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Abstract
Cellular circular RNAs (circRNAs) are generated by head-to-
tail splicing and are present in all multicellular organisms
studied so far. Recently, circRNAs have emerged as a large
class of RNA which can function as post-transcriptional reg-
ulators. It has also been shown that many circRNAs are tissue-
and stage-specifically expressed. Moreover, the unusual sta-
bility and expression specificity make circRNAs important
candidates for clinical biomarker research. Here, we present
a circRNA expression resource of 20 human tissues highly
relevant to disease-related research: vascular smooth muscle
cells (VSMCs), human umbilical vein cells (HUVECs), artery
endothelial cells (HUAECs), atrium, vena cava, neutrophils,

platelets, cerebral cortex, placenta, and samples from mesen-
chymal stem cell differentiation. In eight different samples
from a single donor, we found highly tissue-specific
circRNA expression. Circular-to-linear RNA ratios revealed
that many circRNAs were expressed higher than their linear
host transcripts. Among the 71 validated circRNAs, we no-
ticed potential biomarkers. In adenosine deaminase-deficient,
severe combined immunodeficiency (ADA-SCID) patients
and in Wiskott-Aldrich-Syndrome (WAS) patients’ samples,
we found evidence for differential circRNA expression of
genes that are involved in the molecular pathogenesis of both
phenotypes. Our findings underscore the need to assess
circRNAs in mechanisms of human disease.
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Key messages
& circRNA resource catalog of 20 clinically relevant tissues.
& circRNA expression is highly tissue-specific.
& circRNA transcripts are often more abundant than their

linear host RNAs.
& circRNAs can be differentially expressed in disease-

associated genes.

Keywords Circular RNAs . circRNA catalog . Potential
biomarker . Human cell types

Introduction

Cellular circular RNAs (circRNAs) represent a class of single-
stranded, unusually stable RNAs originating from 5′-to-3′ tran-
scription of coding gene exons or long non-coding RNAs
(lncRNAs) that produce covalently closed head-to-tail (or back-
spliced) circularized transcripts [1–4]. Many circRNAs are tissue-
and developmental stage-specifically expressed [2, 4]. The
circRNAco-transcriptional splicing can competewith linear splic-
ing events and can depend on the binding of the RNA-binding
proteins, MBNL1 or QKI, in intronic sequences [5, 6]. Intronic
complementary sequences, inter alia repetitive elements, and the
RNA-editing protein, ADAR1, were linked to the circularization
of exons [7, 8]. Earlier, the circRNAs CDR1as (ciRS-7) and
circSRY were shown to exhibit important functions in sponging
miRNAs and thereby functioning as post-transcriptional regula-
tors [2, 9, 10]. circRNAs are resistant to the exonuclease RNase R
that solely digests linear transcripts. This feature can be used to
validate circRNAcandidates by comparing their abundance in the
RNase R-treated and untreated samples [11]. circRNAs found in
clinical specimens, like blood, reveal that these abundant tran-
scripts could serve as biomarkers [12]. Here, we present a
circRNA resource catalog to supplement existing databases with
new circRNA transcripts in human cell types. By identifying and
validating selected circRNAs in these human tissues relevant to
clinical research, we provide multiple examples of abundant and
highly tissue-specific circRNA expression in host genes that have
been associated with pathogenesis of human disease.

Methods

Human material

After approval by the ethics committee (Charité Medical
Faculty Berlin and University Clinic Erlangen) and written,
informed consent, we obtained human tissues. Mesenchymal
stromal cells (MSCs) from a non-affected healthy female
(23 years) donor were obtained, characterized, and differenti-
ated as previously described [13]. Fibroblasts from buttocks
biopsies of a non-affected male donor (25 years) were

cultivated until passage six in M-199, supplemented with
20% FCS. Single samples, each from one donor, were used
for sequencing.

Patients or patients’ parents signed informed consent on
anonymous data collection for research studies conducted on
biological samples of patients with primary immunodefi-
ciencies (three Wiskott-Aldrich syndrome samples, four
ADA-SCID samples) at San Raffaele Hospital (TIGET02),
approved by the San Raffaele Scientific Institute’s Ethical
Committee. Four T cell lines were generated from peripheral
blood mononuclear cells purified by density gradient centri-
fugation on Ficoll-Hypaque (Nycomed Pharma, Oslo,
Norway) and expanded [14].

Tissue preparation

Adipose tissue was extracted during lipo-aspiration of MSCs
from upper abdominal fat. The tissue was rinsed with PBS on
Teflon fleece to wash out erythrocytes. Fat spheres were sub-
sequently frozen in liquid nitrogen. Neutrophils were extract-
ed from peripheral whole blood that was supplemented with
30% of dextran. Cells settled down in a syringe after 30 min.
The upper phase was under-laid with histopaque 1083. After
centrifugation at 4 °C for 30 min at 1200 rpm, speed was
slowed down to 1050 rpm after 15 min for another 15 min.
Pelleted cells were resuspended in 10 ml water for water lysis.
For neutralization, 3.33 ml of 3.6% NaCl was added for
10 min. After 10 min centrifugation at 1050 rpm, pelleted
neutrophils were resuspended in TRIzol® Reagent
(Ambion). Plasma, serum, and platelets were prepared using
the Vacutainer system. Whole blood in serum tubes was left
undisturbed for clot formation. After 15–30 min, the clot was
centrifuged at 1000×g for 10 min and the supernatant serum
was immediately frozen at −80 °C. Plasma was prepared from
whole blood in EDTA tubes. After a centrifugation at 2000×g
for 10 min, the supernatant was frozen. Citrate tubes were
used to obtain platelets. The whole blood was centrifuged
for 15 min at 100×g without rotor break, preventing platelets’
activation. Endothelial progenitor cells (EPCs) were extracted
from umbilical cord blood and expanded in vitro using the
Lonza EGM™-2 kit. Human umbilical vein cells (HUVECs)
were freshly prepared using standard techniques from umbil-
ical cord and cultivated until passage four in EGM medium
(Lonza). Adipose tissue, cortex, placenta, decidua, heart, vena
cava, muscle, and umbilical cord were minced using pistils
and homogenized with matrix beads in the MP FastPrep-24
Tissue and Cell Homogenizer.

RNA preparation for RNA-seq and qRT-PCR analysis
of selected circRNA candidates

RNA was prepared using TRIzol® Reagent (Ambion) and
phenol/chloroform precipitation. For Illumina sequencing,
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rRNA depletion was done with the RiboMinus™ eukary-
ote kit according to manufacturer’s recommendation (Life
Technologies). Bioanalyzer measurement validated the suc-
cessful rRNA depletion. The Illumina TruSeq sample prep-
aration kit (v2) was used to generate the libraries for se-
quencing. For qRT-PCR, total RNA of the identical sam-
ples that were used for RNA-seq was digested with RNase
R (3 U/μg RNA, Epicenter Technologies) and incubated
for 15 min at 37 °C with following inactivation for 3 min
at 95 °C. To reach similarly effective RNase R treatment,
all samples were treated simultaneously in one approach.
Then, the RNA was spiked with 10% of Caenorhabditis
elegans total RNA. After phenol/chloroform precipitation,
the RNA was reverse transcribed using RevertAid first
strand cDNA synthesis kit (Fermentas) or Maxima RT
kit (ThermoFisher Scientific), and SYBR-green quantifica-
tion (Roche) was performed according to standard proto-
cols on ABI 7500 or StepOnePlus (ThermoScientific).
Oligonucleotides flanking the circRNA head-to-tail junc-
tions were designed in Primer3 (v. 0.4.0). RNase R assays
were normalized to C. elegans eif3d spiked-in RNA and to
human GAPDH or Vinculin. For experiments on WAS and
ADA-SCID samples, ΔCt was calculated compared to 28S
rRNA. In general, expression was quantified applying the
ΔΔCt method. qRT-PCR products were analyzed for
amplicon size, specificity, and integrity on 3% agarose
gels; concatemers were not taken into account. Sanger
sequencing of qRT-PCR products was performed using
the Big Dye® Terminator Cycle Sequencing on the
3130xl Genetic Analyzer (ABI) using Gene Mapper®
Software Version 4.0. Kit v1.1 (ABI). SeqMan software
(Lasergene Version 7.0; DNAStar) was used to analyze
the traces.

circRNA detection and annotation

circRNAs were detected and annotated using the Memczak
et al. (2013) pipeline. Human genome reference used for all
analyses was hg19 (February 2009, GRCh37), downloaded
from UCSC [15]. Upon detection, candidates were annotated
using RefSeq and GENCODE v17 gene models. Table S2 and
circBase summarize the detected circRNAs across all cell
types. Table S2 harbors genomic positions and annotated host
transcripts, sense or antisense strand orientation, circBase IDs,
genomic and spliced lengths, number of sequencing reads
supporting a head-to-tail junction, as well as the number of
either 5′ or 3′ linear reads for each circRNA candidate. We
also calculated the circular-to-linear ratios and added the list of
samples from other studies listed within circBase.

Data availability

RNA sequencing data have been deposited in the Gene
Expression Omnibus (GEO) under the accession number
GSE100242.

circRNA quantification

The ratio of circular and linear isoforms (circular-to-linear
ratio, CLR) was calculated as described in [16]. For each
circRNA candidate, we counted the number of reads overlap-
ping the head-to-tail junction, and the number of reads spliced
linearly over the 5′ and 3′ sites that gave rise to a circRNA.
CLRwas expressed as the number of reads spanning the head-
to-tail junction divided by the number of linear reads mapped
over the splice site (5′ or 3′) with the higher read count:

CLR ¼ #reads circular
.
max #reads linear 5−prime;#reads linear 3−primeð Þ

To avoid division by zero when calculating CLR, a
pseudocount of 1 was used where no linearly spliced reads
were detected. To estimate the expression levels of circRNA
host genes, we mapped RNA-seq libraries to the hg19 refer-
ence using STAR [17] and counted the reads mapped to
Ensembl (release 75) gene models using the htseq-count tool
[18, 19].

circRNA expression heatmaps

circRNAs in Figs. 1c and 2a, c were sorted into three discrete
expression classes: (i) Bhigh^—top 10% (5% for platelets)
expressed, measured by raw read counts, circRNAs in a par-
ticular sample; (ii) Bdetected^—all circRNAs that satisfied the

minimum expression threshold of two unique reads overlap-
ping head-to-tail junction; and (iii) Bnot detected^—circRNAs
that were not detected in a particular sample. Only circRNAs
that were assigned to Bhigh^ category in at least one of the
compared samples were plotted.

Differential gene expression

Differential gene expression analysis was performed using
the DESeq package [20 ] . me thod=Bb l i nd^ and
sharingMode=Bfit-only^ options were used when running
the estimateDispersions function, as suggested by the package
documentation for experimental designs with no biological
replicates.
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In-solution protein digest

Peptides were generated using an automated setup [21].
Briefly, samples were reduced with 1mM tris(2-carboxyethyl)
phosphine (TCEP) and free sulfhydryl groups carbamido-
methylated using 5.5 mM chloroacetamide. Proteins were
pre-digested with 0.5 μg sequencing grade endopeptidase
LysC (Wako) for 3 h at room temperature and subsequently
diluted with four volumes of 50 mM ammonium-bicarbonate
(ABC). Tryptic digestion occurred for 10 h at room tempera-
ture using 1 μg sequencing grade trypsin (Promega). The re-
action was stopped by adding trifluoroacetic acid (TFA) to a
final concentration of 1% resulting in a final pH of 2. The
peptides were purified by using C18 stage-tips (3 M) [22].

Mass spectrometry

Peptides eluted from C18 stage-tips were run on an LC-MS
setup. The fractionated and unfractionated samples were mea-
sured by LC-MS/MS on a Q Exactive orbitrapmass spectrom-
eter (Thermo) connected to a Proxeon nano-LC system
(Thermo) in data-dependent acquisition mode using the top
10 peaks for HCD fragmentation. Peptides were separated on
an in-house prepared nano-LC column (0.074 mm × 250 mm,
3 μmReprosil C18, Dr. Maisch GmbH). Five microlitres of the
sample were injected and the peptides were eluted on a 3-h
gradient of 4 to 76% ACN and 0.1% FA in water at flow rates
of 0.25 μl/min. MS acquisition was performed at a resolution

of 70,000 in the scan range from 300 to 1700m/z, MS2 spectra
were collected at a mass resolution of 17,000 with a fixed
injection time of 120 ms. Dynamic exclusion was set to 30 s
and the normalized collision energy was specified to 26. The
eluent was directly sprayed into anQ Exactivemass spectrom-
eter (Thermo Fisher Scientific) equipped with a nano
electrospray ion source. The recorded spectra were analyzed
using MaxQuant software package version 1.5.2.4 [23], with
an Andromeda search using the combined UniProt Homo
sapiens and Oryctolagus cuniculus databases and a custom
database for the circRNA-derived peptides with a false dis-
covery rate of 1% (peptides and proteins). The fixed and var-
iable modifications were set to carbamidomethylation of cys-
teines and methionine oxidation, respectively. For further data
analysis, the R statistical software package was used (supple-
ment: python script).

Results

circRNA resource catalog of 20 human tissues

We generated a circRNA resource catalog for various research
interests by sequencing ribosomal RNA-depleted total RNA
(Supplemental Table S1). The head-to-tail splice junction
identification and the sequence analysis were done according
to previously published protocols (Supplemental Fig. S1), [2,
24]. The circRNA catalog can be retrieved in Supplemental
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Table S2 or circBase, http://www.circbase.org/ [24]. We
selected circRNA candidates for validation according to
either of the following criteria: (i) the candidate origi-
nated from disease or developmental genes (Table 1);
(ii) the linear host transcripts have been proposed as
biomarkers; (iii) the circRNA was not present in

circBase; (iv) the circRNA was encoded from a
lncRNA; or (v) the circRNA showed extraordinary ge-
nomic length or expression determined via the read
count. In total, we selected 112 candidates, of which
we validated 71 circRNAs by RNase R assays (valida-
tion rate 63.4%, see BMethods^, Supplemental Fig. S2a–
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p). We normalized expression values to C. elegans eif3d
spiked-in RNA and to human GAPDH or Vinculin.
Concatamers in putative circRNA candidates were not
taken into account.

Of the 5225 circRNAs, 35.9% (1878 circRNAs) were
new compared to circBase [24]. circRNAs (3841) were
unique for the investigated cell types (Fig. 1a). We de-
tected 82.9% circRNAs in coding genes (exons, 5′ + 3′
UTRs), 2.2% antisense transcripts, 5.4% intron-derived
circRNAs, 6% in non-coding genes, and 1.1% from
intergenic regions (Fig. 1b).

circRNA expression in mesenchymal stem cells
and MSC-derived cells

First, we analyzed circRNA expression during MSC differen-
tiation. MSCs were differentiated into proliferating
chondrocytes, osteocytes, and vascular smooth muscle cells
(VSMCs). Flow cytometry revealed CD105+, CD90+, CD73+,
HLA-ABC+, CD31−, CD34−, CD45−, and HLA-DR− cells
and the multi-lineage potential validated MSC properties
[46, 48]. In MSCs, we detected 55 circRNAs, in contrast to
148 in MSC-derived chondrocytes, 104 in osteocytes, or 137
in VSMCs. In chondrocytes, we validated a circRNA deriving
fromPLOD2, a genewhich forms collagen crosslinks and was
differentially expressed in a model of osteoarthritis-related
synovial fibrosis [25]. During the abdominal fat aspiration to
obtain MSCs, we additionally harvested adipose tissue that
harbors the MSC niches [49]. In the abdominal fat of the same
MSC donor, we identified 507 circRNAs. We confirmed a
circRNA in SORBS1, a gene inhibiting the induction of glu-
cose transport by insulin, and two circRNAs in PLIN4, a gene
stimulating lipolysis in adipocytes (Supplemental Fig. S2a–d)
[50, 51]. When comparing different MSC-derived tissues, we
commonly observed different circRNA isoforms spliced from
the same host genes in different MSC-derived cells. Solely
eight circRNAs overlapped between adipose tissue, MSCs,
and their derived cells (Supplemental Table S2). In eight dif-
ferent tissues of one healthy donor, we excluded interindivid-
ual differences and found tissue-restricted expression patterns
(Fig. 1a). The absence of circRNA housekeeper and direct
comparisons of circRNA expressions between different tis-
sues are controversially discussed endeavors. Thus, we select-
ed the top 10% circRNA candidates within MSCs and MSC-
derived cells and clustered 31 circRNAs candidates based on
their expression levels: Bnot detected,^ Bdetected^ with at
least two reads, or Bhighly expressed^ when detected within
the top 10% of the candidates (Fig. 1c). We observed ubiqui-
tous expression for some circRNAs and differential expres-
sion regarding the MSC-derived cells. We validated selected
circRNA candidates within the cluster analysis showing
RNase R resistance and confirmed the results of clustering
(Fig. 1d and Supplemental Fig. 2q).T
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circRNAs in disease-associated genes of clinically relevant
tissues

Next, we compared physiologically neighboring tissues: umbili-
cal cord, endothelial progenitor cells (EPCs), HUVECs, and
HUAECs. Of the 211 circRNAs in HUAECs, only two over-
lapped with the other tissues. EFEMP1, an angiogenesis promot-
er, poor prognostic marker in ovarian cancer, and potential ther-
apeutic target in glioblastoma treatment, harbored a circRNA in
HUVECs (22 circRNAs) [26, 52]. As previously described, we
analyzed the top 10% of the circRNA candidates. A pool of 43
circRNAs showed differential expression and we validated two
circRNAs (Fig. 2a, b and Supplemental Fig. 2q).

In cerebral cortex (339 circRNAs), we validated circRNAs
spliced from important cerebral genes. ERC2 is involved in
neurotransmitter release and expresses a circRNA [53]. Five
circRNA isoforms were found in ATRNL1, a gene regulating
the energy homeostasis by melanocortins in the hippocampus
[54]. Another circRNA is hosted by NTRK2, a gene that was
associated with synaptic dysfunction in Huntington’s disease
and neuronal differentiation and plasticity in hippocampus
[27–29]. We validated a circRNA in RTN4, a gene inhibiting
axonal sprouting and modulating Alzheimer’s disease pro-
gression in a mouse model and one of two predicted
circRNAs in HOMER1, a gene that is involved in synaptic
activity and various neurological disorders [30–32]. Three
circRNAs were expressed in ATXN10 that maintains the sur-
vival of neurons, studied in the spinocerebellar ataxia type 10
(Supplemental Fig. S2g) [33].

In placenta, we detected 63 circRNAs, in comparison to
173 in decidua; 15 circRNAs overlapped. We confirmed a
circRNA in PSG5, a gene encoding a pregnancy-specific gly-
coprotein. Low levels indicate pregnancy complications [34].
Severe early onset preeclampsia, fetal growth restriction, and
HELLP syndrome were associated with high expression of
PAPPA2 that encoded two circRNAs [35–38]. ALPP, less
expressed and active in hyperglycemic and diabetic placentas
of pregnant women infected with or without Trypanosoma
cruzi, harbored a circRNA (Supplemental Fig. S2h) [39].

We also obtained right atrial tissue and vena cava from two
children with multiple cardiac defects. Atrium (340
circRNAs) and vena cava (702) had an intersection of 115
circRNAs; 51 overlapped with calf muscle. In atrium, we
validated a circRNA in NPPA, a gene that was associated with
development of type 2 diabetes [40]. NPPA is reactivated in
response to cardiovascular disorders and converted to its ac-
tive form by CORIN, which harbored four circRNAs (validat-
ed in atrium and vena cava) and could be potential biomarkers
for heart failure [41, 42]. Atrial fibrillation was linked to the
dysfunction of RYR2, which also produces seven circRNA
isoforms in atrium and ten in vena cava [43]. Mutations in
myosin heavy chains cause hypertrophic cardiomyopathies
[44]. In myosin MYH6, we validated one circRNA. QKI is

involved in circRNA biogenesis [6], is responsible for cardio-
vascular development, and encodes two circRNAs in atrium
and vena cava [55]. Alterations in the regulation and expres-
sion of SLC8A1 (two circRNAs in atrium) contribute to vari-
ous cardiovascular symptoms (Supplemental Fig. S2i–k) [45].

circRNAs and their isoforms in platelets

Platelets expressed 3324 circRNAs. Platelets derive from
bone marrow megakaryocytes, lack nuclei and highly abun-
dant mRNA reservoirs, although translational capabilities are
intact [56–59]. Previously, high circRNA expression and
circRNA properties were described in platelets and this en-
richment was associated with transcriptome degradation [60].
We found in our data that platelets harbored much more abun-
dantly expressed circRNAs than any other tissue. For exam-
ple, circRNA expression in ACVR2A and SMARCA5 was ex-
tremely high compared to mRNA (Supplemental Fig. S3). We
validated circRNAs in the phosphodiesterases PDE3A,
PDE4D, and PDE5A. PDEs hydrolyze cAMP and cGMP to
control blood vessel relaxation, cardiac contractility, and inhi-
bition of platelet aggregation [61–64]. PDE3Awas previously
associated with Mendelian hypertension [46, 65]. Moreover,
the guanylate cyclase GUCY1B3 converting GTP into cGMP
expressed a circRNA (Supplemental Fig. 2l–o) [66].

CircRNA expression in plasma (57), serum (39), suggested
that circRNAs could be secreted, as it was shown earlier for
micro- and other RNAs, and indicated by circRNAs identified
in cell culture or serum exosomes [67–71].

In neutrophils (274 circRNAs), TLR6 functions in the in-
nate immune response and harbored a circRNA [72]. Another
key component in the immune system expressing a circRNA
in neutrophils isMYO1F, a class I myosin regulating the host
defense against infection [73]. No overlap between plasma,
serum, neutrophils, and platelets facilitates the idea of tissue-
restricted circRNA expression. For clustering, we used all
plasma and serum circRNAs, the top 10% of neutrophils and
the top 5% of platelets and validated four candidates (Fig.
2c, d and Supplemental Fig. 2q).

Due to the lack of nuclei and the highly abundant
circRNAs in platelets, we hypothesized that circRNAs could
serve as templates for translation as recently shown for few
circRNA examples in human and fly [74, 75]. Thus, we used
RNase R-treated whole platelet RNA to perform in vitro trans-
lation experiments followed by highly sensitive mass spec-
trometry. We derived putative open reading frames (ORF) that
span head-to-tail junctions of our circRNA candidates. These
predictions were compared tomass-spectrometrically detected
peptides. Controls were reticulocyte lysate of the in vitro
translation kit, non-RNase R-treated whole platelet RNA,
and total protein of the same platelet-donor. Although we de-
tected peptides in the RNase R-treated translated sample and
in the cell lysate matching circRNAs in platelets, those
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candidates did not overlap with head-to-tail junctions
(Supplemental Table S3).

We also investigated circRNA isoforms, since we observed
around 100 genes hosting more than five different circRNA
isoforms. For example, we detected 18 circRNA isoforms
derived either from PTPN12 or TTN in platelets, atrium, and
vena cava (Supplemental Fig. S4). We compared circRNA
expression directly to linear transcript expression, by counting
linearly spliced and head-to-tail spliced reads. The number of
reads overlapping with the head-to-tail splice junctions was
divided by the number of linear splicing events with identical
splice sites (Supplemental Table S2). The calculated value was
plotted against the transcript copies per million transcripts
(TPM) to describe circRNA expression as circular-to-linear
ratio (Fig. 2e). Collectively, we detected high circular-to-
linear expression ratios in tissues with abundant circRNA ex-
pression, e.g., a platelet circRNA in SMARCA5 had a circular-
to-linear ratio of 151:1 (Supplemental Fig. S3b).

circRNAs are differentially expressed in disease-relevant
genes

Finally, we demonstrate differential circRNA expression in
ADA-SCID and WAS, two primary immunodeficiencies
which are caused by mutations in ADA or WAS, respectively
[76–78]. First, we compared linear transcripts from one pa-
tient compared to a non-affected control. We detected signif-
icantly differential expression (p ≤ 0.05) of 79 mRNAs in
ADA-SCID and 19 mRNAs in WAS lymphoblastoid cells
(LCLs) (Supplemental Table S4 and Supplemental Fig. S5a,
b). The results were consistent with the molecular pathogene-
sis of both disease phenotypes. For example, upregulated
BANK1 (p = 2.30 × 10−3, log2-fold change (lfc) = 3.8) or
PBXIP1 (p = 3.53 × 10−2, lfc = 2.4) mRNAs in ADA-SCID
were associated with impaired B cell receptor-induced calci-
um mobilization or early blocking of B cell development in
the bone marrow (Supplemental Table S4) [79, 80].

We next asked whether these differentially expressed linear
transcripts harbor also circRNAs with differential expression be-
tween patients and controls. We found a circRNA in ROBO1, a
gene upregulated in ADA-SCID (mRNA: p = 9.76 × 10−6,
lfc = 5.3) and WAS (mRNA: p = 3.68 × 10−4, lfc = 8.31,
Supplemental Table S4). Moreover, CDC42BPA expressed an
upregulated circRNA in ADA-SCID (mRNA: p = 3.46 × 10−3,
lfc = 4.7) andWAS (mRNA: p = 1.93 × 10−3, lfc = 7.4). Notably,
ROBO1 andCDC42 are linked to the pathogenesis ofWAS. Slit-
2 and Robo-1 complexes have been described to inhibit the
CXCR4/CXCL12-mediated chemotaxis of T cells [81].
Moreover, ROBO1 and ROBO4 bind WAS to induce filopodia
formation [82, 83]. Cdc42-dependent WAS activation was also
reported [84, 85]. CDC42 is a major regulator of podosome
formation and remodels actin during B cell signaling [86, 87],
whereasCDC42BPA is a downstream effector of CDC42 [88]. B

cell signaling is impaired both in ADA-SCID [79, 80] andWAS
[89, 90]. In ADA-SCID, we found a circRNA in TNFRSF11A
(mRNA: p = 8.28 × 10−3, lfc = 3.3) TNF receptors participate in
several pathways altered in ADA-SCID [14]. We first validated
the circRNAs inROBO1,CDC42BPA, and TNFRSF11A (Fig. 2f
and Supplemental S6a) and tested next their differential expres-
sion in three WAS and four ADA-SCID samples, compared to
four non-affected LCL samples (Fig. 2g). circRNA expression of
phenotypically relevant genes was higher in the disease samples
(Fig. 2g).

Discussion

Collectively, we provide a circRNA catalog of human tissues
relevant to various fields of clinical research. We provide evi-
dence that circRNAs could serve as biomarkers and that
circRNA expression profiles could be directly linked to clini-
cally apparent phenotypes. We focused on detecting circRNAs
in various single samples. For further analyzing the proposed
circRNA candidates as suitable biomarkers, broader studies
addressing tissue specificity vs. donor specificity are needed.
Our data corroborate recent findings that circRNA expression is
highly tissue-specific [2, 16, 91]. We did not find evidence that
platelet circRNAs were translated; however, our result does not
provide conclusive evidence that circRNAs are not translated,
as it highly depends on mass-spec sensitivity. As previously
suggested [60], a resistance to RNA degradation can explain
the high abundance of circRNAs in platelets. In the absence of
transcription, the detected circRNAs could function indepen-
dently of transcriptional regulation.

As discussed previously [2], circRNAs uncovered in this
study could contribute to regulatory networks governing cod-
ing gene expression by acting as miRNA target decoys, RNA-
binding protein (RBP) sponges, scaffolding molecules, and
transcriptional regulators. A circRNA function is further sup-
ported by the conserved nature of circRNA expression and the
tissue-specific and regulated abundance [16]. Although we
can only speculate that currently disclosed circRNAs influ-
ence the functions of their linear counterparts, these new iso-
forms need to be considered when investigating disease-
relevant genes. Since circRNA biogenesis can compete with
pre-mRNA splicing, this opens up the possibility that the
mRNA output from those, oftentimes well studied genes, is
controlled by the hitherto unknown circRNA [5].
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