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Abstract. We show that the Bergman kernel function, associated to pseudoconvex
domains of finite type with the property that the Levi form of the boundary has
at most one degenerate eigenvalue, is a standard kernel of Calderón-Zygmund type
with respect to the Lebesgue measure. As an application, we show that the Bergman
projection on these domains preserves some of the Lebesgue classes.

1. Introduction.

Let Ω ⊂ Cn be a bounded domain. The Bergman projection P on Ω is the
orthogonal projection

P : L2(Ω) −→ H(Ω) ∩ L2(Ω) = A2(Ω),

where H(Ω) denotes the set of holomorphic functions on Ω. There is a correspond-
ing kernel function KΩ(z, w), the Bergman kernel function, such that

Pf(z) =
∫

Ω

KΩ(z, w)f(w)dw.

Let a triple (S, d, µ) be a space of homogeneous type, that is, S is a set, d is a
pseudometric on S and µ is a positive measure on S; more precisely, d : S × S →
[0,∞) satisfies

(a) d(x, y) = 0 ⇐⇒ x = y,
(b) C−1

1 d(y, x) ≤ d(x, y) ≤ C1d(y, x),
(c) d(x, y) ≤ C2(d(x, z) + d(z, y)) for x, y, z ∈ S,

for independent constants C1, C2; and for all x ∈ S and small δ > 0, there is an
independent constant C3 such that

(i) µ(P (x, δ)) < ∞;
(ii) µ(P (x, 2δ)) ≤ C3µ(P (x, δ)),

where
P (x, δ) = {y ∈ S : d(x, y) < δ}.
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Definition 1.1. A kernel K : S × S − {x = y} → C is called a standard kernel if
there exist independent constants T > 0 and C < ∞ such that for all x 6= y ∈ S,

|K(x, y)| ≤ C

µ(P (x, d(x, y))

and for all x, z ∈ S,

∫

d(x,y)>Td(x,z)

|K(x, y)−K(z, y)|dy ≤ C.

In all that follows, we assume that Ω is a smoothly bounded pseudoconvex
domain in Cn with smooth defining function r. We also assume that all the points
of bΩ are of finite type in the sense of D’Angelo [4], and the Levi form ∂∂r(z) of
bΩ has at least (n− 2)-positive eigenvalues at every point z ∈ bΩ.

Theorem 1.2. Let Ω be as above. Then the Bergman kernel KΩ(z′, z) is a standard
kernel with respect to a pseudometric d and the Lebesgue measure µ.

Here d is a pseudometric to be determined explicitly. As an application, we
prove:

Theorem 1.3. Let Ω be as above. Then the Bergman projection P is bounded on
Lp(Ω), 1 < p < ∞.

For geometrically convex domains of finite type in Cn, McNeal [5] showed that the
Bergman kernel is a standard kernel and is bounded in Lp(Ω), 1 < p < ∞. He also
mentioned that the same results hold for pseudoconvex domains of finite type in C2

and for decoupled pseudoconvex domains of finite type in Cn. The main technical
difficulties in proving these theorems are to construct a suitable pseudometric d
on Ω with “doubling property” of the balls, and to estimate |K(z′, z) − K(w, z)|
whenever z satisfies d(z′, z) > Td(z′, w) for some large T . The “doubling property”
in our case is proved in Section 2 (Proposition 2.5). To estimate |K(z′, z)−K(w, z)|,
we will use the estimates of the Bergman kernel and its derivatives (cf. [1], [2]) of
the domain we are considering.

2. Estimates on the Bergman kernel.

Let Ω be the domain in Cn considered in Section 1. In this section, we will analyze
the local geometry of the domain Ω near z0 ∈ bΩ. We may assume that there are
coordinate functions z1, . . . , zn defined near z0 such that |(∂r/∂z1)(z)| ≥ c for all z
in a neighborhood U of z0, for some c > 0. Let us fix z′ ∈ U for a moment. After an
affine transformation for the coordinates z2, . . . , zn−1, we have coordinate functions
w1, w2, . . . , wn such that ∂∂r(z′)(∂/∂wi, ∂/wj), 2 ≤ i, j ≤ n − 1, is an identity
matrix. Then the following special coordinates can be defined by a biholomorphic
map Φz′ .

Proposition 2.1 [1, Proposition 2.2]. For each z′ ∈ U and positive even inte-
ger m, there is a biholomorphic map Φz′ : Cn −→ Cn, Φ−1

z′ (z′) = 0, Φ−1
z′ (z) =
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(ζ1, . . . , ζn) such that

r(Φz′(ζ)) = r(z′) + Reζ1 +
n−1∑
α=2

∑

j+k≤m/2
j,k>0

Re
(
bα
j,k(z′)ζj

nζ
k

nζα

)

+
∑

j+k≤m
j,k>0

aj,k(z′)ζj
nζ

k

n +
n−1∑
α=2

|ζα|2(2.1)

+O(|ζ1||ζ|+ |ζ ′′|2|ζ|+ |ζ ′′||ζn|m/2+1 + |ζn|m+1).

Set ρ(ζ) = r ◦ Φz′(ζ), and set

Al(z′) = max{| ∂lρ

∂ζj
n∂ζ

k

n

(0)|; j + k = l}, 2 ≤ l ≤ m, and

Bl′(z′) = max{| ∂l+1ρ

∂ζj
n∂ζ

k

n∂ζα

(0)|; j + k = l′}, 2 ≤ l′ ≤ m/2.

For each δ > 0, we define τ(z′, δ) as follows

(2.2) τ(z′, δ) = min
2≤l≤m

2≤l′≤m/2

{( δ

Al(z′)
)1/l, (

δ1/2

Bl′(z′)
)1/l′}.

In [1], it was shown that (δ1/2/Bl′(z′))1/l′ À τ(z′, δ) whenever δ > 0 is sufficiently
small. Hence the terms mixed with ζn and ζα, α = 2, . . . , n − 1, would not be an
important ones in (2.1) and hence

(2.3) τ(z′, δ) = min{( δ

Al(z′)
)1/l : 2 ≤ l ≤ m}.

Since Am(z0) ≥ c > 0, it follows that Am(z′) ≥ c′ > 0 for all z′ ∈ U if U is
sufficiently small. This gives the inequality

δ1/2 . τ(z′, δ) . δ1/m, z′ ∈ U,

and the definition of τ(z′, δ) easily implies that if δ′ < δ′′, then

(2.4) (δ′/δ′′)1/2τ(z′, δ′′) ≤ τ(z′, δ′) ≤ (δ′/δ′′)1/mτ(z′, δ′′).

Now set τ1 = δ, τ2 = . . . = τn−1 = δ1/2, τn = τ(z′, δ) = τ and define

Rδ(z′) = {ζ ∈ Cn; |ζk| < τk, k = 1, 2, . . . , n}, and(2.5)

Qδ(z′) = {Φz′(ζ); ζ ∈ Rδ(z′)}.

In the sequal we denote any partial derivative operator of the form ∂µ+ν/∂ζµ
k ∂ζ

ν

k

by Dl
k, where µ + ν = l, k = 1, 2, . . . , n. By the definitions of τk, k ≥ 1, one has

the following useful derivative estimates for the function ρ = r ◦ Φz′ .
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Proposition 2.2 [1, Proposition 2.3]. Let z′ ∈ U . Then the function ρ = r ◦
Φz′(ζ) satisfies

|ρ(ζ)− ρ(0)| . δ, ζ ∈ Rδ(z′), and

|Di
kDl

nρ(ζ)| . δτ−l
n τ−i

k , ζ ∈ Rδ(z′),

for l + im/2 ≤ m, i = 0, 1, k = 2, . . . , n− 1.

In [1], the author proved that for z ∈ Qδ(z′)

(2.6) τ(z′, δ) ≈ τ(z, δ).

Now let us study how the polydiscs Qδ(z′) and Qδ(z′′) are related. Let Φz′ be the
map as in Proposition 2.1, and set Φz′(ζ ′′) = z′′. If we apply Proposition 2.1 at
the point ζ ′′ with r replaced by ρ = r ◦Φz′ , then we obtain a map Ψz′′ : Cn → Cn.
By virtue of the proof of Proposition 2.1 ([1, Proposition 2.2]), we see that Ψz′′ =
φ1 ◦ φ2 ◦ . . . ◦ φm, where for l ≥ 2 and ρl = ρ ◦ φ1 ◦ . . . ◦ φl−1,

φl(u) = (φl
1(u), . . . , φl

n(u)) = (ζ1, . . . , ζn)

is a biholomorphic map on Cn given by

u1 = z1 +
2
l!

∂lρl(0)
∂zl

n

zl
n +

2
l!

n−1∑
α=2

∂l+1ρl(0)
∂zα∂zl

n

zαzl
n,

uj = zj , j = 2, . . . , n,

followed by the coordinate change

z1 = ζ1, zn = ζn, zα = ζα +
∂l+1ρ(0)
∂ζα∂ζl

n

ζl,

and φ1 is an affine transformation which is uniformly non-singular in U . From
Proposition 2.2, φ2 satisfies, for l + im/2 ≤ m, i = 0, 1, k = 2, . . . , n− 1, that

|Di
kDl

nφ2
1(0)| . δτ−l

n τ−i
k and(2.7)

|Di
kDl

nφ2
α(0)| . δ1/2τ−l

n τ−i
k , α = 2, . . . , n− 1.

By induction, one can show that the same estimates hold for the components of
φl. Since Ψz′′ = (ψ1, . . . , ψn) is a composite of φl, l = 1, . . . ,m, and since each
φl satisfies an analog of (2.7), we have the following estimates for the component
functions ψk of Ψz′′ .

Lemma 2.3. For l + im/2 ≤ m, i = 0, 1, k = 2, . . . , n− 1, one has

|Di
kDl

nψ1(0)| . δτ−l
n τ−i

k and(2.8)

|Di
kDl

nψα(0)| . δ1/2τ−l
n τ−i

k , α = 2, . . . , n− 1.
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Remark 2.4. Since the component functions of Ψ−1
z′′ have expressions similar to

those of Ψz′′ , they satisfy the same estimates as (2.8).

Proposition 2.5. There exists a constant C such that if z′′ ∈ Qδ(z′), then

Qδ(z′′) ⊂ QCδ(z′) and(2.9)

Qδ(z′) ⊂ QCδ(z′′)(2.10)

Proof. Define Sδ(z′′) = {Ψz′′(u); u ∈ Rδ(z′′)}. From (2.5) we see that to prove
(2.9), it suffices to show that

Sδ(z′′) ⊂ RCδ(z′).

Note that (2.6) implies that τ(z′′, δ) . τ(z′, δ). Since ζ ′′ = (Φz′)−1(z′′) ∈ Rδ(z′),
it follows that if ζ ∈ Sδ(z′′), then

|ζn| = |ζ ′′n + un| < |ζ ′′n |+ τ(z′′, δ)

. τ(z′, δ) + τ(z′′, δ) . τ(z′, δ),

where we have used the fact that u ∈ Rδ(z′′), and hence that |un| . τ(z′′, δ). Also
by Lemma 2.3 and by the Taylor series expansion theorem,

|ζα| = |ψα(u)| = |ζ ′′α + ψα(u)| . δ1/2 +
∑

1≤k≤m/2

δ1/2τ−k
n |un|k . δ1/2,

for α = 2, . . . , n− 1, and

|ζ1| = |ζ ′′1 + ψ1(u)| . δ + |ψ1(u)| . δ + δ . δ.

This shows that ζ ∈ RCδ(z′) and proves (2.9). To prove (2.10), define R̃δ(z′) =
{Ψ−1

z′′ (ζ); ζ ∈ Rδ(z′)}. Then (2.5) also implies that it is sufficient to prove that

R̃δ(z′) ⊂ RCδ(z′′).

Since each component function of Ψ−1
z′′ also satiefies the same estimates as that of

Ψz′′ and since τ(z′, δ) . τ(z′′, δ), we may apply the same method as above to prove
R̃δ(z′) ⊂ RCδ(z′′). ¤

For z1 and z2 in U ∩Ω, let Φz1 be the biholomorphic map as in Proposition 2.1
associated with z1 and set 0 = ζ1 = Φ−1

z1 (z1), ζ2 = Φ−1
z1 (z2). Then we define

(2.11) d1(z1, z2) = inf{η > 0; z2 ∈ Qη(z1)},
and set

(2.12) M1(z1, z2) = |ζ1
1 − ζ2

1 |+
n−1∑

j=2

|ζ1
j − ζ2

j |2 +
m∑

l=2

Al(z1)|ζ1
n − ζ2

n|l = M(ζ1, ζ2).

Then from the definitions (2.2), (2.3), (2.5), and by virtue of the proof of Proposition
2.1, we have

(2.13) d1(z1, z2) ≈ M1(z1, z2).
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Proposition 2.6. d1(z1, z2) is a pseudometric on U ∩ Ω.

Proof. Suppose d1(z1, z2) 6= 0 and choose α > d1(z1, z2). Then Qα(z1)∩Qα(z2) 6= ∅
and by Proposition 2.5, Qα(z1) ⊂ QCα(z2) for an independent constant C. Thus
z1 ∈ QCα(z2) for all α > d1(z1, z2). It follows that d1(z1, z2) ≤ Cd1(z2, z1). Let
z1, z2, z3 ∈ U ∩Ω and set β = max{d1(z1, z2), d1(z3, z2)}. Then Qβ(z1)∩Qβ(z3) 6=
∅, and hence Proposition 2.5 implies that Qβ(z3) ⊂ QCβ(z1) for an independent
constant C. Thus it follows that

d1(z1, z3) ≤ Cβ ≤ C(d1(z1, z2) + d1(z3, z2)) ≤ C2(d1(z1, z2) + d1(z2, z3)).

¤
We recall the estimates on the Bergman kernel function and its derivatives for

the domain Ω obtained in [1], [2].

Theorem 2.7. Let Ω and z0 ∈ bΩ be as above. For z1, z2 ∈ U∩Ω, set ζi = Φ−1
z1 (zi),

i = 1, 2. Then there exist a neighborhood U of z0 and constants Cα,β, independent
of z1, z2 ∈ U ∩ Ω, such that

|Dα
ζ1D

β

ζ2KΩz1 (ζ1, ζ2)| ≤ Cα,βδ−n−α1−β1−(α2+β2+···+αn−1+βn−1)/2τ(z1, δ)−2−αn−βn

where δ = |ρ(ζ1)|+ |ρ(ζ2)|+ M(ζ1, ζ2), and ρ = r ◦ Φz1 .

3. Lp-boundedness of the Bergman projection.

Now we construct a global pseudometric d based simply on patching together the
local pseudometric d1(z′, z). Let Bj = B(aj ; ε/2), j = 1, · · · , N, be a minimal open
covering of bΩ by ordinary Euclidean balls with centers aj ∈ bΩ and radius ε/2 > 0
such that B(aj ; 2ε), j = 1, 2, . . . , N , are the set of the neighborhoods given by
Theorem 2.7 and B(aj ; ε/4) ∩B(ak; ε/4) = ∅ for all j 6= k. Set B0 = Ω− (∪N

j=1Bj)
and let dj(z′, z) be defined on B(aj ; 2ε) by (2.11). Choose φj ∈ C∞0 (B(aj ; 2ε)),
φj ≥ 0, j = 1, · · · , N , with φj(z) = 1 if z ∈ B(aj ; 3ε/2), and set

d0(z′, z) =
N∑

j=1

φj(z′)φj(z)dj(z′, z).

Then d0 is well-defined by the compatability of the functions dj(z′, z) on the over-
laps of the covering, that is, dj(z′, z) ≈ dk(z′, z) if z′, z ∈ B(aj ; ε/2) ∩ B(ak; ε/2).
To obtain a global pseudometric on Ω, set

d(z′, z) =
{

d0(z′, z), |z′ − z| < ε

|z′ − z|, otherwise .

Then it is easy to show that d is a pseudometric on Ω.

Lemma 3.1. Let µ be the Lebesgue measure on Ω. Then the triple (Ω, d, µ) is a
space of homogeneous type.

Proof.

µ(Qδ(z′)) ≈
n∏

j=1

τj(z′, δ)2 = δnτ(z′, δ)2 < ∞
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and

µ(Q2δ(z′)) ≈
n∏

j=1

τj(z′, 2δ)2 = (2δ)nτ(z′, 2δ)2 . 2n+1δnτ(z′, δ)2 = 2n+1µ(Qδ(z′, )).

For small δ and z near bΩ, the volume of the balls P (z′, δ) = {z : d(z′, z) < δ} are
comparable with those of the polydiscs Qδ(z′). Thus it follows that

µ(P (z′, δ)) < ∞

and
µ(P (z′, 2δ)) ≤ Cµ(P (z′, δ)),

where C is an independent constant. Thus (Ω, d, µ) is a space of homogeneous
type. ¤

Now assume that z′, z, w ∈ B(aj ; ε)∩Ω for some j and consider the biholomorphic
map Φz′ as in Proposition 2.1 and set ζ ′ = 0 = Φ−1

z′ (z′), ζ = Φ−1
z′ (z), ξ = Φ−1

z′ (w).
Note that d(z′, z) ≈ M(ζ ′, ζ) ≈ dj(z′, z) in this case.

Lemma 3.2. Let ζ ′, ζ, ξ be given as above. Then there are ν > 0, and T > 0 such
that

(3.1) |K(ζ ′, ζ)−K(ξ, ζ)| .
(

M(ζ ′, ξ)
M(ζ ′, ζ)

)ν 1
Vol(PM(ζ′,ζ)(ζ ′))

,

for M(ζ ′, ζ) > TM(ζ ′, ξ). Here K = KΩz′ and Pδ(ζ ′) = {ζ : M(ζ ′, ζ) < δ}.
Proof. From the definitions of (2.11) and (2.12), we have ξ ∈ P2M(ζ′,ξ)(ζ ′). If we
apply Proposition 2.1 at the point ξ′ with r replaced by ρ = r ◦ Φz′ and by virtue
of Theorem 2.7, it follows that

|K(ζ ′, ζ)−K(ξ, ζ)| .
n∑

j=1

| ∂

∂zj
K(ξ′, ζ)||ζ ′j − ξj |

. (
n∑

j=1

|ζ ′j − ξj |
τj(ξ′,M(ξ′, ζ))

) · 1
Vol(PM(ξ′,ζ)(ξ′))

,

(3.2)

for some ξ′ ∈ PCM(ζ′,ξ)(ζ ′) ∩ Ω. It follows from the definition of M(ζ1, ζ2) and
(2.6) that M(ξ′, ζ) ≈ M(ζ ′, ζ) for ζ satisfying TM(ζ ′, ξ) < M(ζ ′, ζ), provided T
is sufficiently large. Note that Pδ(ζ ′) and Rδ(z′) (as in (2.5)) are comparable in
the sense that Pδ/C(ζ ′) ⊂ Rδ(z′) ⊂ PCδ(ζ ′) for an independent constant C. Thus
RC2M(ζ′,ζ)(ξ′) ∩ RC2M(ζ′,ζ)(ζ ′) 6= ∅ and hence RC2M(ζ′,ζ)(ζ ′) ⊂ RC3M(ζ′,ζ)(ξ′) by
Proposition 2.5 for an independent constant C. Therefore

(3.3) Vol(PM(ζ′,ζ)(ζ ′)) . Vol(PM(ζ′,ζ)(ξ′)) ≈ Vol(PM(ξ′,ζ)(ξ′)).

Set κ = min{k : (M(ζ ′, ζ)/Ak(ζ ′))1/k = τn(ζ ′,M(ζ ′, ζ))} where τn is defined as in
(2.3) at ζ ′ with r replaced by r ◦Φz′ . Since ξ′, ζ ′ ∈ PCM(ξ′,ζ′)(ξ′) ⊂ RC2M(ξ′,z′)(ξ′),
it follows from (2.4) and (2.6) that

(3.4) τn(ξ′, M(ξ′, ζ)) ≈ τn(ξ′,M(ζ ′, ζ)) ≈ τn(ζ ′,M(ζ ′, ζ)).
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By virtue of the definitions of τi, i = 1, 2, . . . , n− 1, we also have

τ1(ξ′,M(ξ′, ζ)) ≈ M(ξ′, ζ) ≈ M(ζ ′, ζ), and(3.5)

τj(ξ′,M(ξ′, ζ)) ≈ M(ξ′, ζ)1/2 ≈ M(ζ ′, ζ)1/2.

With (3.4) and the definitions of κ and M(ζ ′, ξ), we have

(3.6)
|ζ ′n − ξn|

τn(ξ′,M(ξ′, ζ))
≈ |ζ ′n − ξn|

τn(ζ ′,M(ζ ′, ζ))
≈ Aκ(z′)1/κ|ζ ′n − ξn|

M(ζ ′, ζ)1/κ
.

(
M(ζ ′, ξ)
M(ζ ′, ζ)

)1/κ

.

Because M(z′, ξ)/M(z′, ζ) ≤ 1 and κ ≥ 2, we also have from (3.5) that

(3.7)
|ζ ′j − ξj |

τj(ξ′,M(ξ′, ζ))
≤

(
M(ζ ′, ξ)
M(ζ ′, ζ)

)1/κ

, for j = 1, 2, . . . , n− 1.

We get (3.1) if we combine (3.2), (3.3), (3.6) and (3.7). ¤
Theorem 3.3. The Bergman kernel function KΩ(z′, z) associated to the domain
Ω is a standard kernel with respect to the metric d and the Lebesgue measure.

Proof. Let µ denote the Lebesgue measure. Minimally cover Ω by open balls
B(aj ; ε/2), j = 0, 1, · · · , N , as in the begining of this section. Since KΩ(z′, z)
is smooth away from the boundary diagonal, there is a constant C such that
|K(z′, z)| ≤ C if z′, z ∈ B0 or if z′ ∈ B(aj ; ε/4) and z ∈ B(ak; ε/4) for some
j 6= k. Also, in this case, (µ(P (z′, d(z′, z)))−1 ≤ C ′. Thus it follows that

|K(z′, z)| . 1
µ(P (z′, d(z′, z)))

.

Now assume that z′, z ∈ B(aj ; ε). Then, by Theorem 2.7 and the transformation
formula for the Bergman kernel function, it follows that

|K(z′, z)| . (d(z′, z))−n(τ(z′, d(z′, z)))−2

=
n∏

j=1

τj(z′, d(z′, z))−2 ≈
1

µ(P (z′, d(z′, z)))
,

where d(z′, z) is associated to B(aj ; ε). Thus for any z′, z ∈ Ω,

|K(z′, z)| . 1
µ(P (z′, d(z′z)))

.

Assume now that z′, w ∈ Ω with z′ 6= w. Then
∫

d(z′,z)>Td(z′,w)

|K(z′, z)−K(w, z)|dz =
∫

AT
ε

|K(z′, z)−K(w, z)|dz

+
∫

BT
ε

|K(z′, z)−K(w, z)|dz

:= I + II,
8



where AT
ε = {z : d(z′, z) > Td(z′, w), |z′ − z| ≥ ε/2} ∩ Ω and BT

ε = {z : d(z′, z) >
Td(z′, w), |z′ − z| ≤ ε/2} ∩ Ω. Note that |z − w| ≥ ε/4 for z ∈ AT

ε provided T
is sufficiently large. Since K(·, ·) is smooth away from the boundary diagonal, it
follows that I . 1. To estimate II, assume that z′ ∈ B(aj ; ε/2) for some j. Thus
z′, z, w ∈ B(aj ; ε) for z ∈ BT

ε . Let Φz′ be the biholomorphic map associated with
z′ as in Proposition 2.1 and set ζ = Φ−1

z′ (z), ξ = Φ−1
z′ (w). Then

II =
∫

B(aj ;ε)∩BT
ε

|KΩ(z′, z)−KΩ(w, z)|dz

.
∫

{ζ:M(0,ζ)>TM(0,ξ)}
|KΩz′ (0, ζ)−KΩz′ (ξ, ζ)|dζ := III.

Set δ = M(0, ξ) and define the dyadic rings Dk = {ζ : 2k(Tδ) < M(0, ζ) <
2k+1(Tδ)}. Recall that Rδ(z′) ≈ P (ζ ′, δ) = {ζ : M(ζ ′, ζ) < δ}. Thus it follows
from Lemma 3.2 and the “doubling property” of the ball that

III .
∫

∪Dk

(
M(0, ξ)
M(0, ζ)

)ν

· 1
Vol(P (0, M(0, ζ)))

dζ

= δν
∞∑

k=0

∫

Dk

M(0, ζ)−ν 1
Vol(P (0,M(0, ζ)))

≤
∞∑

k=0

δν

(2kTδ)ν
· Vol(P (0, 2k+1Tδ))

Vol(P (0, 2kTδ))
. 1.

¤

Definition 3.4. Let (X,µ) be a measure space. An operator T : Lp(X, µ) →
{ measurable functions on X} is said to be of weak type (p, p), 0 < p < ∞, if

µ{x; |Tf(x)| > λ} ≤ C
‖f‖p

Lp

λp
, all f ∈ Lp, λ > 0,

where C is a constant independent of f and λ.

If we use Theorem 3.3 and the Calderón- Zygmund decomposition of Ω in terms
of balls P (z′, δ) (this is analogous to the Calderón-Zygmund decomposition of Rn in
terms of standard cubes (see [3])), it is a routine matter to show that the Bergman
kernel is of weak type (1,1) on Ω (cf. [3],[5]), and we get the following corollary:

Corollary 3.5. The Bergman projection P is of weak type (1,1) on Ω.

If we combine Theorem 3.3, Corollary 3.5 and the L2-boundedness of P , it follows
that the following theorem holds.

Theorem 3.6. Let P be the Bergman projection associated to the domain Ω in
Section 1. Then P maps Lp(Ω) to Lp(Ω), boundedly, for all 1 < p < ∞.
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