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Abstract  

Microglia, the tissue resident macrophages of the CNS, are implicated in a broad range of 

neurological pathologies, from acute brain injury to dementia. Here, we profiled gene 

expression variation in primary human microglia isolated from 141 patients undergoing 

neurosurgery. Using single cell and bulk RNA sequencing, we defined distinct cellular 

populations of acutely in vivo-activated microglia, and characterised a dramatic switch in 

microglial population composition in patients suffering from acute brain injury. We mapped 

expression quantitative trait loci (eQTLs) in human microglia and show that many disease-

associated eQTLs in microglia replicate well in a human induced pluripotent stem cell (hIPSC) 

derived macrophage model system. Using ATAC-seq from 95 individuals in this hIPSC model 

we fine-map candidate causal variants at risk loci for Alzheimer’s disease, the most prevalent 

neurodegenerative condition in acute brain injury patients. Our study provides the first 

population-scale transcriptional map of a critically important cell for neurodegenerative 

disorders. 

 

 

 

 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.20.874099doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.874099


Introduction 

Microglia are tissue resident macrophages of the central nervous system and play critical roles 

in neurological immune defence, development and homeostasis (Schafer and Stevens 2015; 

Q. Li and Barres 2018; Salter and Stevens 2017). These highly dynamic cells are challenging 

to study in the laboratory and are strongly influenced by different experimental environments 

(Gosselin et al. 2017). Genetic studies also strongly implicate microglial dysfunction in 

neurodegeneration (Guerreiro et al. 2013; Jonsson et al. 2013; Tansey, Cameron, and Hill 

2018; Gjoneska et al. 2015) particularly in the context of the injured brain (Johnson and 

Stewart 2015). Single cell transcriptomics has suggested that microglial function may vary 

across age, sex and brain region (Olah et al. 2018; Keren-Shaul et al. 2017; Hammond et al. 

2019; Masuda et al. 2019; Mrdjen et al. 2018; Mathys et al. 2017). Previous studies have used 

frozen post-mortem tissue from existing brain banks or fresh surgical samples typically from 

restricted patient groups, typically temporal lobe resections for epilepsy or peritumoral 

sampling. However, variability in the post-mortem index produces substantial variation in 

cellular expression (Welch et al. 2019). Because of this, studies of microglial activation in 

humans have relied on ex vivo stimulation with no available data from acutely injured human 

brains. The challenge of sampling also means that large scale genetic studies of microglia 

have not been attempted to date. Population studies have demonstrated that individuals 

subject to mild brain trauma are 5-fold more likely to develop Alzheimer’s Disease (Mackay et 

al. 2019). Consequently, it is of particular importance to understand the activation of human 

microglia in the context of acute brain injury together with the underpinning genetic contribution 

to neurodegeneration. 

Characterisation microglial cell populations 

Here, we describe the analysis of human microglia isolated from 141 patients undergoing a 

range of neurosurgical procedures (Figure 1a). We recruited patients from a range of 

pathologies, including 51 individuals with acute brain injury (haemorrhage and trauma), who 

sustained substantial parenchymal injury, enabling us to observe in vivo microglial activation. 

For each individual, we isolated CD11b-positive cells and performed both single cell 

(SmartSeq2) (Picelli et al. 2014) and bulk RNA-seq on each individual.  After QC, we retained 

112 bulk RNA-seq samples, and 9,538 single cells from 129 patients (Figure 1b). All but three 

of our bulk RNA-seq samples formed a single cluster with microglia from two previous studies 

(Y. Zhang et al. 2016; Gosselin et al. 2017), and were distinct from both GTEx brain and 

BLUEPRINT monocytes (Figure 1c). We then compared our single cell data to public datasets 

of 68K PBMCs isolated from a healthy donor (Zheng et al. 2017) and 15K brain cells from 5 

GTEx donors (Habib et al. 2017). A total of 8,662 cells formed a cluster with the microglia 

population found in GTEx samples and distinct from PBMCs (Figure 1d) and expressed a 

range of known microglial marker genes, including P2RY12, CX3CR1 and TMEM119, to a 

high level (Extended Data Figure 1a). We defined this population of cells as microglia for the 

remainder of our analysis. We found three less common populations of cells that closely 

resembled other blood cell types, including NKT cells, monocytes or B-cells that comprised 

8.4%, 0.5% and 0.3% of our single cell dataset, respectively. These cell types may reflect 

either infiltration of immune cells as a result of blood-brain barrier breakdown or intravascular 

contamination within the tissue. In support of the former hypothesis, we also found that the 

abundance of infiltrating cells strongly correlated with patient pathology, with trauma patients 

in particular enriched (OR=7.6, Fisher exact test P=1.2x10-155) (Figure 1d). We also found a 
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significant effect of age on the abundance of infiltrating cells (3.4% increase per year, Wald 

test P=0.014) after adjusting for all known confounding factors, which could reflect blood brain 

barrier degeneration over the lifespan (Extended Data Figure 1b).  

 

Within microglia, we found four subpopulations of cells (Figure 2a). Two populations (C and 

D) were common in patients with acute brain injury (25-76% of cells) but rare in other 

pathologies (<5% of cells). Population B was enriched in tumor patients (OR=4.9, P=7.6x10-

169) while population A was most common in control and hydrocephalus patients (Figure 2b, 

c). In populations A and B, we observed higher expression of microglial markers including 

P2RY12 and CX3CR1. Cells from B, C and D also demonstrated an upregulation of general 

immune response and cell activation (IL1B, CD83 & CCL3) (Figure 2d, e; Extended Data 

Figure 2; Supplementary Table 1). Cells from C and D exhibited additional upregulation of 

acute immune response pathways, including NF-kappa B, STAT3, RUNX1 as well as  MHC-I 

expression. Population C also showed differential expression of genes associated with stress 

induced senescence and DNA damage (HIST1H2BG), populations D expressed genes 

associated with cell proliferation (FLT1) and chemotaxis (CCL4, CXCL8, CXCL16), the latter 

of which is shared with population B. Population B additionally showed strong upregulation of 

catabolic process and metabolism (GPX1) and phagocytosis (TREM2). Our cells partially 

overlapped with the transcriptional signatures of disease-associated microglia established in 

previous literature (Keren-Shaul et al. 2017; Xue et al. 2014) (Figure 2f, g). Taken together, 

these results suggest that our data contain a mix of naive microglia (population A), with three 

distinct states of activation that, in part, are driven by patient pathology. 

Biological drivers of microglial expression 

Our sampling design enabled us to explore the relative importance of a wide range of biological 

factors in driving microglial gene expression while controlling for important technical 

confounders, using variance components analysis. Of the biological factors we examined, 

clinical pathology explained more variation than all other factors combined, although all factors 

except sex, including age, brain region, dominant hemisphere and ethnicity, explained a 

fraction of variation that was significantly different from zero (LR test FWER 0.05) (Figure 3a). 

Patient explained the most variability of any single factor in the model. Although this factor 

captured the contribution of genetic background, it is also likely to reflect unmeasured 

technical effects, such as variability in cell dissociation and surgical sampling, which are 

confounded with patient in the model. The cellular pathways that differed between patient 

pathologies closely resembled the differences we observed between different subpopulations 

of microglia (Extended Data Figure 3a, b). We also detected 260 genes that varied 

significantly by patient age, showing upregulation of inflammation (CLEC7A, CIITA and TLR2) 

and downregulation of cell identity (P2RY12, CX3CR1), motility and proliferation (CSF1R) with 

increasing age (Figure 3b-e; Extended Data Figure 3c; Supplementary Table 2). Although 

sex explained little variation globally, we found 97 genes that were differentially expressed 

between males and females (Figure 3f). These included multiple genes in the complement 

pathway and synaptic pruning mechanisms (C1QA, C1QC and C3) that were more highly 

expressed in females than males (Figure 3g; Extended Data Figure 3d; Supplementary 

Table 3). Anatomical region of sampling also had a subtle effect on transcriptional variation, 

with cerebellar microglia, which are known to exhibit a distinct, less ramified morphology 

upregulating multiple recruitment chemokines (CCL4, CCL3, CCL4L2, CCL3L3) (Figure 3h; 

Extended Data Figure 3e; Supplementary Table 4). 
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eQTL mapping in human microglia and neurodegeneration 

We constructed a map of expression quantitative trait loci (eQTLs) in primary human microglia. 

After excluding samples with low genotyping quality or substantial non-European ancestry, we 

mapped eQTLs using our bulk RNA-seq data from 93 individuals, and detected 401 eQTLs, 

summing over hierarchical model posteriors (585 eQTLs at FDR 5% using linear model). The 

low number of eQTLs reflected the high between-sample heterogeneity in microglia, compared 

with other cell types (Extended Data Figure 4a). We tested for colocalization of risk loci from 

18 genome wide association studies (GWAS) with microglia eQTLs (Figure 4a), including five 

previous studies of Alzheimer’s disease (AD), and our own meta-analysis of these five studies 

for comparison (Online Methods). Across all AD GWAS, we found up to 11 risk loci with a 

posterior probability of colocalisation (PP4) greater than 0.5 (Table 1). These included well-

known AD loci, such as BIN1, and less well-studied AD associations, for example EPHA1-

AS1. We repeated the analysis using microglia eQTLs mapped by RASQUAL to support the 

colocalisation result using the allele specific expression signature (Supplementary Table 5). 

This analysis retrieved colocalisations at other AD GWAS loci, such as CD33 and CASS4. 

However, the test statistics may be inflated due to the additional overdispersion in our data 

set (Extended Data Figure 4a). 

 

Next, we compared AD risk loci from our meta-analysis with eQTLs from the GTEx project 

(v7), in circulating blood monocytes and in a novel dataset of IPSC-derived macrophages 

(IPSDMs) from 133 healthy individuals (Online Methods) (Figure 4b). We found more 

colocalised AD eQTLs in microglia than in any GTEx brain region. We also observed many 

AD risk loci that colocalised with eQTLs in blood monocytes and IPSDMs. To explore the level 

of cell-type specificity, we mapped eQTLs jointly analysing data from microglia, monocytes 

and IPSDMs using a three-way Bayesian hierarchical model (Extended Data Figure 4a, b; 

Online Methods). Using this approach, we discovered 855 eQTLs, of which 108 were 

microglia-specific, 449 were found in all three cell types, and 192 were shared with IPSDMs 

but not monocytes. We also used the three-way model to evaluate the extent of sharing 

between the microglia eQTLs, IPSDM or monocyte eQTLs, and AD risk loci. Many colocalised 

AD loci, including BIN1, are found in both microglia and IPSDMs, but absent in monocytes 

(Figure 4c, d). There were also multiple AD loci where an eQTL was only detectable in 

circulating monocytes (e.g., CASS4 locus), although this is likely to reflect primarily the 

differences in power between the monocyte (n=193) and microglia data sets.  

 

IPS models of AD risk loci are an invaluable resource for the development of future 

therapeutics. We next identified three AD association signals (BIN1, the EPHA1 locus and 

PTK2B) that colocalised with both microglia and IPSDM eQTLs (Figure 4d). The association 

for EPHA1-AS1 was shared across many cell types (Extended Data Figure 5a, b), while the 

direction of effect at the PTK2B locus was inconsistent (Extended Data Figure 5c). To fine-

map causal variants we generated ATAC-seq data from 5 primary microglia and 89 IPSDMs. 

Colocalisation analysis revealed that the AD association signal at BIN1 was highly cell type 

specific (Figure 5a). The lead SNP of this association signal, rs6733839:C>T, was located in 

a region of open chromatin in both microglia and IPSDMs in which the AD risk allele. 

rs6733839:C>T was also associated with a significant change in chromatin accessibility 

(Figure 5b, P<6.1x10-10), and the association signal for chromatin also colocalised 

(PP4=0.996) with the AD association signal (Figure 5c-f). The AD risk allele at 

rs6733839:C>T created a predicted high-affinity binding site for the MEF2A transcription factor 
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(Extended Data Figure 5d). We found that, although BIN1 and MEF2A are broadly expressed 

in many tissues, co-expression of both genes was found only in primary microglia and IPSDMs 

(Extended Data Figure 5e).  

 

Discussion 

Here we present a population-level study of human primary microglia. By sampling cells from 

living donors, we defined transcriptional signatures of in vivo microglial activation avoiding 

artefacts from post mortem index and cell culture. We identified multiple microglial 

subpopulations and showed how these populations are shaped by insult, injury and other life 

history factors. We also created the first map of eQTLs in microglia, identified high confidence 

causal genes and variants underlying risk loci for Alzheimer’s disease, and identified a subset 

that replicated in a scalable IPS model system. 

 

Our results underscore the variability between microglia cells from different individuals. One 

implication of the variation we observed between different patient pathologies is that the full 

spectrum of microglial function is not well cannot be captured by small studies of a single 

patient population. The most obvious example of this are the populations of activated microglia 

we identified that account for less than 5% of cells in non-trauma patients. Our results also 

provide a picture of the function of microglia following severe trauma, producing cell 

populations that exhibit a mixture of a proinflammatory and chemotactic phenotypes. Notably, 

although animal models of acute brain injury suggest rapid expansion of microglia following 

trauma (Vela et al. 2002), we only observed one population we identified had a proliferative 

phenotype, and both showed downregulation of CSF1R. Also in contrast to previous reports 

(Olah et al. 2018), we found relatively subtle effects of age on microglial transcription. The 

modest changes we did detect were consistent with increased inflammatory senescence in 

microglia over the lifespan. Likewise, differences in microglia expression between males and 

females were relatively small, although we did observe increased complement activity in 

females, perhaps suggesting a role for complement pathways in the higher incidence of AD in 

women. 

 

Our eQTL analysis revealed a number of candidate risk genes for AD that function in microglia. 

This included well-known genes, such as BIN1, and a number of less well understood loci. 

One example we discovered was the EPHA1-AS1 locus, where AD risk appeared to be driven 

by a change in the expression of a long noncoding RNA, rather than the neighbouring protein-

coding gene EPHA1 (Extended Data Figure 5a, b). We did not detect some well-known AD 

risk loci, such as CD33, with suspected function in myeloid cells. In the case of CD33, analysis 

of splicing patterns did indeed reveal a splice QTL at exon 2 (Extended Data Figure 6a-c), 

consistent with previous studies (Raj et al. 2014).  In other cases, we found strong 

colocalisation between AD risk loci and monocyte, but not microglia, eQTLs. While it is 

tempting to conclude that this reflects a monocyte-specific function, we believe it is more 

plausible that this reflects lower power in our microglia dataset and that, with an increased our 

sample size, many of these eQTLs would be found to be shared between the two cell types. 

One example of this is the CASS4 locus, where the minor allele frequency of the GWAS lead 

variant (rs6014724:A>G) was >10% in the monocyte data, but <5% in our microglia data set 

(Extended Data Figure 6d). Other examples of apparently spurious monocyte-specific 
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signals included multiple genes, such as TAS2R41 and OR10AC1, that physically overlapped 

the second intron of EPHA1-AS1 (Extended Data Figure 6e) 

 

Our comparative analysis identified multiple cases where colocalisation signals between AD 

and microglia eQTLs were robustly replicated in IPS derived macrophages. Although more 

complicated protocols for IPS-microglia differentiation exist, (Abud et al. 2017), our results 

highlight that IPS derived macrophages are a promising model system for deeper functional 

characterisation in specific cases. Our analysis also revealed instances where this assumption 

appeared not to hold. For example, although we found an eQTL for PTK2B that colocalised 

with AD in all three myeloid cell types, the direction of effect of the candidate causal variant 

differed (Extended Data Figure 5c). 

 

In summary, we have generated a population-scale map of gene expression in primary human 

microglia, across a diverse set of clinical pathologies. We demonstrate the microglial response 

to an acute insult of the brain parenchyma. Our study provides a systematic exploration of 

microglia heterogeneity, defines a reference data set of microglial expression and provides a 

foundation for robust future functional studies of neurodegenerative disease mechanisms 

using IPSC-based models. 

 

Data Availability 

Raw data (fastq files and CRAM files) of Smart-Seq2 and bulk RNA-seq for the primary 

microglia samples as well as bulk RNA-seq and ATAC-seq for the iPS cell derived 

macrophage are available from European phenome-Genome Archive (EGA) (Accession ID: 

EGAD00001005736). Summary statistics of eQTLs and caQTLs for primary microglia and 

iPSDM are also available from EGA (Accesssion ID: EGAD00001005736).  

 

Online Methods 

Tissue sampling 

Human brain tissue was obtained with informed consent under protocol REC 16/LO/2168 

approved by the NHS Health Research Authority. Adult brain tissue biopsies were taken from 

the site of neurosurgery resection for the original clinical indication. Paired venous blood was 

sampled at the induction of anaesthesia. Tissue was transferred to Hibernate A low 

fluorescence (HALF) supplemented with 1x SOS (Cell Guidance Systems), 2% Glutamax (Life 

Technologies), 1% P/S (Sigma), 0.1% BSA (Sigma), insulin (4g/ml, Sigma), pyruvate (220 

g/ml, Gibco) and DNase 1 Type IV (40 g/ml, Sigma) on ice and transported to a dedicated CL 

2 laboratory. 

 

Dissociation of brain tissue 

Brain tissue was mechanically digested in fresh ice-cold HALF supplemented with 1x SOS 

(Cell Guidance Systems), 2% Glutamax (Life Technologies), 1% P/S (Sigma), 0.1% BSA 

(Sigma), insulin (4 g/ml, Sigma), pyruvate (220 g/ml, Gibco) and DNase 1 Type IV (40 g/ml, 

Sigma). The prepared mix was spun in HBSS+ (Life Technologies) at 300g for 5 mins and 

supernatant discarded. The digested tissue was rigorously triturated at 4°C and filtered 

through a 70 m nylon cell strainer (Falcon) to remove large cell debris and undigested tissue. 
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Filtrate was spun in a 22% Percoll (Sigma) gradient with DMEM F12 (Sigma) and spun at 800g 

for 20 mins. Supernatant was discarded and the pellet was re-suspended in ice cold 

supplemented HALF. 

 

Fluorescence-activated cell sorting 

For single cell smart sequencing, human microglia were using fluorescence-activated cell 

sorting. The isolated cell suspension was incubated with conjugated PE anti-human CD11b 

antibody (BioLegend) for 20 mins at 4°C. Cells were washed twice in ice cold supplemented 

HALF and stained with Helix NP viability marker. Cell sorting was performed on BD AriaIII cell 

sorter (Becton, Dickinson and Company, Franklin Lakes, New Jersey, US) at the University of 

Cambridge Cell Phenotyping Hub at Cambridge University Hospital, Cambridge, UK. Cells 

were either sorted into 98 well plates, prepared by the Wellcome Trust Sanger Institute for the 

purposes of single cell sequencing. 

 

Magnetic-activated cell sorting 

To avoid sustained stress on microglia as a result of prolonged sorting times for bulk 

sequencing magnetic-activated cell sorting was performed on these cells. An isolated cell 

suspension of cells were incubated with anti-CD11b conjugated magnetic beads (Miltenyi) for 

15 mins at 4°C. Cells were washed twice with supplemented HALF and passed through an 

MS column (Miltenyi). Each sample was washed three times in the column and then extracted. 

Samples were added to a 1.5 ml Eppendorf to which 350 µl of RNAlater (Qiagen) was added, 

samples were stored at -80°C  prior to sequencing 

 

Blood preparation 

DNA extraction was performed from the venous blood. 10 ml of whole blood was washed with 

1% phosphate buffered saline (PBS) and layered on pancoll human (PAN biotech) and spun 

at 500g for 25 mins. The white cell component was extracted and transferred to a 1.5ml 

Eppendorf and stored as a frozen pellet at -80C prior to sequencing. 

 

SNP genotyping 

Genomic DNA was extracted from blood using the QIAamp DNA mini and blood mini kit 

(Qiagen, 51104). 200 ng of gDNA was used for input for the SNP array (Infinium Omni2.5-8 

v1.4 Kit) and genotyping was performed according to the manufacturer's instructions. We 

discarded 3 samples that showed the genotyping call rate below 95% (see Supplementary 

Table 6 for details). We downloaded VCF files from the 1000 Genomes Phase III integrated 

variant set from the project website (see URL) as the reference haplotype data. We then 

performed whole genome imputation for our genotype data by using the Beagle software 

(version 4.0; see URLs). We converted the genome coordinate from GRCh37 to GRCh38 

using CrossMap (see URL). 

 

iPS cell culture and macrophage differentiation  

We cultured 133 iPS cell lines from HipSci (Kilpinen et al. 2017). iPS cell culture and 

macrophage differentiation was carried as previously described (Alasoo et al. 2018) but with 

some minor modifications (see Supplementary Methods for details). 

 

Single cell RNA-seq of primary microglia 

Single primary microglia cells were processed as previously described (Picelli et al. 2014) but 

with some minor modifications to the Nextera library making process: 0.5 ng of cDNA was 
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used as input for the tagmentation process with all Nextera (Illumina, FC-121-1030) reagent 

volumes scaled down 100-fold. Tagmentation was quenched with 0.2 % sodium dodecyl 

sulphate. Libraries were amplified with KAPA HiFi (Kapa Biosystems, KK2601) with indexing 

primers ordered from Integrated DNA Technologies. 

 

Low-input bulk RNA-seq and ATAC-seq library preparation for primary microglia and 

iPS-derived macrophages 

For RNA-seq samples, between 0.3 ng and 10 ng of bulk total RNA from primary microglia 

cells or iPS-derived macrophage cells was used as input for a modified Smart-seq2 library 

preparation (Picelli et al. 2014) (see Supplementary Methods for detailed protocol). ATAC-seq 

library preparation was performed as previously described (Alasoo et al. 2018). Pools of 96 

libraries were sequenced over 8 lanes or 24 lanes of a HiSeq SBS v4 for RNA-seq and ATAC-

seq preparations, respectively, collecting 75 bp paired-end reads. 

 

Bulk RNA-seq data of other myeloid cells and brain tissues 

We downloaded fastq files of the bulk RNA-seq of 6 primary microglias (pMICs) and 9 iPS cell 

derived microglia (iMICs) (Abud et al. 2017), 10 monocyte derived macrophages (MDMs) and 

iPS cell derived macrophages (iMACs) (Alasoo et al. 2015), 10 iMICs, 8 MDMs and 4 pMICs 

(Douvaras et al. 2017), 45 pMICs (Gosselin et al. 2017), 9 iMICs and 3 pMICs (Muffat et al. 

2016), 18 iMACs and 9 MDMs (H. Zhang et al. 2015), and 3 pMICs (Y. Zhang et al. 2016). 

See Supplementary Table 7 for details of cell types and sample sizes. For brain tissues, we 

downloaded the count table of RNA-seq data for all tissues from GTEx (V7; see URL) and 

extracted 1,671 brain samples. We also downloaded fastq files of the BLUEPRINT monocyte 

RNA-seq data from EGA (see URL) and processed as same as our sample.  

 

Sequencing data preprocessing 

All sequence data sets were aligned to human genome assembly GRCh38. We performed 

adapter trimming of Tn5 transposon and PCR primer sequences for our RNA-seq (both single-

cell and bulk) and ATAC-seq data using skewer (Jiang et al. 2014) (version 0.1.127; see URLs) 

before alignment. Both Smart-seq2 and bulk RNA-seq data were aligned using STAR (Dobin 

et al. 2013) (version 2.5.3a; see URLs) using ENSEMBL human gene assembly 90 as the 

reference transcriptome. All other RNA-seq data were also aligned as same as our RNA-seq 

data without adapter trimming. Following alignment, we used featureCounts (Liao, Smyth, and 

Shi 2014) (version 1.5.3; see URLs) to count fragments for each annotated gene. The ATAC-

seq data were aligned using bwa (H. Li and Durbin 2009) (version 0.7.4). We performed peak 

calling as described in (Kumasaka, Knights, and Gaffney 2019) by pooling all five samples. 

 

Smart-seq2 scRNA-seq quality controls 

In total we sequenced 26,496 cells, of which 9,538 cells passed the quality control criteria: the 

minimum number of sequenced fragments (>10,000 autosomal fragments), the minimum 

number of expressed genes (>500 autosomal genes), mitochondrial fragment percentage 

(<20%) and the library complexity (percentage of autosomal fragment counts for the top 100 

highly expressed genes<30%). We also performed demuxlet (Kang et al. 2018) to remove 

doublets from two different patients with different genetic background. We then performed cell 

type clustering with other primary single cell RNA-seq of 68k PBMCs and GTEx brain tissues 

(Zheng et al. 2017; Habib et al. 2017) (see below). We fit the latent factor linear mixed model 

in which the three different studies were treated as a random effect (see Supplementary Note 

Section 1 for details). We obtained the 12 latent factors which were subsequently used for 
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UMAP clustering. We extracted 8,662 microglia cells in the UMAP plot (Figure 1d) for 

downstream analysis, which were distinct from other circulating blood cell types (such as NK 

T cells, Monocytes and B cells). 

 

Single cell RNA-seq data of PBMCs and whole brain 

We downloaded the R binary object of 68k PBMCs from the github page (see URL). We 

processed the data using the provided R script and obtained the cell type annotation for 

PBMCs. We also downloaded the read count table of the brain DroNc-seq data from GTEx 

portal (see URL). The brain cell type annotation was obtained along with the count data. The 

count data from two studies were joined by gene IDs and converted into CPM (count per 

million) along with our primary microglia read count data. 

 

Variance component analysis  

A linear mixed model of log(TPM+1) values across genome-wide genes (whose TPM>0 for 

10% of total cells) was used to estimate the transcriptional variation. The 13 different factors 

(Patient, the number of expressed genes per cell, pathology, plate ID, ERCC percentage, the 

number of expressed genes in each cell, 96 well plate position, age of patient, mitochondria 

RNA percentage, brain region, brain hemisphere, ethnicity and sex) were fitted as random 

effects with independent variance parameters 𝜙"
#. The variance explained by the factor k was 

measured by the intraclass correlation 𝜙"
#/(1 + 𝜙"

#
), where the other 12 factors were fixed 

constant. The standard error of the intraclass correlation was computed by the delta method 

with the standard error of the variance parameter estimator. See Supplementary Note Section 

1.1 for details. 

 

Detection of microglia subpopulations 

We used the linear mixed model to estimate the latent factors with the 13 known confounding 

factors (see Supplementary Note Section 1.2 for details). We used 15 first latent factors to 

cluster cells into subpopulations. We utilised the Shared Nearest Neighbour Clustering 

implemented in Seurat (version 3.0.2) with resolution parameter of 0.2 to identify the four 

microglia subpopulations. 

 

Differential expression analysis of known factors 

We utilised the same linear mixed model we employed for the variance component analysis 

to adjust for 13 known confounding effects and the effect of four cell subpopulation (see above) 

as a random effect in differential expression analysis. We fit the model on gene-by-gene basis 

using the estimated variance parameters {𝜙*"
#
} to test each factor k explaining a significant 

amount of transcription variation. If the focal factor k is numerical (e.g., age of patients), the 

Bayes factor of effect size was computed by comparing the full model and the reduced model 

without the factor k. If the focal factor k is a categorical variable with l levels (e.g., pathology 

with 5 levels), we partitioned the levels into any of two groups. There are 2l-1 contrasts which 

were tested against the null model (removing the focal factor k in the model) to compute Bayes 

factors. Then, those Bayes factors were used for fitting a finite mixture model to compute the 

posterior probability as well as the local true sign rate (ltsr) (See Supplementary Note Section 

1.3 for more details). We used g:Profiler 2 implemented in R (version 2.0.1.5) to perform which 

pathways are enriched for DE genes for each contrast. We used genes whose ltsr is greater 

than 0.5 to perform the analysis (both upregulated and downregulated genes separately). 
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Expression QTL mapping using linear regression and RASQUAL 

We used simple linear regression to map eQTLs. The fragment counts were GC corrected as 

described in (Kumasaka, Knights, and Gaffney 2016), normalised into TPM (transcripts per 

million) and then log transformed (log of TPM+1). 25 principal components (PCs) were 

calculated and regressed out from the normalised expression levels. For each gene, We 

applied Benjamini-Hochberg (BH) FDR correction across all variants tested in the cis-

regulatory region to obtain the minimum Q-value. Then, the minimum Q-values across all 

genes are adjusted again by BH FDR method to compute the genome-wide FDR. We then fit 

the Bayesian hierarchical model (described below) to map eQTLs using the asymptotic Bayes 

factors derived from the eQTL effect size and its standard error as described in (Kumasaka, 

Knights, and Gaffney 2019). We also mapped eQTLs using RASQUAL with the raw count data 

and the same 25 PCs used in linear regression as the covariates. We used --no-posterior-

update option to keep the posterior genotype dosage identical to the prior genotype dosage, 

that allowed us to stabilise the convergence of model fitting. We picked up the minimum BH 

Q-value for each gene to perform the multiple testing correction genome-wide. We performed 

a permutation test once for each gene and constructed the empirical null distribution to which 

the real Q-values were compared to calibrate the FDR threshold (Kumasaka, Knights, and 

Gaffney 2016). Colocalisation analysis with GWAS traits was performed using the COLOC 

(Giambartolomei et al. 2014) implemented on R. 

 

Bayesian hierarchical model 

We extended a standard Bayesian hierarchical model (Veyrieras et al. 2008) to jointly map 

eQTLs in three different cell types. We employed the association Bayes factor at each variant 

for each gene to compute the regional Bayes factors (RBFs) in a cis region of 1Mb centred at 

transcription start site (TSS) under 15 different hypotheses. Those RBFs were used in a 

hierarchical model to estimate prior probabilities that eQTLs are colocalised between any two 

of the three cell types as well as shared among three cell types. It can provide posterior 

probability that a gene is an eQTL for each cell type. The model also allows us to estimate the 

shared genetic architecture between eQTLs and GWAS loci with an appropriate prior 

calibration. See Supplementary Note Section 2 for more details. 

 

Alzheimer’s disease GWAS summary statistics 

We conducted a fixed-effects meta-analysis of summary statistics from the Kunkle et al. 

GWAS of diagnosed AD (Kunkle et al. 2019) and a GWAS for family history of AD that we 

conducted in the UK Biobank (see Liu and Schwartzentruber 2019 for details) across 

10,687,126 overlapping variants. For the family history of AD GWAS, we extracted AD cases 

from UK Biobank self-report, ICD10 diagnoses and ICD10 cause of death data, and extracted 

participants who reported at least one relative affected by AD/dementia as proxy-cases. We 

lumped the true and proxy-cases together (53,042 unique affected individuals, 355,900 

controls) and performed association tests using BOLT-LMM (Loh et al., 2015). Across 36 

associated loci we used GCTA to identify independently associated SNPs with a threshold of 

p < 10-5, based on LD from 10,000 randomly-sampled UK Biobank individuals. For the BIN1 

and PTK2B loci, we used GCTA --cojo-cond to determine summary statistics for each of the 

two independent signals at each locus, with a window of +/- 500 kb around each lead SNP. 
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URL 

GTEx: https://www.gtexportal.org/home/datasets 

PBMC 68k cell data: https://github.com/10XGenomics/single-cell-3prime-

paper/tree/master/pbmc68k_analysis 

RASQUAL (https://github.com/natsuhiko/rasqual) 

1000 Genomes Phase III integrated variant set (http://www.internationalgenome.org/data) 

Beagle 4.0 (https://faculty.washington.edu/browning/beagle/b4_0.html) 

bwa 0.7.4 (https://sourceforge.net/projects/bio-bwa/files/) 

skewer 0.1.127 (https://github.com/relipmoc/skewer) 

STAR (https://github.com/alexdobin/STAR/releases) 

featureCounts (http://subread.sourceforge.net/) 
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Figures 

 
Figure 1. Study design and overview of the data. a. Metadata of 141 neurosurgery patients enrolled in this study. 

Brain region annotation:  Cerebellum (C); Frontal (F); Occipital (O); Parietal (P); Temporal (T); non-dominant (ND); 

dominant (D). b. Experimental design using Smart-seq2 and low sample bulk RNA-seq with SNP genotyping. c. 

UMAP of bulk RNA-seq for myeloid cells and brain tissues (see Online Methods). Pink dots show our samples. d. 

UMAP of single-cell RNA-seq data combined with 68K PBMC scRNA-seq (Zheng et al. 2017) and whole brain 

DroNc-seq (Habib et al. 2017). Bright red dots represent cells collected in this study. Cell type annotations were 

obtained from: glutamatergic neurons from the PFC (exPFC); pyramidal neurons from the hip CA region (exCA); 

GABAergic interneurons (GABA); granule neurons from the hip dentate gyrus region (exDG); astrocytes (ASC); 

oligodendrocytes (ODC); oligodendrocyte precursor cells (OPC); neuronal stem cells (NSC); endothelial cells 

(END); dendritic cell (DC); B cell (B); hematopoietic progenitor cell (CD34+); NK T cell (NK). e. Proportions of non 

microglia for each patient in our data. Each horizontal bar corresponds to one patient. The thickness of each bar is 

proportional to the number of cells observed for the patient. Patients are stratified by pathology.  
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Figure 2. Transcriptional heterogeneity in human microglia. a. UMAP of 8,662 microglia cells after removing 

infiltrating cells. b. Microglial subpopulation variation between patient pathologies. Points coloured by the four 

different colours in Figure 2a illustrate subpopulation compositions for each pathology. Points coloured gray are all 

other cells. c. Heatmap showing the enrichment (log odds ratio) of microglial subpopulations between pathologies 

d. Heatmap of averaged, normalised expression level (defined as the posterior mean of pathology random effect 

term, see Online Methods) of differentially expressed genes at local true sign rate (ltsr) greater than 0.9 (Online 

Methods). Heatmap is divided into groups based on all possible pairwise groupings of the five cell subpopulations, 

with the most transcriptionally distinct population at the top. e. Pathway enrichment analysis of differentially 

expressed genes between different microglial subpopulations. f. Enrichment of disease-associated microglial 

(DAMs) transcriptional activation signatures in each of the four clusters in our data set. g. UMAP showing average 

normalised expression DAM genes transcriptional signatures in each cell. Red represents higher expression. 
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Figure 3. Single-cell RNA-seq revealing microglia heterogeneity driven clinical factors. a. Barplot shows the 

variance explained by each factor. Bars coloured gray are technical factors and coloured pink are clinical factors. 

Blue bars are partly related to patients’ genetic background. b. Heatmap showing the strength and direction of the 

age effect for differentially expressed (DE) genes at local true sign rate (ltsr) greater than 0.9 (Online Methods). c. 

Pathway enrichment for DE genes by age. Pathways coloured red are enriched only for DE genes upregulated by 

age, and the pathways coloured blue are enriched for DE genes downregulated by age. d-e. Example genes 

upregulated or downregulated by age. f. Heatmap showing the average normalised expression levels for DE genes 

by sex at ltsr greater than 0.9 (Online Methods). g. Pathway enrichment by sex. h. Pathway enrichment for 

combinations of brain regions. The blue bars show pathways upregulated in cerebellum and occipital lobe. The red 

bars show pathways upregulated in frontal, parietal and temporal lobes. 
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Figure 4. Shared genetic architecture between microglia, other myeloid cell types and human complex traits. a. 

Colocalisation of microglia eQTLs with various GWAS traits. The x-axis shows the sum of posterior probability (PP) 

for independent causal variants for the microglia eQTL and a GWAS trait. The y-axis is the sum of posterior 

probabilities for colocalised eQTLs with the trait. b. Colocalisation of AD GWAS (Liu and Schwartzentruber 2019) 

with various cell and tissues. GTEx brain tissues are coloured yellow. c. The number of shared eQTL genes 

between microglia and monocyte with AD GWAS. Genes with posterior probability greater than 0.5 for each 

category are listed. Each gene is coloured by the statistical significance of the lead AD GWAS variant within the 

1M cis window: P<5.0x10-8 (red); 5.0x10-8<=P<1.0x10-6 (orange); P>=1.0x10-6 (purple). d. Numbers of shared 

eQTL genes between microglia and iPSC-derived macrophage (IPSDM) with AD GWAS. 
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Figure 5. Fine-mapping of BIN1 locus. a. Posterior probability of colocalisation with Alzheimer’s disease (Liu and 

Schwartzentruber 2019). The y-axis is based on the GWAS primary signal of BIN1 locus and the x-axis is based 

on the secondary signal. b. Sequencing coverage depth of ATAC-seq and RNA-seq stratified by individuals or the 

three genotype groups at BIN1 lead eQTL SNP (rs6733839:C>T). The first two panels are obtained from the 

primary microglia and the bottom two panels are obtained from iPS cell derived macrophage. The MEF2A motif 

overlaps with the lead SNP and the alternative allele (T) increases predicted binding affinity. Tissue type annotation: 

Artery Tibial (AT), Esophagus Gastroesophageal Junction (EGJ), Colon Sigmoid (CS), Skin Sun Exposed Lower 

leg (SSELL), Heart Left Ventricle (HLV), Colon Transverse (CT), Esophagus Mucosa (EM), Pituitary (PI). 
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Tables 

Table 1. Colocalisation analysis of microglia eQTL with 5 AD GWAS. STH: sub-threshold; below GWAS suggestive 

threshold of P=1.0x10-6; NA: conditional analysis result of GWAS is not available except for Liu and 

Schwartzentruber (2019) (see Online Methods). 

Gene Jansen et al. 2019 Kunkle et al. 2019 

Lambert et al. 

2013 Marioni et al. 2018 

Liu and 

Schwartzentruber 

2019 

BIN1 0.984 0.996 0.994 0.996 0.996 

PICALM 0.254 0.676 0.731 0.773 0.742 

EPHA1-AS1 0.317 0.378 0.526 0.946 0.978 

AC099524.1 

(PLCG2) STH STH STH 0.915 0.942 

CCDC6 STH STH STH 0.685 0.579 

ZNF646 0.44 STH STH 0.922 0.664 

TREML3P (tertiary) NA NA NA NA 0.568 

SIGLEC11 STH STH STH STH 0.99 

PTK2B (secondary) NA NA NA NA 0.545 

HLA-DRB6 0.062 0.256 0.517 0.001 0 

HLA-DRB9 0.033 0.456 0.514 0.002 0 
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Extended Data Figures 

 
Extended Data Figure 1. a. Expression of microglia marker gene, using the same UMAP 
coordinates as Figure 1d in the main text. b. Estimated age effect on the percentage of 
infiltrating cell percentage using the generalised linear mixed model (online Methods). 
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Extended Data Figure 2. Pathways (recall>5% and precision<10%) enriched for 
combinations of different subpopulations. 
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Extended Data Figure 3. a. DE genes by pathology. b. Pathway enrichment for pathology. 
c. DE genes by age. d. DE genes by sex. e. DE genes by brain regions. C: Cerebellum; F: 
Frontal; O: Occipital; P: Parietal; T: Temporal. 
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Extended Data Figure 4. a. The numbers of eQTL genes discovered by three different 
methods for three different myeloid cell types. The left most bar is the number of eQTL genes 
detected by RASQUAL at FDR 5%. The middle bar is the sum of posterior probabilities derived 
by the simple hierarchical model (HM) and the right bar is the sum of posterior probabilities 
obtained by the three-way HM (see Online Methods).  b. The number of shared eQTLs among 
three myeloid cell types. c. Empirical prior probability of eQTL sharing among three different 
myeloid cell types obtained by the three-way HM. The numbers are proportion of genes 
genome-wide and the dots connected by segment illustrates the shared genetic association.  
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Extended Data Figure 5. a. Colocalisation result between AD and EPHA1-AS1 gene for 
various GTEx tissues and myeloid cell types. The x-axis shows the posterior probability of 
colocalisation (PP4) and y-axis shows the average expression level (log10 TPM) for each 
tissue or cell type.  b. Colocation result between AD and EPHA1 gene for various tissues and 
cells. The x-axis shows the posterior probability of colocalisation (PP4) and y-axis shows the 
average expression level (log10 TPM) for each tissue or cell type. c. Boxplots show the PTK2B 
eQTL effects of the lead variant (rs28834970:C>T) for the three myeloid cell types. Y-axis 
shows normalised expression levels (log TPM value). Each dot on the box shows the 
expression level of each sample. d. Coverage plot shows chromatin accessibility in iPS cell 
derived macrophages stratified by three genotype groups of the lead GWAS/eQTL variant  e. 
Scatter plot of MEF2A (x-axis) and BIN1 (y-axis) expression in GTEx brain tissues and myeloid 
cell type. 
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Extended Data Figure 6. a. Regional plots at CD33 locus. b. Coverage plot shows the 
normalised expression level around CD33 gene stratified by three genotypes of the splicing 
QTL variant (rs12459419:C>T). The boxplot embedded in the panel shows splicing QTL varint 
effect for the 2nd exon expression (ENST0000262262.4). Each dot shows normalised 
expression level of each patient. c. Coverage plot shows expression level around the second 
exon (ENST0000262262.4). The coverage shows the first intron expression is negatively 
correlated with the second exon expression, suggesting the expression of non-coding isoform 
(ENST00000601785.5) is increased by the alternative allele (T) of the splicing QTL. d. 
Regional plots at CASS4 locus. e. Coverage plots show the chromatin accessibility, gene 
expression levels or histone modification ChIP-seq (H3K27ac) stratified by patients (primary 
microglia ATAC-seq) or three genotype groups at the EPHA1-AS1 lead variant 
rs11765305:G>C. 
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