering 8.20% (253,321,371bp) of the genome. The cCREs were predicted based on overlaps among 555 

703 DHS, 46 TAS and 2,091 histone mark datasets in various cell/tissue types produced by ENCODE 556 

phases 2 and 3 as well as the Roadmap Epigenomics projects[26]. Of these cCREs, 917,618 (99.04%) 557 

have at least one nucleotide located in the covered genome regions, covering 8.13% (251,078,466bp) of 558 

the genome (Figure 6A). Thus, due probably to the aforenoted reasons, these three sets of predicted 559 

enhancers and cCREs also are strongly biased to the covered regions relative to the uncovered regions. 560 
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Both the number (1,155,151)  and genome coverage (43.47%) of our predicted CRMs (p-value<0.05) are 561 

larger than those of GeneHancer enhancers (388,407 and 18.89%) and of cCREs (917,618 and 8.12%), 562 

but smaller than those of EnhancerAtlas enhancers (3,417,629 and 58.78%), in the covered regions. 563 

 564 

To make the comparisons fair, we first computed the sensitivity of these three sets of enhancers 565 

and cCREs for recalling VISTA enhancers, ClinVar SNPs and GWAS SNPs in the covered regions. We 566 

omitted FPs, FEs, DHSs, TASs and the three histone marks for the valuation as they were used in 567 

predicting CRMs by GeneHancer 4.14, EnhancerAtlas 2.0 or ENCODE phase 3 consortium. We also 568 

excluded VISTA enhancers for evaluating GeneHancer enhancers as the former were compiled in the 569 

latter [55].  Remarkably, our predicted CRMs outperform EnhancerAtlas  enhancers for recalling VISTA 570 

enhancers (100.00% vs 94.01%) and ClinVar SNPs (97.43% vs 7.03%) (Figure 6B), even though our CRMs 571 

cover a smaller proportion of the genome (43.47% vs 58.78%, or 35.22% more) (Figure 6A), indicating 572 

that dePCRM2 has both higher sensitivity and specificity than the method behind EnhancerAtlas 2.0[59]. 573 

However, our CRMs underperform EnhancerAtlas enhancers for recalling GWAS SNPS (64.50% vs 574 

69.36%, or 7.54% more) (Figure 6B). As we indicated earlier, the lower sensitivity of dePCRM2 for 575 

recalling GWAS SNPs might be due to the fact that an associated SNP may not necessarily be causal 576 

(Figures S5K and S5L). The higher sensitivity of EnhancerAtlas enhancers for recalling GWAS SNPs might 577 

be simply thanks to their 35.22% more coverage of the genome (58.78%) than that of our predicted 578 

CRMs (43.47%) (Figure 6A). Our predicted CRMs outperform cCREs for recalling VISTA enhancers (100% 579 

vs 85.99%), ClinVar SNPs (97.43% vs 18.28%) and GWAS SNPs (64.50% vs 15.74%) (Figure 6B). Our 580 

predicted CRMs also outperform GeneHancer enhancers for recalling ClinVar SNPs (97.43% vs 33.16%) 581 

and GWAS SNPs (64.50% vs 34.11%) (Figure 6B). However, no conclusion can be drawn from these 582 

results about the specificity of our predicted CRMs compared with GeneHancer enhancers and cCREs, 583 

because our predicted CRMs cover a higher proportion of the genome than both of them (43.47% vs 584 
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18.89% and 8.20%). On the other hand, both GeneHancer 4.14 enhancers  and cCREs outperform 585 

EnhancerAtlas enhancers  for recalling ClinVar SNPs (33.16% and 18.28% vs 7.03%)(Figure 6B), even 586 

though they have a much smaller genome coverage than EnhancerAtlas enhancers (18.89% and 8.20% 587 

vs 58.78%) (Figure 6A), indicating that they have higher specificity than EnhancerAtlas enhancers. 588 

 589 

 As shown in Figure 6C, the intersections/overlaps between the four predicted 590 

CRMs/enhancer/cCREs sets are quite low. For instance, EnhancerAtlas enhancers, GeneHancer 591 

enhancers and cCREs share 926,396,395bp (50.85%),  414,806,711bp (70.72%), and 194,709,825bp 592 

(76.86%) of their nucleotide positions with our predicted CRMs, corresponding to 69.01%, 30.90% and 593 

14.51% of the positions of our CRMs (Figure 6C), respectively. There are only 105,606,214bp shared by 594 

all the four sets, corresponding to 5.80%, 18.00%, 41.69% and 7.87% of nucleotide positions covered by 595 

EnhancerAtlas enhancers, GeneHancer enhancers, cCREs and our CRMs, respectively.  As expected, the 596 

50.85%, 70.72% and 76.86% of their nucleotide  positions that EnhancerAtlas enhancers, GeneHancer 597 

enhancers and cCREs  share with our CRMs, respectively,  evolve similarly to our predicted CRMs, 598 

although those of GeneHancer enhancers and cCREs are under slightly higher evolutionary constraints 599 

than our CRMs (Figure 6D). However, at a higher SCRM cutoff, e.g. α=3,000 (p<2.2x10-302), our predicted 600 

CRMs are even under stronger evolutionary constraints than the shared GeneHancer enhancers and 601 

cCREs positions (Figure 6D). Therefore,  the shared GeneHancer enhancers and cCREs positions just 602 

evolve like subsets of our predicted CRMs with higher SCRM scores. By stark contrast, like the non-CRMCs, 603 

the remaining 49.14%, 29.28% and 23.13% of their nucleotide positions that EnhancerAtlas enhancers, 604 

GeneHancer enhancers and cCREs do not share with our CRMs, respectively, are largely selectively 605 

neutral, although they all have slightly smaller proportion of neutrality than that of the non-CRMCs 606 

(0.66, 0.63 and 0.61 vs. 0.71, respectively) (Figure 6D), due probably to the small FNR (<1.54%) of our 607 

predicted CRMs. Nonetheless, these results strongly suggest that the vast majority of the unshared 608 
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positions of the three sets of predicted enhancers/eCREs are selectively neutral, and thus might be 609 

nonfunctional. It appears that the predicted enhancers/cCREs in the three sets that overlap our CRMs 610 

are likely to be authentic, while most of those that do not might be false positives. Hence, we estimated 611 

the FDR of EnhancerAtlas enhancers, GeneHancer enhancers and cCREs to be around 49.14%, 29.28% 612 

and 23.13%, respectively. Therefore, it is highly likely that GeneHancer 4.14 and cCREs might largely 613 

under-predict enhancers as evidenced the fact that they are targeted at evolutionarily more constrained 614 

elements (Figure 6D), even though they have rather high FDRs around 29.28% and 23.12%, respectively 615 

(Figure 6D), while EnhancerAtlas 2.0 might largely over-predict enhancers with a very high FPR around 616 

49.14% (Figure 6D). 617 

 618 

Finally, we compared the lengths of the four sets of predicted CRMs/enhancers/cCREs with 619 

those of VISTA enhancers . As shown in Figure 6E, the distribution of the lengths of cCREs has a narrow 620 

high peak at 345bp with a mean length of 273bp and a maximal length of 350bp.  It is highly likely that  621 

the vast majority of authentic cCREs are just components of long CRMs, because even the longest cCREs 622 

(350bp) is shorter and the shortest VISTA enhancer (428bp). The highly uniform lengths of the predicted 623 

cCREs also indicate the limitation of the underlying prediction pipeline[26]. The distribution of 624 

GeneHancer enhancers oscillates with a period of 166bp (Figure 6E), which might be an artifact of the 625 

underlying algorithm for combining results from multiple sources [55]. Moreover, with a mean length of 626 

1,488bp, GeneHancer enhancers are shorter than the VISTA enhancers (with a mean length 2,049bp) 627 

(Figure 6E). EnhancerAtlas enhancers also have a shorter mean length (680bp) than VISTA enhancers  628 

(3049bp) (Figure 6E). Our predicted CRMs at p-value <0.05 have a mean length of 1,162bp, thus also are 629 

shorter than that of VISTA enhancers (Figure 6E). However, as we indicated earlier, with a more 630 

stringent p-value cutoff 5x10-6, the resulting 428,628 predicted CRMs have almost an identical length 631 

distribution as the VISTA enhancers (Figure 3E). Taken together, these results unequivocally indicate 632 
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that our predicted CRMs are much more accurate than the three state-of-the-art predicted 633 

enhancer/cCRE sets for both the nucleotide positions and lengths of CRMs/enhancers/cCREs.  634 

 635 

Figure 6. Comparison of the performance of dePCRM2 and three state-of-the-art methods. A. Proportion of the 636 
genome that are covered by enhancers/CRMs predicted by the four methods (All), and proportion of genome 637 
regions covered by predicted enhancers/CRMs that at least partially overlap the covered genome regions (With 638 
overlap). B. Sensitivity for recalling VISTA enhancers, ClinVar SNPs and GWAS SNPs, by the predicted 639 
enhancers/CRMs that at least partially overlap the covered genome regions. C. Upset plot showing numbers of 640 
nucleotide positions shared among the predicted CRMs, GeneHancer enhancers, EnhancerAtlas enhancers and 641 
cCREs. D. Distributions of GERP scores of nucleotide positions of the CRMs predicted at p-value ≤ 0.05 and p-value 642 
≤ 2.2X10-308, and the non-CRMCs, as well as of nucleotide positions that GeneHancer enhancers, EnhancerAtlas 643 
enhancers and cCREs share and do not share with the predicted CRMs at p-value ≤ 0.05. E. Distributions of lengths 644 
of the four sets of predicted enhancers/CRMs in comparison to that of VISTA enhancers. The inset is a blow-up 645 
view of the axes defined region.   646 
 647 
At least half of the human genome might code for CRMs    648 
 649 
What is the proportion of the human genome coding for CRMs and TFBSs? The high accuracy of our 650 

predicted CRMs and constituent TFBSs might well position us to more accurately address this interesting 651 

and important, yet unanswered question[116, 117]. To this end, we took a semi-theoretic approach. 652 
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Specifically, we calculated the expected number of true positives and false positives in the CRMCs in 653 

each non-overlapping 𝑆𝐶𝑅𝑀  score interval based on the predicted number of CRMCs and the density of 654 𝑆𝐶𝑅𝑀  scores of Null CRMCs in the interval (Figure 7A), yielding 1,383,152 (98.45%) expected true 655 

positives and 21,821 (1.55%) expected false positives in the CRMCs (Figure 7B). The vast majority of the 656 

21,821 expected false positive CRMCs have a low 𝑆𝐶𝑅𝑀 score < 4 (inset in Figure 7A) with a mean length 657 

of 28 bp, comprising 0.02% (21,821x28/3,088,269,832) of the genome and 0.05% (0.0002/0.4403) of the 658 

total length of the CRMCs, i.e., a FDR of 0.05% for nucleotide positions (Figure 7C). On the other hand, as 659 

the CRMCs miss 2.49% of ClinVar SNPs in the covered genome regions (Figure 5A), the FNR of 660 

partitioning the genome in CRMCs and non-CRMCs would be < 2.49%(1-0.40)=1.49%, given the 661 

proportion of neutrality of 0.4 for the unrecalled ClinVar SNPs (Figure 5B).  False negative CRMCs would 662 

make up 0.67% of the genome and 1.99% of the total length of the non-CRMCs, meaning  a false 663 

omission rate (FOR) of 1.99% for nucleotide positions (Figure 7C). Hence, true CRM positions in the 664 

covered regions  would make up 44.68% (44.03%-0.02%+0.67%) of the genome (Figure 7C). In addition, 665 

as we argued earlier, the CRMC density in the uncovered 22.53% genome regions is about 80.04% of 666 

that in the covered regions, thus, CRMCs in the uncovered regions would be about 10.40% (0.2253 x 667 

0.4468x0.8004/0.7747) of the genome (Figure 7C). Taken together, we estimated about 55.08% 668 

(44.68%+10.40%) of the genome to code for CRMs, for which we have predicted 79.90% [(44.03-669 

0.02)/55.08]. Moreover, as we predicted that about 40% of CRCs are made up of TFBSs (Figure 3C), we 670 

estimated that about 22.03% of the genome might encode TFBSs. Furthermore, assuming a mean length 671 

1,162bp for CRMs (the mean length of  our predicted CRMs at p-value <0.05), and a mean length of 672 

10bp for TFBSs (Figure 2D), we estimated that the human genome would encode about 1,463,872 CRMs 673 

(3,088,269,832x0.5508/1,162) and 67,034,584 TFBSs (3,088,269,832x0.2203/10).  674 
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 675 

Figure 7. Estimation of the portion of the human genome encoding CRMs. A. Expected number of true positive and 676 
false positive CRMCs in the predicted CRMCs in each one-unit interval of the 𝑆𝐶𝑅𝑀  score. The inset is a blow-up 677 
view of the axes defined region.  B. Expected cumulative number of true positives and false positives with the 678 
increase in 𝑆𝐶𝑅𝑀  score cutoff for predicting CRMs.  The inset is a blow-up view of the axes defined region. C. 679 
Proportions of the genome that are covered and uncovered by the extended binding peaks and estimated 680 
proportions of CRMCs in the regions. Numbers in the braces are the estimated proportions of the genome being 681 
the indicated sequence types, and numbers in the boxes are proportions of the indicated sequence types in the 682 
covered regions or the uncovered regions, so they are summed to 1.     683 
 684 
 685 
Discussion 686 

Identification of all functional elements, in particular, CRMs in genomes has been the central 687 

task in the postgenomic era, and enormous CRM function-related data have been produced to achieve 688 

the goal[23, 118].  Although great progresses have been made to predict CRMs in the genomes [26, 53, 689 

55, 59, 119] using these data, most existing methods attempt to predict cell/tissue specific CRMs using 690 

CA and multiple tracks of histone marks collected in the same cell /tissue types[26, 48, 55, 59, 114]. 691 

These methods are limited by the scope of applications[26, 48, 114], low resolution of predicted 692 

CRMs[26, 59], lack of constituent TFBS information[26, 59], and high FDRs[68](Figure 6D). To overcome 693 
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these limitations, we proposed a different approach to first predict a cell type agnostic or static map of 694 

CRMs and constituent TFBBs in the genome[46, 47] by identifying repeatedly cooccurring patterns of 695 

motifs found in appropriately expanded binding peaks in a large number of TF ChIP-seq datasets for 696 

different TFs in various cell/tissue types. Since it is mainly TFBSs in a CRM that define its structure and 697 

function, it not surprising that TF ChIP-seq data are a more accurate predictor of CRMs than CA and 698 

histone mark data[52, 68, 70]. Therefore, our  approach might hold promise for more accurate 699 

predictions of CRMs and constituent TFBSs, notwithstanding computational challenges. Once a map of 700 

CRMs and constituent TFBBs in the gnome is available, functions of CRMs and constituent TFBSs  in  701 

cell/tissue types could be studied in a more focused and cost-effective ways. Another advantage of our 702 

approach is that we do not need to exhaust all TFs and all cell/tissue types of the organism in order to 703 

predict most, if not all, of CRMs and constituent TFBBSs in the genome as we demonstrated earlier[46, 704 

47], because CRMs are often repeatedly used in different cell/tissue types, developmental stages and 705 

physiological homeostasis[1]. Moreover, by appropriately extending the binding peaks in each dataset, 706 

we could largely increase the chance to identify cooperative motifs and full-length CRMs, thereby 707 

increasing the power of existing data, thereby further reducing the number of datasets needed as we 708 

have demonstrated in this and previous studies [46, 47].  We might only need a large but limited 709 

number of datasets to predict most, if not all, CRMs and TFBSs in the genome, as predicted UMs and 710 

CRMs enters a saturation phase when more than few hundreds of datasets were used for the 711 

predictions as we showed earlier [46]. Our earlier application of the approach resulted in very promising 712 

results in the fly[47] and human[46] genomes even using a relatively small number of strongly biased 713 

datasets available then. However, the earlier implementations were limited by computational 714 

inadequacies of underlying algorithms to find and integrate motifs in ever increasing number of large TF 715 

ChIP-seq datasets in mammalian cell/tissues[46, 47]. In this study, we circumvent the limitations by 716 

developing the new pipeline dePCRM2 based on an ultrafast and accurate motif finder ProSampler, an 717 
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efficient motif pattern integration method, and a novel CRM scoring function that captures essential 718 

features of full-length CRMs.  719 

 720 

Remarkably, dePCRM2 enables us to partition the 77.47% genome regions covered by the 721 

extended binding peaks in 6,079 TF ChIP-seq datasets into two exclusive sets, i.e., the CRMCs and non-722 

CRMCs. Multiple pieces of evidence strongly suggest that the partition might be highly accurate. First, 723 

the vast majority of the  CRMCs are unlikely predicted by chance as suggested by their small p-values 724 

(Figure 3B). Second, even the subset of the  CRMCs with the lowest 𝑆𝐶𝑅𝑀 scores ((0,1]) are under 725 

stronger evolutionary constraints than the non-CRMCs (Figures 4B and S4B), indicating that even these 726 

low-scoring CRMCs are more likely to be functional than non-CRMCs, not to mention CRMCs with higher 727 𝑆𝐶𝑅𝑀 scores that are under stronger evolutionary constraints (Figures 4C, 4D, S4C and S4D). Third, the 728 

vast majority of the CRMCs are under similarly strong evolutionary constraints, and a subset of the 729 

CRMCs with  high 𝑆𝐶𝑅𝑀 scores evolve like the ultra-conserved, development-related VISTA enhancers 730 

with trimodal GERP score distributions (Figures 4A and S4A ). Fourth, all experimentally validated VISTA 731 

enhancers and almost all (97.51%) of well-documented ClinVar SNPs in the covered genome regions are 732 

recalled by the CRMCs (Figure 5A), indicating that the CRMCs have a very low FNR. Finally, our 733 

simulation studies indicate that the CRMCs have a very low FDR of 0.05%, and the non-CRMCs have a 734 

low FOR of 1.99% (Figure 7C), strongly suggesting that  both sensitivity and specificity of our predicted 735 

CRMs are very high. To the best of our knowledge, we are the first to accurately partition large regions 736 

(77.47%) of the genome into a set (CRMCs) that are highly likely to be cis-regulatory, and a set (non-737 

CRMCs) that are highly unlikely to be cis-regulatory.  738 

 739 

Accurate prediction of the length of CRMs is also critical, but it appeared to be a difficult problem 740 

as evidenced by the peculiar distributions of the lengths of GeneHancer enhancers and cCREs (Figure 6E).  741 
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Although 44.26%  (621,841) of our predicted 1,404,973 CRMCs are shorter than the shortest (428bp) 742 

VISTA enhancer, and thus are likely CRM components, they comprise only 7.42% of the total length of the 743 

CRMCs. The remaining 55.74% (783,132) of the CRMCs comprising 92.58% of the total length of the 744 

CRMCs, are longer than the shortest (428bp) VISTA enhancer, and thus are likely full-length CRMs. 745 

Therefore, the vast majority of the predicted CRMC positions in the genome might be covered by full-746 

length CRMs. Very short CRMCs tend to have small SCRM scores and be under weak evolutionary 747 

constraints, and thus can be effectively filtered out using more stringent SCRM cutoffs (Figures 3E, 4C and 748 

S4C). It has been shown that an enhancer’s length and evolutionary behavior are determined by its 749 

regulatory tasks [91], and conserved enhancers are active in development [98, 99], while fragile enhancers 750 

are associated with evolutionary adaptation [98]. CRMCs with different SCRM cutoffs might belong to 751 

different functional types as indicated by their different evolutionary behaviors (4A, 4C, S4A and S4C) and 752 

length distributions (Figures 3E). For example, like VISTA enhancers, CRMs predicted at high SCRM cutoffs 753 

tend to be longer (Figure 3E) and under stronger evolutionary constrains (Figures 4C and S4C), thus might 754 

be mainly involved in development, whereas CRMs predicted at lower SCRM cutoffs tend to be shorter 755 

(Figure 3E) and under weaker evolutionary constrains (Figures 4C and S4C), thus might be mainly involved 756 

in non-development related functions. On the other hand, the failure to predict full-length CRMs of short 757 

CRM components might be due to insufficient data coverage on the relevant loci in the genome. This is 758 

reminiscent of our earlier predicted, even shorter CRMCs (mean length = 182bp) using a much smaller 759 

number and less diverse 670 datasets[46]. As we argued earlier[46] and confirmed here by the much 760 

longer CRMCs (mean length = 981bp) predicted using the much larger and more diverse datasets albeit 761 

still strongly biased to a few TFs and cell/tissue types (Supplementary Note). We anticipate that full-length 762 

CRMs of these short CRM components can be predicted using even larger and more diverse TF ChIP-seq 763 

data. Thus, efforts should be made in the future to increase the genome coverage and reduce data biases 764 

by including more untested TFs and untested cell types in the TF ChIP-seq data generation.  765 
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Interestingly, our predicted CRMs (at p-value < 0.05) achieve perfect (100.00%) and very high 766 

(97.43) sensitivity for recalling VISTA enhancers [79] and ClinVAR SNPs [103], respectively, but varying 767 

intermediate sensitivity ranging from 64.50% (for GWAS SNPs) to 88.77% (for FPs) for recalling other 768 

CRM function-related elements in the remaining eight datasets (Figure 5A). It appears that such varying 769 

sensitivity is due to varying FDRs ranging from 0% (for VISTA enhancers) to 35.5% (for GWAS SNPs) of 770 

the methods used to characterize the elements (Figure 5B). Our finding that DHSs, TASs, and histone 771 

mark (H3K4m1, H3K4m3 and H3K27ac) peaks have high FDRs for predicting CRMs is consistent with an 772 

earlier study showing that histone marks or CA were less accurate predictor of active enhancers than TF 773 

binding data[68].  Thus, it is not surprising that our predicted CRMs substantially outperforms the three 774 

state-of-the-art sets of predicted enhancers/cCREs, i.e., GeneHancer 4.14 [55], EnhancerAtals2.0 [59] 775 

and cCREs[26],  both for recalling VISTA enhancers (we excluded GeneHancer enhancers for this 776 

evaluation since VISTA enhancers were a part of it) and ClinVar SNPs (Figure 6B) and for predicting the 777 

lengths of CRMs (Figure 6E), because these three sets were mainly predicted based on overlaps between 778 

multiple tracks of CA and histone marks in various cell/tissue type. Although great efforts have been 779 

made to improve the accuracy of EnhancerAtlas 2.0 enhancers[59],  GeneHancer 4.14  enhancers[55] 780 

and cCREs[26], they still suffer quite high FDRs (49.14%, 29.28% and 23.12%, respectively).  781 

 782 

Although dePCRM2 can predict functional states of CRMCs in a cell/tissue type that have original 783 

binding peaks overlapping the CRMs, it cannot predict the functional states of CRMs in the extended 784 

parts of the original binding peaks in a cell/tissue if the CRMs do not overlap any available binding peaks 785 

of all TFs tested in the cell/tissue type. However, the functional state of each CRM in the map in any 786 

cell/tissue type could be predicted based on overlap between the CRM and a single or few epigenetic 787 

mark datasets such as CA, H3K27ac and/or H3K4m3 data collected from the very cell/tissue type. 788 

Anchored by correctly predicted CRMs, these epigenetic marks could accurately predict the functional 789 
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states of the CRMs[68]. Thus, our approach might be more cost-effective for predicting both a static 790 

map of CRMs as well as constituent TFBSs in the genome and their functional states in various cell/tissue 791 

types. 792 

Remarkably, although originally called binding peaks is the strongly biased to few cell types and 793 

TFs (Supplementary Note), and the 6,092 TF ChIP-seq datasets cover only 40.96% of the genome, after   794 

moderately extending the binding  peaks, we  increased the genome coverage to 77.47%, an 89.14 % 795 

increase. Nucleotide positions of the extended parts of the peaks contribute 42.12%  positions of the 796 

predicted CRMCs. Therefore, appropriate extension of called binding peaks in the datasets can 797 

substantially increase the power of available data. On the other hand, we abandoned 38.60% of 798 

positions covered by the original binding peaks, which might be nonfunctional as they evolve like the 799 

non-CRMCs (Figures 4A and S4A). Therefore, originally called binding peaks cannot be equivalent to 800 

CRMs or parts of CRMs as has also been shown earlier[87-89], and integration of multiple TF ChIP-seq 801 

datasets as demonstrated in this study is necessary for accurate genome-wide predictions of CRMs.  802 

 803 

The proportion of the human genome that is functional is a topic under hot debate [109, 120] 804 

and a wide range from 5% to 80% of the genome has been suggested to be functional based on 805 

difference sources of evidence [23, 61, 116, 120, 121]. The major disagreement is for the proportion of 806 

functional NCSs in the genome, mainly CRMs, which have been coarsely estimated to comprise from 8% 807 

to 40% of the genome [109, 120]. Moreover, a wide range of CRM numbers from 400,000 [109] to more 808 

than a few million [23, 59] has been suggested to be encoded in the human genome. However, to our 809 

best knowledge, no estimate has been made on substantial evidence. Our predicted CRMCs cover 810 

44.03% of the genome, which is lower than EnhancerAtlas enhancers (58.99%)[59] do. The much higher 811 

accuracy of our predicted CRMs suggests that cCREs (7.9%)[26] and GeneHancer enhancer might 812 

underpredict, whereas EnhancerAtlas 2.0 might overpredict CRMs. Based on the estimated FDR and FNR 813 
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of the predicted CRMCs and non-CRMCs as well as the estimated density of CRMs in the uncovered 814 

regions relative to the covered regions (Figure 7C), we estimated that about 55.08% and 22.03% of the 815 

genome might code for CRMs and TFBSs, respectively, which encode about 1.46 million CRMs and 67 816 

million TFBSs.  Therefore, the number of our predicted CRMs is almost four times more than an earlier 817 

estimate of 400,000 [109], and they are encoded by a higher (55.08%) proportion  of the genome than 818 

earlier thought 40%[109, 120]. We estimated that our true positive CRMs cover 44.01% (44.03-0.02) of 819 

the genome, therefore, we might have predicted 79.90 % (44.01/55.08) CRM positions encoded in the 820 

genome. In summary, it appears that the cis-regulatory genome is more prevalent than originally 821 

thought. 822 

 823 

Conclusions 824 

We have developed a new highly accurate and scalable pipeline dePCRM2 for predicting CRMs 825 

and constituent TFBSs in large genomes by integrating a large number of TF ChIP-seq datasets for 826 

various TFs in a variety of cell/tissue types of the organisms. Applying dePCRM2 to all available ~6,000 827 

TF ChIP-seq datasets, we predicted an unprecedentedly complete, high resolution map of CRMs and 828 

constituent TFBSs in 77.47% of the human genome covered by extended binding peaks of the datasets.  829 

Evolutionary and experimental data suggest that dePCRM2 achieves very high prediction sensitivity and 830 

specificity. Based on the predictions, we estimated that about 55% and 22% of the genome might code 831 

for CRMs and TFBSs, encoding about 1.46 million CRMs and 67 million TFBSs, respectively; for both of 832 

which we predicted about 80%. Therefore, the cis-regulatory genome is more prevalent than originally 833 

thought. With the availability in the future of more diverse and balanced data covering more regions of 834 

the genome, it is possible to predict a more complete map of CRMs and constituent TFBSs in the 835 

genome.  836 

 837 
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Materials and Methods 838 

Datasets 839 

We downloaded 6,092 TF ChIP-seq datasets from the Cistrome database[29]. The binding peaks in each 840 

dataset were called using a pipeline for uniform processing[29]. We filtered out binding peaks with a 841 

read depth score less than 20. For each binding peak in each dataset, we extracted a 1,000 bp genome 842 

sequence centering on the middle of the summit of the binding peak. We downloaded 976 843 

experimentally verified enhancers and 942 negatively validated regions (NVRs)  from the VISTA Enhancer 844 

database[79],  424,622 ClinVar SNPs from the ClinVar database[103], 32,689 enhancers[101] and 845 

184,424 promoters[100] from the FANTOM5 project website,  91,369 GWAS SNPs from GWAS 846 

Catalog[102], and 122,468,173 DHSs in 1,353 datasets (Table S4), 29,520,736 transposase-accessible 847 

sites (TASs) in 1,059 datasets (Table S5), 99,974,447 H3K27ac peaks in 2,539 datasets (Table S6), 848 

77,500,232 H3K4me1 peaks in 1,210 datasets (Table S7), and 70,591,888 H3K4me3 peaks in 2,317 849 

datasets (Table S8) from the Cistrome database[29]. 850 

 851 

Measurement of the overlap between two different datasets 852 

To evaluate the extent to which the binding peaks in two datasets overlap with each other, we calculate 853 

an overlap score 𝑆0(𝑑𝑖, 𝑑𝑗) between each pair of datasets 𝑑𝑖  and 𝑑𝑗 , defined as, 854 

 𝑆0(𝑑𝑖, 𝑑𝑗) = 12 × (𝑜(𝑑𝑖 , 𝑑𝑗)|𝑑𝑖| + 𝑜(𝑑𝑖, 𝑑𝑗)|𝑑𝑗| ), (1) 
 

where 𝑜(𝑑𝑖, 𝑑𝑗) is the number of binding peaks in 𝑑𝑖 and 𝑑𝑗 that overlap each other by at least one bp.  855 

 856 

Parameters for accuracy evaluation 857 

We use the following definitions to evaluate the accuracy of datasets and predictions. 𝑆ensitivity =858 recall rate = 𝑇𝑃𝑅 (true positive rate) = 𝑇𝑃𝑇𝑃+𝐹𝑁, 𝐹𝑁𝑅 (false negative rate) = 𝐹𝑁𝑇𝑃+𝐹𝑁 ,   Specificity =859 
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𝑇𝑁𝐹𝑃+𝑇𝑁 , 𝐹𝑃𝑅(false positive rate) 𝐹𝑃𝐹𝑃+𝑇𝑁 ,  𝐹𝐷𝑅 (false discorery rate ) = 𝐹𝑃𝑇𝑃+𝐹𝑃, and 860 

𝑂𝑅 (false ommision rate) = 𝐹𝑁𝐹𝑁+𝑇𝑁, where TP is true positives; FN, false negatives; FP, false positives; 861 

and TN, true negatives.  862 

 863 

The dePCRM2 pipeline 864 

Step 1: Find motifs in each dataset using ProSampler[72](Figures 1A and 1B). 865 

Step 2. Compute pairwise motif co-occurring scores and find co-occurring motif pairs (CPs): As True 866 

motifs are more likely to co-occur in the same sequence than spurious ones, to filter out false positive 867 

motifs, we find overrepresented CPs in each dataset (Figure 1C). Specifically, for each pair of motifs 868 𝑀𝑑(𝑖) and 𝑀𝑑(𝑗) in each data set d, we compute their co-occurring scores Sc defined as, 869 

 𝑆𝑐 (𝑀𝑖(𝑖), 𝑀𝑗(𝑗)) = 𝑜(𝑀𝑑(𝑖),𝑀𝑑(𝑗))𝑚𝑎𝑥{|𝑀𝑑(𝑖)|,|𝑀𝑑(𝑖)| }, (2)  

where |𝑀𝑑(𝑖)| and |𝑀𝑑(𝑗)|  are the number of binding peaks containing TFBSs of motifs 𝑀𝑑(𝑖) and 870 𝑀𝑑(𝑗), respectively; and 𝑜(𝑀𝑑(𝑖), 𝑀𝑑(𝑗)) the number of binding peaks containing TFBSs of both the 871 

motifs in 𝑑. We identify CPs with an 𝑆𝑐 ≥ 𝛽. We choose 𝛽 such that the component with the highest 872 

scores in the trimodal distribution 𝑆𝑐 is kept (Figures 1C and 2B) (by default 𝛽 = 0.7).  873 

Step 3. Construct a motif similarity graph and find unique motifs (UMs): We combine highly similar 874 

motifs in the CPs from different datasets to form a UM presumably recognized by a TF or highly similar 875 

TFs of the same family/superfamily[122]. Specifically, for each pair of motifs 𝑀𝑎(𝑖) and 𝑀𝑏(𝑗) from 876 

different datasets 𝑎 and 𝑏, respectively, we compute their similarity score 𝑆𝑠 using our SPIC[123] metric. 877 

We then build a motif similarity graph using motifs in the CPs as nodes and connecting two motifs with 878 

their 𝑆𝑠 being the weight on the edge, if and only if (iff) 𝑆𝑠> (by default,  =0.8, Figure 1D). We apply 879 

the Markov cluster (MCL) algorithm [124] to the graph to identify dense subgraphs as clusters. For each 880 

cluster, we merge overlapping sequences, extend each sequence to a length of 30bp by padding the 881 
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same number of nucleotides from the genome to the two ends, and then realign the sequences to form 882 

a UM using ProSampler[72](Figure 1D). 883 

Step 4. Construct the interaction networks of the UMs/TFs: TFs tend to repetitively cooperate with each 884 

other to regulate genes in different contexts by binding to their cognate TFBSs in CRMs. The relative 885 

distances between TFBSs in a CRM often do not matter (billboard model), but sometimes they are 886 

constrained by the interactions between cognate TFs (enhanceosome model) [74-76]. To model 887 

essential features of both scenarios, we compute an interaction score between each pair of UMs, 𝑈𝑖  and 888 𝑈𝑗 , defined as, 889 𝑆𝐼𝑁𝑇𝐸𝑅(𝑈𝑖, 𝑈𝑗) = 1|𝐷(𝑈𝑖,𝑈𝑗| ∑ ( 1|𝑑(𝑈𝑖)| +𝑑∈𝐷(𝑈𝑖,𝑈𝑗) 1|𝑑(𝑈𝑗)) ∑ 150𝑟(𝑠)𝑠∈𝑆(𝑑(𝑈𝑖),(𝑑(𝑈𝑗)) ,                    (3) 890 

where 𝐷(𝑈𝑖 , 𝑈𝑗) is the datasets in which TFBSs of both 𝑈𝑖  and 𝑈𝑗  occur, 𝑑(𝑈𝑘) the subset of dataset 𝑑, 891 

containing at least one TFBS of 𝑈𝑘, 𝑆(𝑑(𝑈𝑖), (𝑑(𝑈𝑗)) the subset of 𝑑 containing TFBSs of both 𝑈𝑖  and 𝑈𝑗, 892 and 𝑟(𝑠) the shortest distance between any TFBS of 𝑈𝑖  and any TFBS of 𝑈𝑗  in a sequence 𝑠. We 893 

construct UM/TF interaction networks using the UMs as nodes and connecting two nodes with their 894 

SINTER being the weight on the edge (Figure 1E).  Therefore, the SINTER  score allows flexible adjacency and 895 

orientation of TFBSs in a CRM (billboard model) and at the same time, it rewards motifs with binding 896 

sites co-occurring frequently in a shorter distance in a CRM (enhanceosome model), particularly within a 897 

nucleosome with a length of about 150bp[74, 75, 125]. 898 

Step 5. Partition the covered genome regions into a CRM candidate (CRMC) set and a non-CRMC set: We 899 

project TFBSs of each UM back to the genome, and link two adjacent TFBSs if their distance d ≤ 300bp 900 

(roughly the length of two nucleosomes). The resulting linked DNA segments are CRMCs, while DNA 901 

segments in the covered regions that cannot be linked are non-CRMCs (Figure 1F).  902 

Step 6. Evaluate each CRMC: We compute a CRM score for a CRMC containing n TFBSs (b1, b2, …, bn), 903 

defined as, 904 
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𝑆𝐶𝑅𝑀(𝑏1, 𝑏2 ⋯ , 𝑏𝑛) = 2𝑛−1 × ∑ ∑ 𝑆𝐼𝑁𝑇𝐸𝑅[𝑈(𝑏𝑖), 𝑈(𝑏𝑗)]𝑗>𝑖𝑛𝑖=1 × [𝑆(𝑏𝑖) + 𝑆(𝑏𝑗)],                           (4) 905 

     

where 𝑈(𝑏𝑘) is the UM of TFBS 𝑏𝑘, 𝑆𝐼𝑁𝑇𝐸𝑅[𝑈(𝑏𝑖),  𝑈(𝑏𝑗)] the weight on the edge between 𝑈(𝑏𝑖) and 906 𝑈(𝑏𝑗), in the interaction networks, and 𝑆(𝑏𝑘) the score of 𝑏𝑘 based on the position weight matrix 907 

(PWM) of 𝑈(𝑏𝑘). Only TFBSs with a positive score are considered. Thus, 𝑆𝐶𝑅𝑀 considers the number of 908 

TFBSs in a CRMC, as well as their quality and strength of all pairwise interactions.  909 

Step 7. Predict CRMs: We create the Null interaction networks by randomly reconnecting the nodes with 910 

the edges in the interaction networks constructed in Step 4. For each CRMC, we generate a Null CRMC 911 

that has the same length and  nucleotide compositions as the CRMC using a third order Markov chain 912 

model[72]. We compute a SCRM score for each Null CRMC using the Null interaction networks, and the 913 

binding site positions and PWMs of the UMs in the corresponding CRMC.  Based on the distribution of 914 

the SCRM scores of the Null CRMCs, we compute an empirical p-value for each CRMC, and predict those 915 

with a p-value smaller than a preset cutoff as CRMs in the genome (Figure 1G). 916 

Step 8. Prediction of the functional states of CRMs in a given cell type: For each predicted CRM at p-917 

value <0.05, we predict it to be active in a cell/tissue type, if its constituent binding sites of the UMs 918 

whose cognate TFs were tested in the cell/tissue type overlap original binding peaks of the TFs; 919 

otherwise, we predict the CRM to be inactive in the cell/tissue type. If the CRM does not overlap any 920 

binding peaks of the TFs tested in the cell/tissue type, we assign its functional state in the cell/tissue 921 

type “TBD” (to be determined). 922 

Generation of control sequences for validation 923 

To create a set of matched control sequences for validating the predicted CRMs using experimentally 924 

determined elements used in Figure 5A, for each predicted CRMC, we produced a control sequence by 925 

randomly selecting a sequence segment with the same length as the CRMC from the genome regions 926 

covered by the extended binding peaks. To calculate the SCRM score of a control sequence, we assigned it 927 
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the TFBS positions and their UMs according to those in the counterpart CRMC. Thus, the control set 928 

contains the same number and length of sequences as in the CRMCs, but with arbitrarily assigned TFBSs 929 

and UMs. 930 
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