
A Map Reduce Framework for Programming Graphics
Processors

Bryan Catanzaro, Narayanan Sundaram and Kurt Keutzer
University of California, Berkeley

545Q Cory Hall
Berkeley, California 94720

{catanzar, narayans, keutzer}@eecs.berkeley.edu

ABSTRACT
Recent developments in programmable, highly parallel Graph-
ics Processing Units (GPUs) have enabled high performance
general purpose computation. We describe a framework de-
signed for high performance GPU programming, built on
Nvidia’s Compute Unified Device Architecture (CUDA) plat-
form. The framework is built around the Map Reduce ab-
straction, which allows application developers to focus on
their application, while enabling high performance GPU im-
plementation. We show the utility of our framework by
implementing Support Vector Machine training as well as
classification, achieving speedups of up to 32× and 150× re-
spectively over commonly used SVM software running on a
CPU.

1. INTRODUCTION
Driven by the capabilities and limitations of modern semi-

conductor manufacturing, the computing industry is cur-
rently undergoing a massive shift towards parallel comput-
ing [1]. This shift brings dramatically enhanced performance
to applications which capitalize on parallelism.

However, applications must be reengineered to express
parallelism in a way which maps well to the architecture
of these new platforms, which is a significant barrier to the
future success of parallel computing. In order to map a given
application to a parallel computer, the application must be
first re-examined in order to discover parallelism. Then, the
application must be reimplemented on a parallel platform.
Finally, when porting the application to a future, different
parallel system, the whole process may need to be restarted,
if there is significant mismatch between the scope and types
of parallelism supported by the old system and the new.
To address these problems, tools and methodologies for pro-
gramming highly parallel systems must be created which
automate the programming process.

Programming GPUs remains a complicated task despite
the recent advances made to make GPU programming sim-
pler. We propose to alleviate this complexity by making use
of the Map Reduce programming abstraction. The Map Re-
duce abstraction helps application developers focus on their
application, rather than optimizing GPU code.

In this paper, we present preliminary details of a Map
Reduce code generation framework for programming GPUs.
Our framework generates very efficient code for the GPU,
without inserting any abstractions or indirections. It im-
proves programmer productivity by keeping the program-
mer’s attention on the algorithm, rather than the specific
details needed to implement the algorithm on the GPU. The

focus on efficiency is critical to the scope of applications ad-
dressed by the framework, since applications which need to
perform many Map Reduce computations can’t afford over-
head in the framework.

We demonstrate the utility of our approach by implement-
ing two different applications using the framework, namely
Support Vector Machine training as well as classification.
We detail how our framework yields high productivity and
high performance.

The organization of the paper is as follows. Section 2
presents the Map Reduce pattern in detail. Section 3 gives
an overview of GPU architecture and the programming envi-
ronment on which our framework is built. Section 4 explains
our implementation of the Map Reduce pattern for the GPU.
Section 5 details the applications with which we demonstrate
the usefulness of our implementation, namely Support Vec-
tor Machine training and classification. We show our results
in Section 6 and conclude in Section 7. Appendix A presents
a sampling of the syntax used by our framework.

2. MAP REDUCE
Many applications feature large amounts of independent

computation, followed by a global summarization of the com-
putation. We call the independent computations a “Map”
operation, and the summarization, a “Reduce” operation.

The idea of Map Reduce dates back at least to the Lisp
programming language, which allowed programmers to map
independent computations onto data sets, using reduce op-
erations to summarize the results [19]. Recently, Google
proposed a Map Reduce variant for processing large datasets
on compute clusters [7], where programmers specify a map
function that operates on a set of (key,value) pairs to pro-
duce a set of intermediate (key,value) pairs, as well as a re-
duce function that merges all the intermediate results with
the same key values. The Map Reduce pattern has been
shown to be useful for many applications, e.g. those from
Machine Learning [5].

The Map Reduce pattern has been successful because it is
a natural way to express many computations. However, it is
not just syntactic sugar. Expressing computations in terms
of maps and reductions preserves parallelism, which enables
efficient mapping onto parallel machines.

Parallelism in the Map stage is evident and requires no
explanation. However, the Reduce stage by its nature has
diminished parallelism, and requires some synchronization.
This makes implementation of the Reduce stage compli-
cated and can lead to performance bottlenecks, especially
on very parallel architectures which have limited synchro-

nization and communication abilities between threads, such
as the GPU.

For each Map Reduce computation in an application, our
framework asks the programmer to provide a map function,
a set of reduce operators, and a cleanup function which op-
erates on the result of the reduction. The framework then
restructures the code to produce one function which imple-
ments the map function combined with a local reduction,
and another which provides a global reductions, combined
with the cleanup computation. Because the programmer
doesn’t specify how the reduction is accomplished, but in-
stead gives only an atomic description of each reduce op-
erator, the framework is free to implement many different
styles of reduction, allowing the highest performance reduc-
tion technique for a given problem to be used. Additionally,
the programmer does not write the complicated and error
prone code which deals with synchronization and communi-
cation between threads. Furthermore, the programmer does
not have to restructure their algorithm around the synchro-
nization abilities of the GPU.

Other groups are also creating Map Reduce frameworks
for multiprocessor systems. Ranger presents a runtime sys-
tem for doing efficient Map Reduce computations on multi-
core CPUs [16]. This system closely follows Google’s Map
Reduce framework, even providing fault tolerance. Linder-
man presents a Map Reduce programming model for het-
erogeneous systems [13], which includes a runtime for dy-
namically decomposing and executing tasks tasks on Intel
CPUs and GPUs. However, all these runtime systems in-
cur significant overhead in order to provide flexibility and
dynamic task partitioning. When Map Reduce computa-
tions are composed inside loops or other structures, this
overhead can become very substantial. Our code generation
framework keeps overhead to a minimum by integrating the
map phase and the reduce phase of the computation, which
keeps CPU/GPU synchronization to a minimum and avoids
the need to stage datain global memory for the reduction.
This makes it possible to achieve meaningful performance
speedups, even on computations where the map reduce is
relatively small and inside an iterative loop.

3. GRAPHICS PROCESSORS
GPUs are currently transitioning from their initial role as

specialized accelerators for triangle rasterization to general
purpose engines for high throughput floating-point compu-
tation. State of the art GPUs provide up to an order of mag-
nitude more peak IEEE single-precision floating-point than
their CPU counterparts. Additionally, GPUs have much
more aggressive memory subsystems, typically endowed with
more than 10× higher memory bandwidth than a CPU.

However, programming the GPU to extract such perfor-
mance is still difficult, since GPU performance is dependent
on large amounts of parallelism. A typical computation run-
ning on the GPU must express thousands of threads in order
to effectively use the hardware capabilities. Additionally,
writing code for the GPU which requires global communi-
cation or synchronization is complicated, error prone, and
very specific to the exact GPU which is being targeted.

Map Reduce is an ideal abstraction for programming gen-
eral purpose computations on the graphics processor. Struc-
turing a computation as stages of Map Reduce operations
ensures that maximal parallelism is expressed. The global
summarization provided by the Reduce operation adds gen-

erality, enabling the implementation of diverse computa-
tions.

3.1 CUDA
Our framework is built on top of the Compute Unified De-

vice Architecture (CUDA) programming environment which
Nvidia provides as a programming environment for its GPUs
[14]. The programmer codes in annotated CUDA, acceler-
ating compute intensive portions of the application by exe-
cuting them on the GPU.

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread
(0, 0)

Register
s

Local
Memory

Thread
(1, 0)

Register
s

Block (1, 0)

Shared Memory

Thread
(0, 0)

Register
s

Thread
(1, 0)

Register
s

Host

Local
Memory

Local
Memory

Figure 1: Logical organization of the GeForce 8800

Figure 1 illustrates how the GPU appears to the program-
mer. The programmer organizes the computation into grids,
which are organized as a set of thread blocks. The grids run
sequentially on the GPU, meaning that all computation in
the grid must finish before another grid is invoked. As men-
tioned, grids contain thread blocks, which are batches of
threads that execute together, sharing local memories and
synchronizing at programmer specified barriers. A maxi-
mum of 512 threads can comprise a thread block, which puts
a limit on the scope of synchronization and communication
in the computation. However, enormous numbers of blocks
can be launched in parallel in the grid, so that the total
number of threads that can be launched in parallel is very
high. In practice, we need a large number of thread blocks
to ensure that the compute power of the GPU is efficiently
utilized.

4. MAP REDUCE FRAMEWORK
Our framework takes advantage of the local synchroniza-

tion capabilities provided by CUDA to restructure the Map
Reduce into two stages. As mentioned earlier, our frame-
work asks the programmer to provide a map function, a set
of reduce operators, and a cleanup function which operates
on the result of the reduction. The framework then syn-
thesizes a function which combines the map operation with
a local reduction, as well as another function which com-
bines a global reduction with the cleanup function. The
programmer writes annotated CUDA code, indicating im-
portant features of the Map Reduce to the framework, and
the framework then generates CUDA code.

4.1 Predication
Before going into the details about the implementation of

the framework, we need to describe how we use predication.
The Google version of Map Reduce is very general, with
each map function producing (key, value) pairs, and each
reduction function working on sets of (key, value) pairs.

To provide a limited version of this flexibility, while still
achieving high performance on the GPU, we use predica-

tion. The Map function is required to produce a set of out-
put values, as well as a set of predicates for each thread.
The predicates control how each output from the Map func-
tion participates in each reduction operation. In our current
implementation, these predicates are contained in one inte-
ger per thread. Each bit of the predicate controls whether
the Map function output represented by the predicate will
participate in a particular reduction. In a sense, we are re-
stricting the Google style Map Reduce by assuming that the
keys are known a priori, and that each map function pro-
duces only one output. Since the current implementation
uses only one integer per thread for predication, we are also
assuming that there are less than 32 keys active in any given
Map Reduce call, although this restriction is not inherent to
our approach and could be lifted, if necessary. Although this
functionality is somewhat restricted compared to the Google
Map Reduce, it is well suited to the GPU architecture, and
provides enough flexibility to be useful.

4.2 Assumptions about Reductions
It is also important to be clear about what kinds of as-

sumptions our framework makes about reduction operators.
Firstly, we assume that each reduction operator is a binary
operator. We allow each input to each reduction function to
be a set of data, meaning that the input and output of the
operator may be essentially a structure. A reduction oper-
ator can perform reductions on that structure in arbitrary
ways, but the reduction must depend on exactly two input
structures, and produce exactly one output structure.

Secondly, we assume that the reduction functions are as-
sociative1. This assumption enables us to restructure the
reduction into a binary tree, in order to extract maximal
parallelism from the reduction. Commutativity is not re-
quired.

Thirdly, we assume that the programmer can specify iden-
tities for each reduction operator. Performing the reduction
operator on two inputs, one of which is an identity for the
reduction operator, should pass the other input through to
the output of the reduction unchanged.

4.3 Map Implementation
In our current implementation, the Map function is arbi-

trary CUDA code that produces a set of outputs and pred-
icates. The goal of our framework is not to hide GPU pro-
gramming from the programmers completely, but to help the
programmers achieve good performance with lower effort.

The Map function must produce the outputs and predi-
cates in local memory, and indicate them to our code genera-
tor. This is illustrated in appendix A. As mentioned earlier,
the predicates are handled using an array of 32-bit integers,
with one entry in the array per map thread. Each thread
sets the ith bit in its corresponding predicate to denote that
the data generated by the thread must take part in the ith

reduce function.

4.4 Reduce Implementation
Generally, parallel reductions are implemented in logarith-

mic stages. In each stage the number of threads taking part
in the reduction halves until just one thread is active, which
contains the result of the reduction. In our framework, re-
duce functions act on the output of the map functions in
local memory, and using the predicate array, locally reduce
1Or at least pseudo-associative, like floating point addition

the data within each block of threads. When more data
participates in the reduction than can fit in a single block
of threads, multiple reduction stages must be performed, as
illustrated in figure 2. The framework automatically gener-
ates the reduction code, including intermediate data struc-
tures to connect the different stages of the reduction.

Map +

Local

Reduce

Global

Reduce

Figure 2: Structuring the Map Reduce

There are myriad ways of implementing reductions, using
different varieties of loop unrolling, serializing the reduc-
tion to differing degrees, etc. At present, our framework
can generate two different reduction methods, which vary in
loop unrolling and number of loads per thread. The pro-
grammer can choose which one is executed using a template
parameter.

To understand the complexities involved in reduction, see
table 1. For illustrative purposes, we considered three dif-
ferent reduction methods, and then instantiated them with
three different numbers of threads per thread block. It
should be noted that this is not an exhaustive search on all
possible parallel reduce algorithms possible on a GPU/CPU
system, but an example to point out the complexity in-
volved. A brief description of the methods is given below:

Method 1 does no loop unrolling, uses sequential address-
ing and does one memory load per thread.

Method 2 does full loop unrolling and two memory loads
per thread.

Method 3 does full loop unrolling and partially serializes
the reductions.

Table 1: GPU Reduction Complexity

Array Size Best case Worst case
Kernel Time Kernel Time

(blocksize) taken (ms) (blocksize) taken (ms)

65,536 3 (128) 0.02316 1 (128) 0.08373
8,388,608 1 (128) 0.08992 2 (256) 0.8453
33,554,432 2 (256) 0.03140 3 (128) 1.8689

As shown in table 1, choosing a single reduction method
a priori, that is optimal for a particular data set size, can
yield performance that is up to 60× worse than the optimal
method for a different data set size. The optimization space
is complex and it is not easy to get the best performance
without tuning. This motivates the need for a Map Reduce
framework: implementing many different reduction meth-
ods in the framework keeps the programmer from having to
understand and implement these low-level, yet performance
critical details.

Other work has been done on how to perform global op-
erations such as reductions efficiently on the GPU, e.g. [4],
which explains how map, reduce, scan and sort can be im-
plemented on a GPU using the Graphics API. Other recent
work includes efficient scan primitives [18], which details new
approaches for implementing sort and scan. Our approach

differs from these by making use of a code generator to in-
tegrate these primitive operations tightly into the code, re-
ducing overhead and increasing the scope of applications to
which these operations can be profitably applied.

4.5 Autotuning
Programming the GPU involves fixing values for numer-

ous parameters which must be tuned to get the best per-
formance. Parameter tuning is an established technique for
CPUs in High Performance Computing. For example, tools
like PHiPAC [3] do autotuning for Linear Algebra operations
according to cache sizes on different processors. A similar
tool for optimizing thread block sizes and reduction kernels
is needed for our framework.

GPU performance can be strongly affected by the num-
ber of registers utilized in a function, the amount of local
memory which is used by a function, the number of threads
in a block, as well as the algorithm used to perform the
computation, among other factors. Because these param-
eters affect performance differently, for different data set
sizes, the answer to the performance tuning question de-
pends on the data set size. We allow the programmer to
expose these choices through template parameters, and are
developing an integrated autotuning framework to identify
the best choices for different data set sizes. This work is
in progress and we expect to have automated support for
parameter tuning soon. The framework should be able to
generate a switch matrix which chooses the best tuning pa-
rameters for a particular data set size, thus creating a single
binary which performs well across a wide range of problems.

5. EXAMPLE APPLICATIONS
To demonstrate our framework, we have implemented two

applications: Support Vector Machine training and classi-
fication. Support Vector Machine training is an iterative
Quadratic Programming solver, which has many tight loops
with relatively small Map Reduce computations in each loop.
Support Vector Machine classification is performed using
BLAS3 operations followed by a Map Reduce computation
to finish the classification.

5.1 Support Vector Machine Training
We consider the standard two-class soft-margin SVM clas-

sification problem, which classifies a given data point x ∈ Rn

by assigning a label y ∈ {−1, 1} [6]. This problem has found
widespread use in diverse fields, such as image recognition,
bioinformatics, text processing, and network security, among
others.

The SVM training problem is a Quadratic Programming
optimization problem, which can be solved by many meth-
ods, each with different parallelism implications. Given a
labeled training set, the goal is to find an optimal weight αi

for each training point xi. The weights and training set then
constitute a classifier. We have implemented the Sequential
Minimal Optimization (SMO) algorithm, first proposed by
Platt [15], with the improved first-order variable selection
heuristic proposed by Keerthi [11], and kernel caching as
proposed by Joachims [10]. The SMO algorithm is a special-
ized optimization approach for the SVM training Quadratic
Program, which takes advantage of the sparse nature of the
α weights and the simple nature of the constraints in the
SVM QP to reduce each optimization step to its minimum
form: updating two αi weights. The bulk of the computation

is then to update the Karush-Kuhn-Tucker optimality con-
ditions for the remaining set of data points (map) and then
find the two maximally violating weights (reduce), which
are then optimized. It is important to note that the re-
duction to find the two maximally violating weights is done
over dynamic, data-dependent subsets of the points, which
is accomplished via predication. When all points satisfy the
optimality conditions to a given tolerance, the algorithm
terminates.

Algorithm 1 SVM Training: SMO

Input: training data xi, labels yi

Initialize: αi = 0, fi = −yi

Find maximally violating pair Ilow, Ihigh

Optimize αIhigh and αIlow

repeat
Map: update fi, ∀i ∈ {1..l}
Reduce: compute bhigh, Ihigh, blow, Ilow

Cleanup: Optimize αIhigh and αIlow

until blow ≤ bhigh + 2τ

5.2 Support Vector Machine Classification
The SVM classification problem evaluates an unknown

point zj with respect to the decision surface constructed
in the training process, in order to classify zj into one of
the two classes. More specifically, the SVM classification
problem is the following: for each data point zj ∈ Rn which
should be classified, compute

ẑj = sgn

(
b +

lX

i=1

yiαiΦ(xi, zj)

)
(1)

where b is an offset derived from the solution to the SVM
training problem shown earlier, Φ() is a kernel function
which varies according to the problem2, and all other vari-
ables remain as previously defined in the SVM training prob-
lem.

We approached the SVM classification problem by making
use of Map Reduce as well as Nvidia’s matrix matrix multi-
plication routine (SGEMM). We recast the kernel function
evaluations between the set of unknown points and the train-
ing points into dot products, which are then computed via
SGEMM. The Map Reduce framework is then used to fin-
ish the classification: the map function completes the kernel
evaluations Φ(xi, zj), and multiplies them by yiαi. The re-
duce function computes the sum for each zj , after which b is
added to obtain the final classification as given by equation
(1).

2we use the most commonly used kernel function, the RBF

kernel: Φ(xi, zj) = e−γ||xi−zj ||2

6. RESULTS
We compare the results of the SVM training and classi-

fication applications on a GPU with those on a CPU using
LibSVM. LibSVM is a popular software package for SVM
training and classification problems [8]. It uses the SMO al-
gorithm with several additional optimizations which we have
not yet implemented.

Experiments were run on an Intel Core 2 Duo 2.66 GHz
processor, and we gave LibSVM a cache size of 650 MB,
which is slightly larger than our GPU implementation was
allowed. The GPU used in the experiments was the Nvidia
8800 GTX, featuring 768MB of memory and 128 stream
processors, running at 1.35 GHz. CPU-GPU communication
overhead is included in runtimes.

6.1 SVM Training
Table 2 contains performance results for the two solvers.

We see speedups in all cases from 5× to 32×.

Table 2: Comparison of GPU vs LibSVM solve times

Dataset GPU LibSVM Speedup
(sec) (sec)

Adult [2] 36.312 550.178 15.1
Web [15] 181.334 2422.469 13.4
MNIST [12] 525.783 16965.794 32.3
USPS [9] 0.733 5.092 6.9
Forest [2] 13360.785 66523.538 5.0
Face [17] 2.57 27.61 10.7

6.2 Classification
Results for our classifier are presented in table 3. We

achieve 120-150x speedup over LibSVM on the datasets shown.

Table 3: Performance and accuracy of GPU SVM
classification vs. LibSVM

Dataset GPU LibSVM Speedup
(sec) (sec)

Adult 0.570 75.65 132.5
Web 1.069 144.53 135.2
MNIST 1.98 258.751 130.7
USPS 0.0097 1.194 123.2
Face 0.706 109.259 154.8

6.3 Productivity
The SVM training code requires 380 lines of kernel code

to write in our framework, whereas the output of our code
generator is 574 lines. The SVM classification code requires
72 lines of kernel code using our framework, whereas the
output of our code generator is 201 lines. The output of
the code generator is close to a hand-coded version in terms
of amount of code generated. From our experience, this
represents a significant reduction in the amount of code to be
written by the user, especially since writing the reductions
is so difficult on the GPU.

7. CONCLUSION
Using the Map Reduce abstraction, we have created a

code generation framework to help application developers
program Graphics Processors. The Map Reduce abstrac-
tion captures parallelism at a high level, while usefully con-
straining the application, enabling high performance parallel

implementations. Using our framework, productivity is im-
proved, since the programmer does not need to restructure
their algorithm around the synchronization and communica-
tion limitations of the GPU. Additionally, the programmer
is not required to understand the details of how the reduc-
tion is performed, which can be complicated and perfor-
mance critical. Code created by our framework is efficient,
providing up to 32× and 150× speedup on two different ap-
plications, compared to widely used CPU implementations.
Future work includes completing the autotuner, and broad-
ening the framework to include parallel prefix operations,
which will make it still more general.

8. REFERENCES
[1] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

[2] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

[3] J. Bilmes, K. Asanović, C.-W. Chin, and J. Demmel.
Optimizing matrix multiply using PHiPAC: a
Portable, High-Performance, ANSI C coding
methodology. In Proceedings of International
Conference on Supercomputing, Vienna, Austria, July
1997.

[4] I. Buck and T. Purcell. A toolkit for computation on
GPUs. In R. Fernando, editor, GPU Gems,
chapter 37, pages 621–636. Addison Wesley, 2004.

[5] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,
A. Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 281–288. MIT Press,
Cambridge, MA, 2007.

[6] C. Cortes and V. Vapnik. Support-vector networks.
Mach. Learn., 20(3):273–297, 1995.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. In OSDI’04,
Berkeley, CA, USA, 2004. USENIX Association.

[8] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set
selection using second order information for training
support vector machines. J. Mach. Learn. Res.,
6:1889–1918, 2005.

[9] J. J. Hull. A database for handwritten text
recognition research. IEEE Trans. Pattern Anal.
Mach. Intell., 16(5):550–554, 1994.

[10] T. Joachims. Making large-scale support vector
machine learning practical. In Advances in kernel
methods: support vector learning. MIT Press,
Cambridge, MA, USA, 1999.

[11] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and
K. R. K. Murthy. Improvements to Platt’s SMO
Algorithm for SVM Classifier Design. Neural Comput.,
13(3):637–649, 2001.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[13] M. D. Linderman, J. D. Collins, H. Wang, and T. H.
Meng. Merge: A programming model for
heterogeneous multi-core systems. ASPLOS 2008,
2008.

[14] Nvidia. Nvidia CUDA, 2007.
http://nvidia.com/cuda.

[15] J. C. Platt. Fast training of support vector machines
using sequential minimal optimization. In Advances in
kernel methods: support vector learning, pages
185–208. MIT Press, Cambridge, MA, USA, 1999.

[16] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating mapreduce for
multi-core and multiprocessor systems. HPCA 2007,
pages 13–24, 10-14 Feb. 2007.

[17] H. A. Rowley, S. Baluja, and T. Kanade. Neural
network-based face detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
20(1):23–38, 1998.

[18] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens.
Scan primitives for GPU computing. In GH ’07: ACM
SIGGRAPH Symposium on Graphics Hardware, pages
97–106, 2007.

[19] G. L. Steele, Jr. Parallelism in Lisp. SIGPLAN Lisp
Pointers, VIII(2):1–14, 1995.

APPENDIX
A. SYNTAX

To make the framework more concrete, we illustrate how
it is used with a few code fragments.

MapReduce(

mapFunction
<...template parameters...>
<<<...CUDA parameters...>>>
(...function parameters...)

reduceFunction0, ..., reduceFunctionN,

cleanupFunction
<...template parameters...>
<<<...CUDA parameters...>>>
(...function parameters...)

);

Figure 3: Instantiating a Map Reduce

When instantiating a Map Reduce, the programmer pro-
vides a list of the functions which are to be used by the
framework. For the map function and the cleanup func-
tion, the programmer also fills out the various parameter
lists with the values needed for the instantiation. As men-
tioned earlier, we use template parameters for some code
generation, which allows the same source code to generate
several different versions. If the programmer notifies the
framework of the set of values each template parameter can
take, the framework will then instantiate all possible ver-
sions of the template parameters in the code automatically.
This essentially does limited constant propagation and dead
code elimination for different paths through the code, which
can provide significant performance boosts on a register con-
strained architecture such as the GPU.

The programmer also provides the CUDA parameters,

specifying the dimensions of parallelism in the map and
cleanup functions. Runtime dynamic local memory alloca-
tion is taken care of by the framework, and appended to the
CUDA parameter list.

__shared__ float xILow[nDimension];
/*dynamic (iLowCompute)*/

__shared__ int localIndices[blockDim.x];
/*output 0 dynamic*/

__shared__ float localFs[blockDim.x];
/*output 1 dynamic*/

__shared__ int localFlags[blockDim.x];
/*predicate dynamic*/

Figure 4: Map Declarations

The programmer indicates important details to the frame-
work via some pre-specified comments. For example, the
map function is assumed to put its outputs in local memory,
but the framework needs to know which array in the map
function corresponds to which output. Also, the runtime
dynamic memory allocation needs to be indicated to the
framework. We allow runtime dynamic memory allocation
to be predicated on runtime variables, as shown by xILow
in figure 4, which keeps local memory usage to a minimum,
allowing greater effective parallelism.

void maxArgmax(
int in0Index, float in0Value, //input0
int in1Index, float in1Value, //input1
int* outIndex, float* outValue) //output

{
*outValue = NINFTY; /*identity*/
if (in1Value > in0Value) {
*outIndex = in1Index;
*outValue = in1Value;

} else {
*outIndex = in0Index;
*outValue = in0Value;

}
}

Figure 5: An Example Reduction Operator

Figure 5 illustrates how the programmer writes a reduc-
tion operator. Each input to the reduction is composed of a
set of data, in this case an int and a float. The ordering of
this set is determined by the declarations in the map func-
tion: output 0 from the map function is the first item in
the set, etc. The programmer specifies the identity for the
reduction operator by assigning the outputs to their iden-
tity value, and annotating the assignment. The rest of the
operator is self explanatory.

float bLow; /*reduce 0 result 1*/
float bHigh; /*reduce 1 result 1*/
int iLow; /*reduce 0 result 0*/
int iHigh; /*reduce 1 result 0*/

Figure 6: Accessing Reduction Results

Figure 6 shows how the cleanup function accesses the re-
sults of the reduction. Variables are annotated to indicate
exactly which output from which reduction they should re-
ceive.

