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ABSTRACT
Programmers for GPGPU face rapidly changing substrate of
programming abstractions, execution models, and hardware
implementations. It has been established, through numer-
ous demonstrations for particular conjunctions of applica-
tion kernel, programming languages, and GPU hardware in-
stance, that it is possible to achieve significant improvements
in the price/performance and energy/performance over gen-
eral purpose processors. But these demonstrations are each
the result of significant dedicated programmer labor, which
is likely to be duplicated for each new GPU hardware archi-
tecture to achieve performance portability.

This paper discusses the implementation, in the R-Stream
compiler, of a source to source mapping pathway from a
high-level, textbook-style algorithm expression method in
ANSI C, to multi-GPGPU accelerated computers. The com-
piler performs hierarchical decomposition and parallelization
of the algorithm between and across host, multiple GPG-
PUs, and within-GPU. The semantic transformations are ex-
pressed within the polyhedral model, including optimization
of integrated parallelization, locality, and contiguity trade-
offs. Hierarchical tiling is performed. Communication and
synchronizations operations at multiple levels are generated
automatically. The resulting mapping is currently emitted
in the CUDA programming language.

The GPU backend adds to the range of hardware and
accelerator targets for R-Stream and indicates the potential
for performance portability of single sources across multiple
hardware targets.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – Code Gen-
eration, Compilers, Optimization
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1. INTRODUCTION
Modern General Purpose Graphics Processing Units (GP-

GPUs) are massively parallel multiprocessors capable of high
flop performance and bandwidth. While GPGPU program-
ming is eased by the introduction of higher level data par-
allel languages such as CUDA [16], maximizing the perfor-
mance of an application still requires the precise balancing
of many different types of constraints in the GPU architec-
ture, including the utilization of SIMD and coarse-grained
data parallelism, and the management of the memory hi-
erarchy. This problem extends to the system level for an-
ticipated multi-GPGPU accelerated hosts. While program-
ming such systems “by hand” has been demonstrated for a
range of applications, this is a difficult and costly endeavor;
likely one to be revisited to allow the application to port to
rapidly arriving new generations and configurations of GPUs
and programming abstractions that change the optimization
tradeoffs.

Previously we have demonstrated the R-Streamcompiler
[14, 12] and facilities to target processors and accelerators
such as SMP, TILEPro, Cell, and ClearSpeed. This paper
discusses the adaptation of this compiler to produce CUDA
for high-performance execution on GPGPU.

This work is distinguished from other work on mapping
to GPGPU as follows. The HMPP compiler from CAPS
requires detailed pragma directives, determined by the pro-
grammer, to explicitly direct the parallelization of the code
and the management of the memory between host and GPU.
Our approach is to find these automatically to eliminate this
burden on the programmer. The PGI Accelerator performs
synthesis and automatic translation of C and FORTRAN
into GPU code, but requires the programmer to write ker-
nels in a literal manner where the loop indices are essen-
tially syntactically translated into the threadIdx and block-
Idx constructs for the GPU; the approach is limited to ker-
nels where a stride-1 array access is apparent. Our approach
uses a more modern semantically based compiler framework
that allows for more powerful parallelization and mapping



capability. A paper [4] will appear (co authored by one
of the authors of this paper, Muthu Baskaran) describing
a mapping process to GPGPU using a modern framework;
our work is also targeted additionally to the system level
mapping between host/GPU and with multiple GPUs, with
significant attention to automatic generation of communica-
tion. Other differences with [4] are noted herein.

This paper gives a snapshot of rapidly evolving capability;
more details on results and performance will be provided at
the workshop.

2. THE R-STREAM COMPILER
The basis of our mapping tool is Reservoir Labs’ propri-

etary compiler, R-Stream. DARPA funded development of
R-Stream by Reservoir between 2003 and 2007 in the Poly-
morphous Computing Architectures (PCA) Program [12].

The flow for the R-Stream high-level compiler is shown in
Fig. 1. An EDG-based front end reads the input C program
(1), and translates it into a static single assignment inter-
mediate form, where it is subject to scalar optimizations (2)
and (3). Care is taken to translate the C types into a sound
type system, and to preserve them through the optimiza-
tions, for later syntax reconstruction in terms of the original
source’s types.

The part of the program to be mapped is then “raised” (4)
into the geometric form based on parametric multidimen-
sional polyhedra for iteration spaces, array access functions,
and dependences.

In this form, the program is represented as a Generalized
Dependence Graph (GDG) over statements, where the nodes
represent the program’s statements and are decorated by the
iteration spaces and array access functions (polyhedra), and
the inter-statement dependences are represented as labeling
of the edges.

Kernels that meet certain criteria, “mappable functions”
that can be incorporated into the model, are raised. No
new syntactic keywords or forms in the C program are in-
volved in this criteria for raising; R-Stream raises various
forms of loops, pointer-based and array based memory refer-
ences, based on their semantic compatibility with the model.

We note here that the type of C that R-Stream optimizes
best is “textbook” sequential C, e.g., like a Givens QR de-
composition in a linear algebra text. If the programmer
“optimizes” their C (e.g. with user-defined memory man-
agement or by linearizing multidimensional arrays), those
typically interfere with R-Stream’s raising and optimizations.

These mappable functions are then subjected to an op-
timization procedure which (for example) identifies paral-
lelism, tiles the iteration spaces of the statements into groups
called “tasks”, places the tasks to processing elements (PEs,
which correspond to the cores of a multicore processor or the
nodes of a cluster), sets up improvements to locality, gen-
erates communications, adds synchronization and organizes
transfers of control flow between a master execution thread
and the mapped client threads. The GDG is used as the
sole representation in all these mapping steps ((5) and (6)).

After this process, the GDG is lowered (7) back to the
scalar IR, through a process of “polyhedral scanning” that
generates loops corresponding to the transformed GDG. This
scalar IR of the mapped program is then subject to further
scalar optimization (8) and (9), for example to clean up syn-
thesized array access functions. The resulting scalar IR is
then pretty-printed (10) via syntax reconstruction to gener-

ate the resulting code in C form, but mapped in the sense
that it is parallelized, scheduled, and has explicit communi-
cation and memory allocation.

Code that was not mappable is emitted as part of the
master execution thread, thus the R-Stream compiler parti-
tions across the units of a heterogeneous processor target.
From this point, the code is compiled by a “low-level com-
piler” (LLC), which performs relatively conventional steps
of scalar code generation for the host and PEs.

R-Stream supports generating code mapped for STI Cell,
SMP with OpenMP directives, ClearSpeed, FPGA-accelera-
ted targets, and Tilera. Here we are presenting our first port
to GPGPUs, which targets the CUDA execution model.

The breadth of targets R-Stream supports illustrates the
benefit of programming in a high-level, architecture-indepen-
dent manner, and using this compiler technology. The com-
putation choreography needed for efficient execution on GPU
can be constructed automatically from the simple sequen-
tial C source, and this can be automatically rendered in the
CUDA language. The computation choreography for other
architecture targets (SMP, etc.) can also be generated from
the same sequential C source, and automatically rendered
in the corresponding target-specific source (OpenMP, etc.).
Thus the program abstraction is portable.

This mapping process is driven by a declarative machine
model for the architectures, using an XML syntax for de-
scribing hierarchical heterogeneous accelerated architectures
[13]. The contents of the machine model provide the overall
architecture topology as well as performance and capacity
parameters, a formalization and implementation of a Kuck
diagram [11]. For example, it is possible to describe a shared
memory parallel computer with many FPGA accelerators,
such as SGI Altix 4700 with RASC FPGA boards. It also
can describe the complex execution model for GPGPU, in
terms of the complex distributed memories and parallel exe-
cution engines [10]; it can also describe clusters of traditional
MPI connected nodes with attached GPGPU accelerators.
While this language (and a graphical machine model browser
for it) are human-understandable, they are also tied to the
mapping algorithms, providing parameters for different op-
timizations and driving the mapping tactics. The final code
is emitted for the target in terms of the task invocations, ex-
plicit communications, and synchronizations among parent
and child PEs and among the PEs at any level.

This paper describes our first adaptation of the mapping
process to automatically support GPGPUs as a target, with
the temporary restriction that data has to be already present
in the device memory.

The next section presents details of the mapping process.

3. BASIC MAPPING STRATEGY
There are two key aspects in producing good CUDA map-

ping: (i) assigning the available set of parallelism to blocks
and threads, and (ii) managing the memory hierarchies ef-
ficiently.

The problems are currently handled by our mapper in the
following sub-phases:

1. Optimize a weighted tradeoff between parallelism, lo-
cality and contiguity of memory references via affine
scheduling. This step exposes as much parallelism as
can be exploited in the target machine model.

2. Use tiling (aka blocking) to divide the iteration space



Figure 1: R-Streamcompiler flow

into tiles, such that each tile fits within the constraints
of a thread block.

3. Promote variables in device memory to shared mem-
ory via shared memory promotion, and produce
optimized transfers from global to shared memory.

4. Compute a mapping from any loop iteration to a set of
block and thread IDs. We call this Block and thread
placement. Blocks and thread IDs are distributed
across independent iterations, so they can be executed
in parallel. The CUDA programing model also imposes
that these IDs are constrained to be within a [0, n)
interval.

5. Insert synchronizations at block and thread levels. Since
CUDA does not natively support block synchroniza-
tion, we have implemented a software barrier in the
style of [4].

6. Apply more optimizations that make the CUDA code
that R-Stream produces a better fit with the program-
ming style expected by nvcc.

All these steps are carried inside a single powerful frame-
work based on the polyhedral model [1, 9]. The nvcc-specific
optimizations include traditional optimizations such as loop
unrolling, loop fusion and privatization. In addition to these,
two basic transformations may be applied to make the pro-
duced code match the CUDA programming model.

First, two parallel thread loops may be merged into one
by inserting a thread synchronization, i.e., from

doall_threads (j = 0; j < T; j++) {

S1;

}

doall_threads (j = 0; j < T; j++) {

S2;

}

into

doall_threads (j = 0; j < T; j++) {

S1;

__syncthreads();

S2;

}

Generalizing the above, we can also interchange a sequential
loop with a parallel thread loops, i.e., from

for (i = 0; i < N; i++) {

doall_threads (j = 0; j < T; j++) {

S;

}

}

to

doall_threads (j = 0; j < T; j++) {

for (i = 0; i < N; i++) {

S;

__syncthreads();

}

}

Note the insertion of __syncthreads is not always necessary
depending whether or not the doall j loop can be legally
placed at the outermost level. In our context such consid-
erations disappear as our affine scheduling phase guarantees
the only optimal restructuring of the loop is considered. In
other words, if it was legal and profitable to remove the
__syncthreads, the schedule considered would have been
outer parallel in the first place. It is important to realize op-
timality is related to a model. Whether the model is derived
statically or dynamically and whether it actually translates
into performance is a fascinating topic outside the scope of
this paper. We now go over the mapper phases involved in
more detail in the following sections.

3.1 Affine scheduling
The first step of the mapping process is to expose all the

available parallelism in the program, including both coarse-
grained and fine-grained parallelism. Generally speaking,



our strategy consists of transforming coarse-grained paral-
lelism into the thread and block parallelism in a CUDA
kernel, and fine-grained parallelism into SIMD parallelism
within a thread block.

We use an improvement of [7] to perform fusion and
parallelism extraction while obtaining contiguous accesses
through some of the array references. Important strengths
of our algorithm as opposed to [7, 4] include that (1) it bal-
ances fusion, parallelism and contiguity of accesses, (2) it
ensures that the degree of parallelism is not sacrificed when
loops are fused and (3) it is applied as a single mapper phase
which makes the algorithm very suitable for iterative opti-
mization and auto-tuning. Our algorithm is based on a com-
plex integer programming problem that is outside the scope
of this paper.

In our running example, the available amount of paral-
lelism is easy to expose, and the resulting loop nests are as
follows:

doall (i = 0; i < 4096; i++)

doall (j = 0; j < 4096; j++) {

C[i][j] = 0;

reduction (k = 0; k < 4096; k++)

C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

Note that our convention is to use the keywords doall and
reduction to indicate potential parallelism rather than ac-
tual usage of parallelism. In this case, doall indicates that
a loop may be executed in a data parallel manner, while
reduction indicates that a loop is a reduction, i.e., any
sequential order of execution is legal, including tree-based
decomposition of the computations.

3.2 Tiling
The next step of our mapping is to perform tiling. The

present tiling algorithm is guaranteed to choose tile sizes
that satisfy the following criteria:

1. The data footprint of the tile does not exceed the size
of the shared memory.

2. The tile size balances the amount of computation and
communication (among tiles).

The first constraint ensures that all the memory storage
within one tile after tiling fits within the local memory of
the GPU. Our algorithm for tile size selection currently
maximizes the occupancy of a level of shared memory by
maximing the amount of spatial and temporal reuse along
the loop dimensions that are marked permutable. The un-
derlying mathematical framework uses Ehrhart polynomial,
which are multi-variate periodic polynomials [8, 2, 19, 15].
In general, when targeting architectures with asynchronous
memory communications such as Cell, tiling can be tuned
to use a fraction of the shared memory. Each subportion
of the shared memory is then used to create a small buffer
on which we apply multi-buffering to hide communication
latencies with computations [14].

For CUDA, we choose not to enable multi-buffering be-
cause latency hiding is performed automatically in hard-
ware by the dynamic scheduler. This happens as soon as
the number of virtual threads and blocks exceeds the num-
ber of physical resources. Compared to sotware managed
multi-buffering, hardware manaed latency hiding does not

require extra code. Additionally, there is not need to create
tile with sizes that fit in a fraction of the memory. One tile
can use all the local store. This results in improved reuse
inside the single CUDA buffer.

The drawbacks are less immediate as there are multiple
tensions between tile sizes, exploitable parallelism, load bal-
ancing properties, number of usable registers per thread,
possibility or impossibility to privatize arrays into regis-
ters, register pressure and spilling to device memory. We
are in the process of experimenting and deriving models for
these very specific hardware features. One of the difficulties
is that tiling needs to communicate with multiple phases
of the compiler to make the best decisions. R-Stream has
enough flexibility to allow complex decision interplays be-
tween phases because every single phase is implemented in
the polyhedral model representation.

In our running example, a tile size of 32× 32× 32 is com-
puted, and the resulting loop nests loop is:

doall (i = 0; i <= 127; i++) {

doall (j = 0; j <= 127; j++) {

doall (k = 32 * i; k <= 32 * i + 31; k++)

doall (l = 32 * j; l <= 32 * j + 31; l++)

C[k][l] = 0;

reduction_for (k = 0; k <= 127; k++)

doall (l = 32 * i; l <= 32 * i + 31; l++)

doall (m = 32 * j; m <= 32 * j + 31; m++)

reduction_for (n = 32 * k;

n <= 32 * k + 31; n++)

C[l][m] = C[l][m] + A[l][n] * B[n][m];

}

}

While R-Stream computes tile sizes that respect the crite-
ria above, it is also possible for the user to tune his program
by exploring different tile sizes using command-line options.

4. CUDA SPECIFIC MAPPING PHASES
Transforming a standard tiled parallel SMP code into a

CUDA kernel generally involves sequences of non-trivial “or-
thogonal” loop and data transformations, including loop fu-
sion, fission, interchange, stripmining, and data permuta-
tion. The first step of this process is block and thread place-
ment, i.e., determining the set of loop dimensions to be used
for block and thread dimensions.

4.1 Global memory coalescing
GPUs implement global memory coalescing, whereby

aligned array accesses from device memory that exhibit a
stride-1 contiguity and that are assigned to adjacent threads
are merged into a single memory transaction. Taking ad-
vantage of this hardware feature is necessary to obtain good
performance through improved memory transfer rate.

However, memory coalescing interacts with data layout
and thread placement in non-trivial ways. For example,
consider the following parallel loop nests with one single
reference of interest:

doall (i = 0; i < 32; i++)

doall (j = 0; j < 32; j++)

... A[i,j] ...

To optimize the reference so that each successive thread
accesses adjacent elements of the data array, we have to



interchange loops i and j, and destinate the j loop as the
thread dimension. The resulting transformation is shown
below:

doall_threads (j = 0; j < 32; j++)

for (i = 0; i < 32; i++)

... A[i,j] ...

Similarly, consider the following parallel loop nests with
also one single reference of interest:

doall (i = 0; i < 32; i++)

doall (j = 0; j < 32; j++)

... A[i,2*j] ...

Data dimension 1 of A, accessed via a non-stride 1 ac-
cess (2*j), cannot be optimized via memory coalescing. To
ensure global memory coalescing, the only possibility is to
transpose the data layout of A to make the loop i as the
thread dimension:

doall_threads (i = 0; i < 32; i++)

for (j = 0; j < 32; j++)

... A_t[2*j,i] ...

Data layout transformations affect the whole layout of the
program and must be considered carefully. They are most
profitably introduced at communication boundaries between
different types of memories. In the current version of R-
Stream, we do not perform data layout transformations on
an array residing in device memory. We perform data re-
layouts on transferred local copies of the arrays, at the time
of the transfer. This mechanism can easily be extended to
handle relayouts in device memory at the time of copy from
host to device memory.

The previous simple examples show that optimizing for
memory coalescing is non-trivial, and doing it by hand is a
cumbersome task best left to a compiler. To solve this prob-
lem, we have devised a combined loop and data-transformation
optimization that performs these tasks in a unified manner:

1. Compute a schedule transformation optimizing a weight-
ed cost of the contiguity of the array references ac-
cessed by the computation kernel while keeping the
same amount of parallelism and locality as originally
found by our initial scheduling phase. The details of
this integer linear programming based optimization are
well beyond the scope of this paper and will be pub-
lished at a later time.

2. Apply the new schedule to the program that maximizes
contiguity along well-chosen dimensions.

3. Assign the proper loop iterations to the thread and
block dimensions of a GPU kernel via strip-mining.

4. Transform imperfect loop nests into a perfectly nested
loop nests CUDA kernel via strip-mining, fusion and
loop interchanges.

5. Arrays whose references cannot be profitably coalesced
are flagged for memory promotion in shared memory,
if they exhibit enough reuse.

It is important to note that deciding whether an array should
be promoted to shared memory is not a trivial process. If
some, but not all, of the references to the array can be co-
alesced, there is a need for a model that analyzes (1) the

tradeoff between wasted uncoalesced global memory instruc-
tions, (2) the amount of required shared memory to store the
promoted copy of the array, (3) the amount and expected
benefit of reuse and (4) the impact on register pressure of
introducing explicit copy operations.

4.2 Shared memory promotion
The shared memory promotion step promotes the mem-

ory used within a tile to shared memory, when our compiler
deems it profitable to do so. Copies between the device
memory and shared memory are introduced by our com-
munication generation phase. Communication generation is
invoked when there is a need (whether it arises from pro-
grammability or profitability) to explicitly transfer data be-
tween different memories. Current examples when R-Stream
invokes communication generation include (1) generation
of prefetch instructions or explicit copies that benefit from
hardware prefetches on shared memory machines, (2) gen-
eration of DMA instructions for the Cell BE architecture
which requires SPUs to process data in their local scratch-
pad memory, (3) copy uncoalesced global arrays that exhibit
reuse to shared memory in CUDA.

On a standard matrix-multiply example, the result of mem-
ory promotion and communication generation give the fol-
lowing pseudo-code:

__shared__ float C_l[32][32];

__shared__ float A_l[32][32];

__shared__ float B_l[32][32];

__device__ float A[4096][4096];

__device__ float B[4096][4096];

__device__ float C[4096][4096];

doall (i = 0; i <= 127; i++) {

doall (j = 0; j <= 127; j++) {

doall (k = 0; k <= 31; k++)

doall (l = 0; l <= 31; l++)

C_l[k][l] = 0;

reduction_for (k = 0; k <= 127; k++) {

doall (l = 0; l <= 31; l++)

doall (m = 0; m <= 31; m++)

B_l[l][m] = B[32 * k + l][32 * j + m];

doall (l = 0; l <= 31; l++)

doall (m = 0; m <= 31; m++)

A_l[l][m] = A[32 * i + l][32 * k + m];

doall (l = 0; l <= 31; l++)

doall (m = 0; m <= 31; m++)

reduction_for (n = 0; n <= 31; n++)

C_l[l][m] += A_l[l][n] * B_l[n][m];

}

doall (l = 0; l <= 31; l++)

doall (m = 0; m <= 31; m++)

C[32 * i + l][32 * j + m] = C_l[l,m];

}

}

In the simple case of matrix-multiply, R-Stream deems all
arrays worthy of being promoted to shared memory. This
is due to the large amount of reuse in the matrix-multiply
kernel. In our mapping, each transferred memory element
is reused 32 times.

4.3 Memory coalescing analysis
We now describe the model we use to derive memory co-

alescing transformations. Given an array reference A[f(x)],
we define a coalescing tuple (A, d, j, w) as follows:



• A is an array,

• d is an array dimension of A, indexed from 0.

• j is a potential thread loop dimension (i.e., it must be
a parallel intra-tile loop dimension), and

• w is the weight, which measures how much benefit
there is if the given reference is coalesced. Intuitively,
a coalescing tuple (A, d, j, w) for a reference A[f(x)]
means that if data dimension d of A is made the right-
most data dimension 1 and if j is made the outer-most
thread dimension, we gain a performance benefit of w
in the program.

Currently, the weight w is computed via the following
static cost model:

1. An estimate of the number of total iterations in the
intra-tile loop is used as the initial estimate of w.

2. A reference from device memory is slower to execute
than from shared memory, so we also scale w by the
relative speed of the load/store.

Consider this loop nest:

doall (i = 0; i < P; i++)

doall (j = 0; j < Q; j++)

doall (k = 0; k < R; k++)

... A[i,j] + A[i,k] + A[i+j,32*i+j]

The tuples that we produce for all the references are as fol-
lows: For A[i,j], the tuples are [(A, 0, i, PQR), (A, 1, j, PQR)].
For A[i,k], the tuples are [(A, 0, i, PQR), (A, 1, k, PQR)].
For A[i+j,32*i+j], the tuples are [], i.e., no memory coa-
lescing is possible. The tuples for the statement S can be
computed by merging the tuples for its references. In this
case we have: [(A, 0, i, 2PQR), (A, 1, j, PQR), (A, 0, k, PQR)]

Our optimizing algorithm, whose description is left for fu-
ture publication, chooses loop i as the most beneficial out-
ermost thread dimension. This results in and transpose A.
The resulting code is:

doall_threads (i = 0; i < P; i++)

for (j = 0; j < Q; j++)

for (k = 0; k < R; k++)

... A_t[j,i] + A_t[k,i] + A_t[32*i+j,i+j]

Note that the first two references have been optimized to
take advantage of coalescing.

4.4 Integrating synchronization costs
The weight computation we presented above is somewhat

inaccurate in the presence of non-parallel loop dimensions.
This is because using an inner doall loop as a thread di-
mension can increase the amount of synchronization that
we require in the final CUDA kernel. For example, sup-
pose we have following loop nests with two parallel and one
interleaved sequential loop dimensions:

doall (i = 0; i < 16; i++)

for (j = 0; j < 16; j++)

doall (k = 0; k < 128; k++)

S;

1Assuming C-style data layout.

If the dimension i is chosen as the thread dimension, then
no synchronization code is required:

doall_threads (i = 0; i < 16; i++)

for (j = 0; j < 16; j++)

for (k = 0; k < 128; k++)

S;

On the other hand, we may prefer to choose loop k as
the thread dimension, because it allows us to use a higher
number of threads. If this is the case, then a __syncthreads

call must be inserted in the output code to preserve the
semantics of the original program. This argument is valid in
the same context as the discussion of section 3: it is assumed
the loop k cannot be legally used as an outer doall loop. If
this assumption was wrong and the k loop was indeed chosen
as the outer thread loop, it means the affine scheduling phase
should have made the k loop outer parallel. If such a case
happens, we see it as a good indication that the cost model
used for parallelism maximization should be improved. The
resulting pseudocode is:

doall_threads (k = 0; k < 128; k++)

for (i = 0; i < 16; i++)

for (j = 0; j < 16; j++) {

S;

__syncthreads();

}

Furthermore, since the loop i was originally a doall loop,
we can also sink it below the loop j, and hoist the thread
synchronization call. This results in the following improved
code with fewer number of synchronizations:

doall_threads (k = 0; k < 128; k++)

for (j = 0; j < 16; j++) {

for (i = 0; i < 16; i++)

S;

__syncthreads();

}

In general, a thread synchronization penalty is deducted
from the weight of a coalescing tuple. Generally speak-
ing, thread synchronization is required if a loop dimension
is nested under a sequential loop within a tile. The total
penalty of the synchronization is proportional to the trip
count of the sequential loops, which is an estimate of the
minimal amount of thread synchronization calls that the
program has to execute per block.

4.5 Computing memory coalescing for arbi-
trary loop nests

We now generalize the previous analysis to imperfectly
nested loops with multiple statements. Suppose we have
two coalescing tuples (A, d, j, w) and (A′, d′, j′, w′) for state-
ments S and S′ respectively (S could be equal to S′.) We
say that the two tuples are compatible if

1. If A = A′, then d = d′. Intuitively, this means that
the two tuples must describe compatible coalescings.

2. If j-loop in S and j′-loop in S′ are nested under some
common loop nests, and if the j-loop or the j′-loop
belongs to this common part, then j = j′.

The meaning of the second condition can best be ex-
plained via an example. Consider the following loop nests:



doall (i = 0; i < 32; i++) {

doall (j = 0; j < 32; j++)

... A[i,j] ...; // S1

doall (k = 0; k < 32; k++)

doall (l = 0; l < 32; k++)

... A[i,k] + B[k,l] ...; // S2

}

Statement S1 and S2 have the i-loop in common. The con-
dition (2) states that if we choose the i-loop for a thread
dimension of S1, then we have also use it for the thread di-
mension of S2. On the other hand, if we choose the j-loop
for the thread dimension for S1, then we have the freedom
to use the k- or l-loop for the thread dimension of S2.

Given the definition of compatibility, the task of optimiz-
ing memory coalescing can be stated simply as follows: given
a set of coalescing tuples T , find a compatible subset of T ,
Topt, such that the weight of Topt is maximized.

4.6 Choosing remaining thread and block di-
mensions

Figure 2 shows the algorithm to determine which loops
should be mapped to the threads and block dimensions.
Currently, we simply find one dimension at a time, start-
ing from the first thread dimension. During the selection of
the first thread dimension, memory coalescing optimization
is applicable.

for i = 1 ... 3 do
if i = 1 then enable coalescing optimization end if
Find a new thread dimension from the intra-tile loops
if too many threads are used then

break;
end if

end for
for i = 1 ... 3 do

Find a new block dimension from the inter-tile loops
if too many blocks are used then

break;
end if

end for

Figure 2: Block/thread selection algorithm.

When choosing other thread and block dimensions (where
memory coalescing is no longer a concern), we use the fol-
lowing heuristics instead:

• Choose the loop dimensions with the maximum trip-
count. This ensures that we maximize the trip count

• For a thread, the loop dimensions j and j′ of any two
statements S and S′ must be thread-compatible: i.e.,
either j = j′, or else j is not nested under j′ or vice
versa.

• For a block, the loop dimensions j and j′ of any two
statements S and S′ must be block-compatible: i.e.,
j = j′.

This last restriction for block-compatibility can be clari-
fied by the following example. Suppose we have the following
inter-tile loop dimensions:

doall (i = ...) {

doall (j = ...) {

S1;

}

doall (k = ...) {

S2;

}

}

We can only choose loop-i as the block dimension for S1 and
S2, i.e., it is illegal to choose j as the block dimension for
S1 and k for S2. This is because the merging transformation
cannot be applied to parallel block loops, only to parallel
thread loops. In practice, we have a software implemen-
tation to synchronize blocks but its cost is usually deemed
profitable only when no outermost parallel loops can be ex-
hibited. For instance, this is the case for gauss-seidel stencil
iterations.

4.7 An example
The result of block and thread placement on our run-

ning example is shown in the following loop nests. The first
thread dimension has a trip count of 32. Since we are only
allowed a maximum of 512 threads on the 9800GX2, our
second thread dimension is limited to 16. The second se-
lected thread dimension has a trip count of 32. To maintain
the limit of 512 threads, we stripmine the loop nest by 16
and use the stripmined loop as the second thread dimension.
After this, we have exhausted the number of threads. We
then proceed to select the block dimensions, which are loops
i and j.

In the following automatically generated code, both block
dimensions have trip counts of 128:

__shared__ float C_l[32][32];

__shared__ float A_l[32][32];

__shared__ float B_l[32][32];

__device__ float A[4096][4096];

__device__ float B[4096][4096];

__device__ float C[4096][4096];

doall_block (i = 0; i <= 127; i++) { // bl.x

doall_block (j = 0; j <= 127; j++) { // bl.y

doall (k = 0; k <= 1; k++)

doall_threads (l = 0; l <= 15; l++) // th.y

doall_threads (m = 0; m <= 31; m++) // th.x

C_l[16 * k + l][m] = 0;

reduction_for (k = 0; k <= 127; k++) {

doall (l = 0; l <= 1; l++)

doall_threads (m = 0; m <= 15; m++) // th.y

doall_threads (n = 0; n <= 31; n++) // th.x

B_l[16 * l + m][n] =

B[32 * k + 16 * l + m][32 * j + n];

doall (l = 0; l <= 1; l++)

doall_threads (m = 0; m <= 15; m++) // th.y

doall_threads (n = 0; n <= 31; n++) // th.x

A_l[16 * l + m,n] =

A[32 * i + 16 * l + m][32 * k + n];

doall (l = 0; l <= 1; l++)

doall_threads (m = 0; m <= 15; m++) // th.y

doall_threads (n = 0; n <= 31; n++) // th.x

reduction_for (o = 0; o <= 31; o++)

C_l[16 * l + m][n] +=

A_l[16 * l + m][o] * B_l[o][n];

}



doall (l = 0; l <= 1; l++)

doall_threads (m = 0; m <= 15; m++) // th.y

doall_threads (n = 0; n <= 31; n++) // th.x

C[32 * i + 16 * l + m][32 * j + n] =

C_l[16 * l + m][n];

}

}

4.8 CUDA placement and synchronization gen-
eration

The above set of loop nests is still not in the standard
CUDA kernel form. The following merging heuristics can
be used to transform arbitrary loop nests into the standard
form:

1. Loop dimensions that are assigned to a block or thread
should be made implicit.

2. Loop dimensions that are below block dimensions can
be sunken into the CUDA kernel and executed sequen-
tially. Note that doing so may require addition syn-
chronizations to be inserted.

In our running example, the loop dimensions i and j are
used as the block dimensions. Since there are no loop dimen-
sions above i in this example, the entire loop nests may be
executed in the CUDA kernel, and the host-side code con-
tains only a kernel launch. The reduction loop dimension k

can be sunken into the CUDA kernel; doing so requires the
introduction of __syncthreads() calls to sequentializes the
execution within this loop. The resulting transformed loop
nests are as follows:2

__shared__ float C_l[32][32];

__shared__ float A_l[32][32];

__shared__ float B_l[32][32];

__device__ float A[4096][4096];

__device__ float B[4096][4096];

__device__ float C[4096][4096];

doall (i = 0; i <= 1; i++)

C_l[16 * i + th.y][th.x] = 0;

__syncthreads();

reduction_for (i = 0; i <= 127; i++) {

doall (j = 0; j <= 1; j++)

B_l[16 * j + th.y][th.x] =

B[32 * i + 16 * j + th.y,32 * bl.y + th.x];

doall (j = 0; j <= 1; j++)

A_l[16 * j + th.y][th.x] =

A[16 * j + 32 * bl.x + th.y,32 * i + th.x];

__syncthreads();

doall (j = 0; j <= 1; j++)

reduction_for (k = 0; k <= 31; k++)

C_l[16 * j + th.y][th.x] +=

A_l[16 * j + th.y][k] * B_l[k][th.x];

__syncthreads();

}

doall (j = 0; j <= 1; j++)

C[16 * j + 32 * bl.x + th.y][32 * bl.y + th.x]

= C_l[16 * j + th.y][th.x];

4.9 Privatization
Memory utilitization of the above memory can be further

improved by recognizing that each thread writes to its own
2We use th for threadIdx and bl for blockIdx to reduce
clutter in the pseudo code.

disjoint set of locations in C_l. Thus the following transfor-
mation on references is possible:

C_l[16 * j + th.y][th.x] −→ C_l[i]

C_l[16 * j + th.y][th.x] −→ C_l[j]

The resulting loop nests after privatization are as follows.
In this example, each thread keeps around two running sums
for inside the local array C_l.

float C_l[2]; // local memory

__shared__ float A_l[32][32];

__shared__ float B_l[32][32];

__device__ float A[4096][4096];

__device__ float B[4096][4096];

__device__ float C[4096][4096];

doall (i = 0; i <= 1; i++)

C_l[i] = 0;

__syncthreads();

reduction_for (i = 0; i <= 127; i++) {

doall (j = 0; j <= 1; j++)

B_l[16 * j + th.y][th.x] =

B[32 * i + 16 * j + th.y,32 * bl.y + th.x];

doall (j = 0; j <= 1; j++)

A_l[16 * j + th.y][th.x] =

A[16 * j + 32 * bl.x + th.y,32 * i + th.x];

__syncthreads();

doall (j = 0; j <= 1; j++)

reduction_for (k = 0; k <= 31; k++)

C_l[j] += A_l[16 * j + th.y][k] * B_l[k][th.x];

}

__syncthreads();

doall (j = 0; j <= 1; j++)

C[16 * j + 32 * bl.x + th.y][32 * bl.y + th.x] =

C_l[j];

4.10 Loop fusion
To reduce control overhead, adjacent loops with compat-

ible trip counts may be fused. In our example, we may fuse
the loop nests:

doall (j = 0; j <= 1; j++)

B_l[16 * j + th.y][th.x] =

B[32 * i + 16 * j + th.y,32 * bl.y + th.x];

doall (j = 0; j <= 1; j++)

A_l[16 * j + th.y][th.x] =

A[16 * j + 32 * bl.x + th.y,32 * i + th.x];

into:

doall (j = 0; j <= 1; j++) {

B_l[16 * j + th.y][th.x] =

B[32 * i + 16 * j + th.y][32 * bl.y + th.x];

A_l[16 * j + th.y][th.x] =

A[16 * j + 32 * bl.x + th.y][32 * i + th.x];

}

Note that in general, this loop fusion requires adding a
__syncthreads inside the parallel loop as has been described
in section 3. In the particular case of communications be-
tween memories, the lack of dependence allows us to omit
this spurious synchronization. This is equivalent to saying
that memory transfers are fully parallel across imperfectly
nested loops.



4.11 Loop unrolling
A complementary transformation that we can do to fur-

ther reduce control overhead is to unroll loops with small
trip counts. Our current heuristic is to unroll all loops with
trip count of 4 or less. With this in place, the resulting code
is follows:

float C_l[2];

__shared__ float A_l[32][32];

__shared__ float B_l[32][32];

__device__ float A[4096][4096];

__device__ float B[4096][4096];

__device__ float C[4096][4096];

C_l[0] = 0;

C_l[1] = 0;

__syncthreads();

reduction_for (i = 0; i <= 127; i++) {

B_l[th.y][th.x] =

B[32 * i + th.y][32 * bl.y + th.x];

B_l[16 + th.y][th.x] =

B[16 + 32 * i + th.y][32 * bl.y + th.x];

A_l[th.y][th.x] =

A[16 + 32 * bl.x + th.y][32 * i + th.x];

A_l[16 + th.y][th.x] =

A[16 + 32 * bl.x + th.y][32 * i + th.x];

__syncthreads();

reduction_for (k = 0; k <= 31; k++) {

C_l[0] += A_l[th.y][k] * B_l[k][th.x];

C_l[1] += A_l[16 + th.y][k] * B_l[k][th.x];

}

__syncthreads();

}

C[32 * bl.x + th.y][32 * bl.y + th.x] = C_l[0];

C[16 + 32 * bl.x + th.y][32 * bl.y + th.x] = C_l[1];

4.12 Performance discussion
Our matrix multiply kernel runs at 116 GFlops/s on one

GPU core of 9800GX2 chip,3 versus 178 GFlops/s when
using the CUBLAS v2.0 sgemm routine. It achieves 232
GFlops/s on GTX 285 chip compared to 395 GFlops/s from
the CUBLAS v2.0 routine. This is using version 2.0 of the
nvcc compiler.

Our mapped routine does not yet perform as well as the
library. Still, our work shows the feasibility of automating
the difficult transformations from C source to CUDA and
achieving a reasonable percentage of peak performance, us-
ing the advanced mapping capabilities of R-Stream.

We take a step back to compare these results to Volkov’s
results [20]. In this work, a careful examination of the ta-
ble on page 7 shows R-Stream automatically derives the
same mapping features as the reported CUBLAS v1.1 im-
plementation (32x32x32 tile sizes and array C privatized).
The fraction of performance peak of 36-44% reported by
Volkov for CUBLAS v1.1 is close to what R-Stream obtains
automatically. We speculate the roughly 5% performance
difference remaining between R-Stream and CUBLAS v1.1
might be linked to the performance of the low-level single
thread code that we did not optimize. For the case of matrix
multiply, Volkov shows a fraction of 58-60% of the hardware
peak can be reached. This corresponds to our measurements

3The 9800GX2 has two GPU cores and our current mapping
only utilitizes one.

with CUBLAS v2.0. The necessary steps needed to gener-
ate a version with performance comparable to CUBLAS v2.0
are well suited to optimization in the polyhedral model. Our
prototype implementation shows promising preliminary re-
sults that should help close this gap. It will be the subject
of a future publication.

4.13 Differences with existing approaches
This short section aims at clearly pointing out the differ-

ences between the R-Stream implementation of a polyhedral
model based restructuring compiler and existing approaches.
To the best of our knowledge, there are currently 3 other
major active projects using the polyhedral model: the GCC
compiler, IBM’s XLC compiler and the contributions from
Ohio State University [6, 3, 4]. We are not aware of recent
developments inside GCC and XLC to specifically target
GPGPUs. Our comparison will therefore be limited to re-
cent contributions from Ohio State University.

The first major difference resides in the the implementa-
tion of the various mapping phases we described. R-Stream
implements all these phases in the polyhedral model. In-
formation such as: which dimensions correspond to which
threadId or blockId dimension are available to any mapping
phase in the compiler. This is important for future opti-
mizations such as removing redundant communications for
instance. In contrast, recent contributions [3, 4] tend to de-
fer the mapping to a later syntactic phase outside of the
polyhedral model. Although contributions exist to restruc-
ture a program represented as a tree back into the polyhedral
model [18], they do not discuss the case of explicit processor
dimensions and they are very cumbersome.

A second difference comes from the way we perform affine
scheduling. We optimize a weighted tradeoff between par-
allelism, locality and contiguity of memory references via
affine scheduling. This step exposes as much parallelism as
can be exploited in the target machine model. In particu-
lar it does not sacrifice parallelism for locality or contigu-
ity. Other existing approaches tend to search for a sched-
ule with maximal parallelism given stringent constraints on
the fusion-distribution structure [6] or first select a fusion-
distribution structure and only then optimize for maximal
parallelism [17]. Our approach is able to optimize all these
metrics in a single unified problem.

A third difference concerns the explicit generation of com-
munications and the associated memory promotion phase.
R-Stream performs data layout transformations and local
storage size optimization by solving optimization problems
not described in this paper. R-Stream also allows the auto-
matic genneration of multi-buffered code, although we have
not found this step to be beneficial in the context of auto-
matic CUDA generation. Other approaches we are aware of
do not perform such advanced optimizations.

Lastly, the final difference resides in the selection of tile
sizes, grid sizes and thread block sizes. R-Stream computes
these mapping parameters automatically by using advanced
counting algorithms based on Ehrhart polynomials to opti-
mize various metrics decribed in section 3.2. R-Stream also
allows the user to specify the dimensioning of its mapping
by command line flags to experiment with various sizes. In
contrast, recent contributions [4] require the tile sizes, grid
sizes and thread block sizes to be set explicitely or computed
by other means.



4.14 Beyond embarrassing parallelism : Block-
level synchronization

Performing synchronization at the host side is costly in
terms of overhead due to kernel launch and possible data
transfer between host and GPU. To avoid this, we imple-
ment a __syncblocks primitive using atomic intrinsics in
the deveice memory space. To make sure that the program
is free from race conditions and potential deadlock, we re-
strict the number of thread blocks used for executing a GPU
kernel to be equal to the number of streaming multiproces-
sors in the GPU chip. This restriction ensures that there is
no more than one thread block per streaming multiprocessor
and all thread blocks are active at any point. We have seen
in practice that performing synchronization across thread
blocks on the GPU side rather than the host side results in
a huge performance improvement.

With the __syncblocks primitive in place, we mapped
an interesting and non-trivial kernel, namely Gauss Seidel
2D stencil, using R-Stream and the automatically generated
CUDA code achieved around 16 GFlops/s and 21 GFlops/s
for the 5 point stencil and 9 point stencil, respectively, on a
GTX 285 GPU.

To give a feel of the order of magnitude of host-based
synchronizations, 1024 iterations of the 5 point Gauss Sei-
del 2D stencil on a 4096x4096 grid take about 10.5 seconds
on a GTX 285 GPU using __syncblocks. This is likely to
be much improved with a dynamic distribution of the com-
putations as has already been demonstreted [5]. The per-
formance increase comes from reducing the very poor load
balancing properties of pipelined parallel stencil programs.
On the other hand the time required to perform host based
synchronizations is around 8 seconds. This timing is without
any computation and is already worse than what we expact
to reach on a single GPU.

4.15 System level mapping
The R-Stream implementation has facilities for hiearchical

and heterogeneous mapping. The machine model input file
describes architectures in a recursive manner. Host-GPU
partitioning and parallelization are a generalization of the
host to processing element parallelization and partitioning
used for targeting the Cell architecture. After the first level
of partitioning is performed, a software pipeline for operand
and result communication is created (using the techniques
from [14]; and then the compiler recursively “pushes in” to
parallelize for the individual accelerator. Implementation of
this feature is in-progress for several architecture targets. In
the particular case of multi-GPUs, we are developing addi-
tional models to account for the costly host-based synchro-
nization. From the point of view of the R-Stream mapper,
this is just another level of memory and synchronization hi-
erarchy. While it is too early to present results, the

5. CONCLUSION
We have presented our port of R-Stream to the CUDA

target. While we have not nearly tuned (or auto-tuned) it,
performance results are already encouraging: (1) automat-
ically reaching performance close to CUBLAS1.1, and (2)
achieving a significant fraction - automatically - of the per-
formance provided by current libraries, from ANSI C. That
the input C is not geared toward a particular architecture
or execution model is a factor in increasing portability; the

input has less binding and more options for mapping. The
pathway to portability and productivity in code is through
encouraging expression of algorithms at the highest semantic
level and using compiler building blocks to automatically ex-
plore (implicitly or explicitly) different code configurations
to find one with good performance.

We coined the “textbook C” to emphasize that to use R-
Stream, the programmer must currently write in a simple
manner, fewer lines and with fewer hand optimizations. This
makes the semantics of the program clear and means that
fewer things (programmer memory management, etc.) have
to be undone by the compiler in raising stages to get at
the semantics to be optimized by the mapper. Typically,
though, programmers have not been writing in this style,
perhaps not because they wanted to but because previous
compilers were weak. But also, they have not been writ-
ing in CUDA or OpenCL, either (until recently). What we
are showing is a way of getting the performance potential of
GPGPU with a much, much, simpler programming abstrac-
tion, and one that is portable to other advanced parallel and
accelerator architectures. The project of extending the def-
inition of “textbook C” to a broader set of C idioms is to a
large extent orthogonal to the mapping considerations.

We will present more results at the workshop. In particu-
lar, we will discuss in more detail the mapping of the com-
plex Gauss-Siedel kernel, showing the complex code forms
that the compiler can produce, and the relationship between
the performance achieved by GPGPU and for General Pur-
pose processors.

An aspect of the Gauss Siedel kernel that is interesting
is that it is certainly not trivially vectorizable. In many
instances, the most impressive results of hand-coding for
GPGPU come from building on the vector primitive [21].
While the polyhedral framework on which we are building
can certainly be used to explore different vectorization de-
compositions, it has a broader repertoire of transformations
and in particular locality enhancing fusions that can poten-
tially significantly improve the performance of non-trivially
vectorizable codes, including in particular dense matrix it-
erative algorithms.
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