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1. INTRODUCTION

In the last few years, embedded system platforms have been increasingly employed in
fields such as image processing, multimedia applications and artificial vision, which
often require complex and computationally intensive algorithms. In order to face these
requirements, embedded devices have evolved into complex Systems-on-Chip (SoCs)
that are able to guarantee high performance thanks to the combined execution of he-
terogeneous functional units. Examples of such functional units are general purpose
processors, digital signal processors (DSPs), or specific purpose IP cores for hardware
acceleration: in the remaining of this paper, we will use the term task to refer to any
of these components.

Given the high number of tasks required by the applications and the limited amount
of available resources, new-generation platforms in both industry [Corporation 2012b]
and academia [Chang et al. 2005]; [Walder and Platzner 2004] propose a combination
of fixed general purpose tasks (CPUs) and reconfigurable resources (such as Field Pro-
grammable Gate Arrays, FPGAs) similar to the one shown in Figure 1, which allows
the hardware to adapt itself to different execution contexts. The additional support
for dynamic reconfiguration allows tasks to be dynamically added and removed from
the system depending on the application being executed. However, a well-known draw-
back of FPGAs is the time penalty related to their reconfiguration, which can be in the
order of hundreds of milliseconds [Corporation 2010], [Kao 2006], which may greatly
degrade the system performance. Hence, a good scheduling strategy is needed not only
to efficiently distribute the tasks on the available resources, but also to minimize the
reconfiguration overhead and to guarantee that the application achieves the required
performance.

The scheduling problem in the context of reconfigurable devices consists in finding a
sequence of reconfigurations that limits the time penalty and optimizes both resource
usage and performance, while guaranteeing that the tasks are configured on the device
when they are needed. As a consequence, it is necessary to characterize the applica-
tion in terms of interdependencies between the tasks, i.e. how often they communicate
and when two or more tasks constitute a pipeline structure. Typically, scheduling ap-
proaches rely on representations such as Data Flow Graphs (DFGs) [Kavi et al. 1986],
Control and Data Flow Graphs (CDFGs) [Zaretsky et al. 2005], and Petri Nets [Zu-
rawski and Zhou 1994], which capture data dependencies and may include conditional
and synchronization information. However, none of these representations captures the
necessity of multiple tasks to coexist at the same time. Another popular representa-
tion model is Data Flow Diagrams (DFDs) [Bruza and van der Weide 1993], which is
focused on the amount of data exchanged between each pair of tasks, but it does not
include any information about data dependencies to determine, for instance, whether
two tasks must be executed in sequence or should coexist.

In this paper, we propose a hybrid mapping-scheduling algorithm for reconfigurable
SoCs based on an innovative representation model that we named Temporal Cons-
trained Data Flow Diagram (TCDFD), which combines the data dependencies of DFGs
(and consequently of CDFGs and Petri Nets) and the coexisting dependencies captured
by DFDs. The proposed algorithm determines an efficient mapping at design time by
fully exploiting the information included in the TCDFD, and then performs an event-
based scheduling at run time in order to minimize the reconfigurable resources con-
sumption while achieving the required timing performance. The proposed approach
aims at mapping and scheduling, without loss of generality, a single TCDFD, which
can represent, as explained in Section 2.2, a single application or a set of applications
to be executed concurrently.
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Fig. 1. The target hardware architecture

Our experimental results show that the proposed approach achieves up to 75% of re-
sources saving and up to 89% reduction in terms of reconfiguration overhead with res-
pect to other representative state-of-the-art approaches [Murali et al. 2006a]; [Beretta
et al. 2011b]; [Clemente et al. 2011b]. In addition, we illustrate how our approach can
be applied to actual multimedia applications [Theelen et al. 2008]; [Taghipour et al.
2008]; [Verderber et al. 2003]; [Janiaut et al. 2005]; [Roitzsch 2007]; [Lindroth et al.
2006]; [Mei-hua et al. 2007] running on a real system developed on a XilinxTMVirtex-
5 FPGA. With respect to other state-of-the-art approaches [Beretta et al. 2011b];
[Clemente et al. 2011a], we hereby introduce the following contributions:

— The novel TCDFD formalism, in order to better capture all the relevant information
related to the tasks and their execution;

— The definition of the run-time scheduling and the prefetching phases to further re-
duce the actual reconfiguration overhead;

— A set of major improvements in the algorithm presented in [Clemente et al. 2011a],
including the Partitioning Reduction optimization (see Section 5), which lead to a
more efficient area usage and a reduced reconfiguration overhead;

— The validation of the proposed approach on new real-world case studies, including
the MP3 [Theelen et al. 2008]; [Taghipour et al. 2008] and the H.264 [Roitzsch 2007]
codecs.

The rest of the paper is structured as follows: Section 2 provides a detailed definition
of the context of this work. Next, Section 3 describes the most relevant state-of-the-art
task representation models, namely DFGs, CDFGs, DFDs and Petri Nets, and Section
4 presents the novel TCDFD formalism. Section 5 describes the proposed mapping-
scheduling algorithm, which is validated by means of a set of experimental results
that are discussed in Section 6. Finally, Section 7 summarizes this work with the final
conclusions.

2. CONTEXT DEFINITION

This section presents a description of the mapping-scheduling problem for the target
reconfigurable architectures that we consider in this paper. We also discuss a real-
world application that we use as a reference throughout the description of the pro-
posed algorithm: the MPEG-4 Layer 2 SP (Single Profile) decoder [Theelen et al. 2008];
[Verderber et al. 2003]; [Janiaut et al. 2005]. Thanks to the analysis of the case study,
we are able to show the main limitations of the current representation models, and
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to motivate the definition of a new formalism that fulfills the requirements that we
identify in Section 2.4.

2.1. The Target Hardware Architecture

The proposed approach is meant to fully exploit the potential of new-generation exten-
sible hardware platforms, which combine a processor-based system for general purpose
computation, and dynamically reconfigurable logic, as shown in Figure 1. However, it
is also generally applicable to any platform that supports dynamic reconfiguration,
as the processor-based part of the architecture can be emulated by means of a soft
processor (e.g., MicroBlaze [Corporation 2012a]) on the programmable logic.

In our work, we organize the programmable logic according to the structure shown
in Figure 1. This popular way of managing the reconfigurable part of the architecture
consists in dividing it into a grid of homogeneous elementary regions named reconfigu-
rable units (RUs), in order to guarantee a high degree of regularity in the architecture
and to fully support dynamic reconfiguration and module relocation [Corbetta et al.
2007] (it would be possible to employ RUs of different sizes, but this would prevent
relocation and heavily limit the potential of the architecture). A RU is a self-contained
region that represents the smallest amount of area that is reconfigured at once, and
includes one or more tasks and an intra-region communication infrastructure that
connects them (which is not depicted in the figure for the sake of simplicity). Further-
more, each RU contains an interface towards a global or inter-region communication
infrastructure that connects all the RUs on the FPGA. All the communication infras-
tructures are implemented using a Network-on-Chip (NoC) [Benini and De Micheli
2002], which provides good performance as well as good scalability for large numbers
of RUs and tasks. However, other techniques (e.g. buses, point-to-point connections)
are also possible. The intra-region NoC is specifically designed to connect the tasks in
the RU and it is reconfigured along with them, thus it can be assumed to be optimal
in terms of bandwidth and traffic distribution. The inter-region NoC is implemented
as a fixed backbone, and it is operational even during the reconfiguration of the RUs.
In XilinxTMdevices, this is achieved by connecting the RUs to the static NoC by means
of bus macros, which are particular hardware blocks that are instantiated along the
edges of the reconfigurable regions and are not affected by the reconfiguration process
[Kao 2006].

The inter-region NoC has a fixed structure (in this work, we assume a mesh grid
topology with an XY routing algorithm) and its efficiency depends on the distance
between two RUs as well as on the traffic. As a consequence, it is essential to resolve
most of the communications within the same RU in order not to congest the global
NoC and not to affect the performance of the system. In this case, the topology of the
global NoC can be defined to guarantee a certain minimum throughput between tasks
mapped in different RUs, following static design approaches that can be found in the
literature [Lukovic and Fiorin 2008].

The dynamic reconfiguration process of the programmable logic is performed by the
processor-based system, which is also static during the execution. The processor can
access an internal port and write a configuration into a desired RU. The configuration
of a RU is stored in a binary file named partial bitstream, which reconfigures only the
target portion of the FPGA area, and it can be reused to write the same configuration
into multiple RUs by means of a technique known as bitstream relocation [Corbetta
et al. 2007]. On the communication side, the connection between the processor and the
programmable logic (which can be implemented by means of either a bus or a NoC), as
well as the static inter-region backbone (as mentioned above), have been implemented
using bus macros [Kao 2006]. These kind of logic blocks have been used to guarantee
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portability over different platforms, and to effectively allow these infrastructures to be
operational even during the reconfiguration of one of the RUs.

We have successfully implemented this platform on a XilinxTMXUPV5-LX110T de-
velopment board, which features a Virtex-5 FPGA. This system allowed us to experi-
mentally evaluate its relevant aspects from the point of view of the mapper-scheduler
presented in this paper: NoC scalability and power consumption due to the dynamic
reconfigurations. On the one hand, the NoC showed a good scalability as a moderate
number of tasks assigned to the same RU in the system. On the other hand, experimen-
tal results on power consumption due to the dynamic reconfigurations are discussed
in Section 6.4. More low-level implementation details about this architecture can be
found at [Beretta et al. 2011a].

2.2. Problem Statement

In this paper, we address the combined design-time mapping and run-time scheduling
of tasks on dynamically reconfigurable platforms, as defined as follows.

(1) Reconfigurable tasks mapping: the mapping of tasks on reconfigurable devices con-
sists in finding a subset of reconfigurable resources on which these tasks can be
placed. Typically, mapping approaches aim at optimizing the utilization of the avai-
lable reconfigurable resources. In addition, depending on the features of the target
reconfigurable architecture, they also minimize the time penalty incurred in the
communications among the tasks.

(2) Reconfigurable tasks scheduling: the scheduling problem in the context of recon-
figurable devices consists in finding a sequence of reconfigurations, as well as in
deciding when to trigger the execution of each task in such a way that the data
dependencies among them are respected. In our system, an application has a dead-
line associated with it, which is a temporal constraint of the application. It indi-
cates how critical its execution is and it can be determined either by the user, an
operating system or a middleware that exists upon the mapper-scheduler that we
present in this paper. Hence determining it is out of the scope of this work.

(3) Objectives of the proposed mapping-scheduling algorithm: The algorithm proposed
in this paper aims at mapping and scheduling the tasks of a given TCDFD on the
hardware dynamically reconfigurable architecture shown in Section 2.1, by reduc-
ing the reconfiguration overhead of the applications in order to meet their dead-
lines, while minimizing the reconfigurable resources consumption. Even though
our approach aims at mapping and scheduling a single TCDFD at a time, it can
also handle a scenario with multiple concurrent applications. In fact, the concur-
rent execution of more than one application (let us consider a couple of applications
A and B) can always be seen as the execution of a larger application (let us call it
application C, including all the cores of both A and B) described by a single TCDFD
consisting of distinct sub-applications which do not have any data dependencies
among them.

(4) Reconfiguration overhead: In the remainder of this paper, we will refer to reconfi-
guration overhead as the delay introduced in the execution of an application due to
the latencies of the run-time reconfigurations. It is computed as follows:

recoverhead = Ex time− Ex timewithout rec latency (1)

where Ex time is the execution time of the application and Ex timewithout rec latency

is the execution time assuming that the latency incurred into the reconfiguration
of the tasks is 0.
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2.3. Case Study: MPEG-4 Layer 2 Decoder

The popular MPEG-4 Layer 2 decoder is an algorithm for digital video compression
[Theelen et al. 2008]; [Verderber et al. 2003]; [Janiaut et al. 2005]. An MPEG-4 video is
a stream of frames, each of one consisting of Macro Blocks of 16x16 pixels. The number
of Macro Blocks per frame depends on the resolution of the video to be processed.

A single instance of the MPEG-4 Layer 2 decoder processes one single frame in the
video, and it is composed by four tasks (that can concurrently work on different Macro
Blocks), namely: Variable Length Decoder (VLD), Inverse Discrete Cosine Transform
(IDCT), Motion Compensation (MC) and Reconstruction (RC) of the resulting image.
These tasks execute in the following order:

— Tasks IDCT and MC are executed after VLD (see Figure 2.a, which will be explained
in detail in Section 3);

— Tasks MC and RC process all the macro blocks contained in that frame in a pipelined
fashion (see also Figure 2.a). In this pipeline, task RC executes after MC; hence, for
the processing of the first block, the pipeline is “filled” during the first execution of
task RC. The remaining executions of these tasks occur in parallel.

Thus, while there is no restriction on whether the tasks IDCT and MC must run in
sequence or in parallel, tasks MC and RC constitute a pipeline. They could certainly
be executed alternatively, but a considerably more efficient way to run them is to make
them coexist in time. This application is executed as many times as necessary in order
to process all the frames of an MPEG-4 video.

2.4. Representation Model Requirements

In order to efficiently map and schedule applications, such as the MPEG-4 Layer 2 case
study, the aforementioned information about the interdependencies among the tasks
during the execution must be taken into account. As a consequence, the application
should be specified by means of a proper representation model that is able to capture
all of them at the same time. In particular, the representation model should be able to
capture:

(1) The communication requirements among the tasks that exchange data or control
information during the execution;

(2) The execution flow dependencies (more usually known as data dependencies) among
two tasks, i.e., a situation in which one or more tasks cannot start their execution
before another one completes its own computation. In the MPEG-4 Layer 2 exam-
ple, a sequential execution is required between VLD and IDCT;

(3) The pipelined behavior information, i.e., a situation where two ore more tasks could
be executed in a pipeline fashion. In the MPEG-4 Layer 2 application, this behavior
occurs between MC and RC. It is important to remark that the pipelined behavior
does not imply that an actual pipeline must exist in the final architecture, as this
choice is up to the design tool.

In the next section, we analyze the existing representation models and we show that
no one of them is able to fulfill all these requirements at the same time. This analysis
motivates the definition of the new TCDFD formalism that we introduce in Section 4.

3. STATE-OF-THE-ART

Nowadays, researchers are seeking solutions to system level design for embedded sys-
tems by investigating new design languages, hardware/software specification environ-
ments, and tools. Projects such as Ptolemy [Lee et al. ]; [Eker et al. 2003], Rosetta
[Alexander and Kong 2001], and SystemC [Benini et al. 2003] seek system-level spe-
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Fig. 2. MPEG-4 Layer 2 application represented as a DFG (a), a CDFG (b), a Petri Net (c and d) and a DFD
(e)

cification capabilities that can drive software compilation and hardware synthesis. Al-
though these approaches differ in the scope of their objectives, they all share the com-
mon goal of raising the level of abstraction required to design and integrate hardware
and software components. Unfortunately, these hybrid computational models are still
immature, generally treating FPGAs as computational accelerators that are invoked
passively as subroutines. In this context, the use of these approaches for the system
level modelling targeted in this work is still too unpractical since they lead to unac-
ceptable performance losses.

The remainder of this section provides an overview of the most relevant existing
task representation models available in the literature: Data Flow Graphs (DFGs) [Kavi
et al. 1986], Control and Data Flow Graphs (CDFGs) [Zaretsky et al. 2005], Data Flow
Diagrams (DFDs) [Bruza and van der Weide 1993] and Petri Nets [Zurawski and Zhou
1994], along with the mapping and scheduling techniques proposed to target these
so-represented applications.

3.1. Data Flow Graphs

Figure 2.a shows the MPEG-4 Layer 2 application represented by means of a Data
Flow Graph (DFG). As the figure shows, a DFG is composed of a set of nodes repre-
senting computational tasks and a set of directed edges that connect them. Each edge
represents a data dependency between them that indicates a precedence constraint
existing in the execution of the two involved tasks.

A wide range of algorithms have been proposed in the literature targeting the sche-
duling problem of DFGs in reconfigurable systems. Many of them are Integer Linear
Programming (ILP) formulations [Ghiasi et al. 2004]; [Cordone et al. 2009], which pro-
vide a mathematical formalization for this problem, and are suitable only for static
systems. For dynamic scenarios, totally or partially run-time approaches have also
been proposed [Noguera and Badı́a 2004]; [Haubelt et al. 2005]; [Wildermann et al.
2011]; [Resano et al. 2005]; [Clemente et al. 2011b]. On the one hand, in [Noguera and
Badı́a 2004], the authors propose a hardware micro-architecture to deal with DFGs ap-
plying a list-based scheduling heuristic; [Haubelt et al. 2005] presents a slack-based
list scheduler for time-multiplexed architectures; and [Wildermann et al. 2011] pro-
poses a design space exploration for reconfigurable embedded systems. These three
approaches are purely design-time methodologies. On the other hand, [Resano et al.
2005] and [Clemente et al. 2011b] propose hybrid design-time/run-time schedulers that
exploit task reuse and prefetch in order to reduce the impact of the dynamic reconfi-
gurations, and combine it with a smart task replacement technique.

In addition, the task scheduling problem for DFGs has also been studied in combi-
nation with the mapping of the tasks in the available reconfigurable resources [Bender
1996]; [Ferrandi et al. 2010].
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However, the DFG task representation model is not able to specify that two or more
tasks should coexist in time on the device for a given period of time. Hence, for the
MPEG-4 Layer 2 application, the pipeline existing Tasks MC and RC cannot be re-
presented with a DFG. Instead, the two arrows connecting MC and RC represent that
these tasks are executed alternatively. A conventional scheduler would use this infor-
mation in an inefficient way, since it has no knowledge that these two tasks can coexist
in order to greatly reduce the execution time of the application.

3.2. Control and Data Flow Graphs

A Control and Data Flow Graph (CDFG) is an extension of a DFG that includes infor-
mation about the control dependencies among the tasks, which allow controlling the
flow of the application via multiway branch. These control dependencies are decisions
made based on a condition and they are represented by means of a new type of nodes
named decision nodes.

Task scheduling for CDFGs on reconfigurable systems has also been studied in the
literature. Two interesting discussions about this topic can be found in [Anellal and
Kaminska 1993]; [Memik et al. 2003]. On the one hand, [Anellal and Kaminska 1993]
proposes an approach to automatically generate a CDFG from a VHDL code, as well as
a scheduling algorithm for the generated task graph. On the other hand, [Memik et al.
2003] discusses in depth the problem of temporal resources sharing of tasks during the
scheduling of CDFGs for FPGAs.

Figure 2.b shows the MPEG-4 Layer 2 application represented by means of a CDFG,
which sole decision node is depicted with a rhombus-shaped box. During the process-
ing of a frame in a video, this node triggers the execution of the right computational
node (VLD or MC) after the completion of RC depending on whether all the macro
blocks belonging to that frame have already been processed or not. In this case, this
CDFG is equivalent to several consecutive executions of the DFG depicted in Figure
2.a. However, as DFGs, CDFGs also lack the information about if two or more tasks
constitute a pipeline (in this case, Tasks MC and RC).

3.3. Petri Nets

Petri nets are a model that can also be used to represent applications in embedded
systems. Figures 2.c and 2.d show the MPEG-4 Layer 2 application represented by
means of a Petri net. It contains three types of objects: places, depicted in the figure
as circles; transitions, depicted as black rectangles; and directed arcs weighed with a
non-negative integer value. As in DFGs, the places represent computational tasks and
the edges, data dependencies among them. Transitions are unique in Petri nets, and
represent synchronization points that trigger the execution of the tasks. The synchro-
nisation is enforced by means of tokens, which are moved from one place to another
when a transition triggers. A practical example is shown in Figures 2.c and 2.d, where
Transitions t2 and t3 are enabled; therefore 1 token is deleted from IDCT and MC and
deposited in RC.

Temporal scheduling of Petri nets on embedded systems has also been studied in
the literature [Zhang and Wu 2009]; [Eskinazi et al. 2005]. However, similarly as the
discussed mapping and scheduling algorithms targeting DFGs and CDFGs, the ap-
proaches designed for Petri nets are unable to target applications with pipelines or
coexisting tasks.

3.4. Data Flow Diagrams

Figure 2.e shows the MPEG-4 Layer 2 application represented by means of a Data
Flow Diagram (DFD). As the figure shows, a DFD is composed of a set of tasks re-
presenting computational tasks and undirected edges among them, representing com-
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munication links. Without any further timing information about the tasks, all of them
are assumed to coexist throughout the lifetime of the application. DFDs are unable to
capture data dependencies among tasks, for instance between VLD and IDCT in the
MPEG-4 Layer 2 application. Hence this makes this model inaccurate to represent this
application.

Without any data dependencies among its tasks, the task scheduling problem does
not arise when dealing with DFDs. However, task mapping for DFDs has been exten-
sively studied in the literature for complex SoCs. Three relevant related works in the
context of reconfigurable systems are [Murali et al. 2006b]; [Hansson 2005]; [Beretta
et al. 2011b]. The approaches presented in these first two works aim at minimizing the
area requirements and area consumption in the deployment of the tasks of a sole DFD
in the target SoC.

Finally, [Beretta et al. 2011b] extends the concept of mapping a sole DFD on recon-
figurable systems by dealing with several DFDs that are statically defined. However,
this approach is unable to exploit any information about the order in which these
DFDs will be executed at run time. Hence, unlike [Murali et al. 2006b] and [Hansson
2005], this work considers the possibility of dynamically loading the tasks of the DFD
that is mapped each time. Hence this approach also aims at reducing the time penalty
incurred between the mapping of two consecutive DFDs.

Although [Beretta et al. 2011b] is not able to exploit all the information contained
in a TCDFD about the order of execution of the tasks of the applications, it shares
the ability of dealing with several DFDs on reconfigurable systems with the proposed
approach. Hence, this is the closest compatible work with respect to ours, and it will
be used as a reference to compare our work with.

4. TEMPORAL CONSTRAINED DATA FLOW DIAGRAMS

TCDFDs have been defined in order to overcome the limitations existing in the pre-
viously discussed task representation models. TCDFDs are visually similar to a se-
quence diagram of UML [Li and Ruan 2011], a well-known model from the software
engineering community, which represents the flow of execution of a set of software
modules. However, TCDFDs have a different semantics, as they are designed to en-
hance DFDs by adding the temporal constraints among the tasks that are present in
the other representation models discussed in Section 3. Thus, if this information is
used properly while taking into account the reconfiguration overhead, a much more
efficient usage of the available FPGA resources can be achieved, while reducing the
effect of the dynamic reconfigurations.

This section introduces a formal description of the Temporal Constrained Data Flow
Diagrams (TCDFDs) and compares them with an equivalent DFG and DFD. For this
purpose, we use again the MPEG-4 Layer 2 application as case study.

A TCDFD is represented as a list (T,D,CL), where T is a set of tasks, D is a set
of data dependencies between two tasks in T and CL is a set of communication links
that exist between two of them. Each task ti ∈ T is represented as a pair (si, Li),
where si is its size in terms of FPGA slices (even though it is possible to specify other
resource requirements, such as multipliers, BRAMs, etc.) and Li is the set of disjoint
lifetimes associated with ti. Each lifetime j ∈ Li is, in turn, represented as a pair
(bj , ej), which are its beginning and finishing instants of time, respectively. Each data
dependency in D is represented as a pair (ti, tj), indicating that tj must be executed
after the completion of ti. Finally, each communication link z ∈ CL between two tasks
is represented as a list (tk, tl, zstart, zfinish, bw), where tk and tl are the tasks involved
in the communication; zstart and zfinish are the starting and finishing instants of time
between which that communication link exists, and bw is the bandwidth, or amount of
information that is interchanged between tk and tl per time unit. Note that multiple
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Fig. 3. MPEG-4 Layer 2 application represented as a TCDFD

communication links between the same couple of tasks may exist if their communica-
tion requirements vary during the execution.

Figure 3 shows the MPEG-4 Layer 2 application represented by means a TCDFD
(along with its deadline, which is 8 ms in this case). The figure represents the lifetimes
of a task Ti by means of vertical lines delimited by their beginning and ending instants
of time; bi and ei. The grey non-vertical lines denote data dependencies between the
tasks that are relevant for mapping and scheduling purposes. In Figure 3, for instance,
a dependency exists between Tasks VLD and MC, between Tasks VLD and IDCT and
between Tasks IDCT and RC (see also the DFG in Figure 2.a).

In addition, the TCDFD in Figure 3 also represents the pipeline between Tasks MC
and RC. In this case, the figure shows the interaction between them when the pipeline
completely processes only the first two macro blocks of the frame. Thus, task MC runs
after VLD for 0.17+0.73 = 0.9 ms in order to process Macro Block 1. This corresponds
to the “filling” of the pipeline. Then, task RC is executed in order to finish processing
Macro Block 1, in parallel with task MC, which runs again in order to process Macro
Block 2 (for 2.5 ms). Finally, for another 2.5 ms task RC finishes the processing of
Macro Block 2 (this corresponds of the “emptying” of the pipeline). Hence, we can ob-
serve that during 2.5 ms, Tasks MC and RC must coexist in time. On the other hand,
the bandwidth of this communication highly depends on the resolution of the frames
and the quality of the video (in terms of number of frames/second and bits/pixel). In
the example of the figure, we assume that the video to be processed is encoded using
the Common Intermediate Format (CIF, 352x288 pixels) [(ITU) 1993], and it displays
images at a rate of 40 frames per second. Assuming that a pixel is represented with
32 bits, the bandwidth required in this communication is 129.76 Mbit/s, as indicated
in Figure 3.

Thus, the MPEG-4 Layer 2 application is represented as a list (T,D,CL), where:

T = {V LD, IDCT,MC,RC} (2)

D = {(V LD,MC) , (V LD, IDCT ) , (IDCT,RC)} (3)
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and:

V LD = (778 slices, (0, 0.4))

MC = (1420 slices, (0.4, 3.8))

IDCT = (623 slices, (0.4, 0.57))

RC = (225 slices, (1.3, 6.3))

(4)

On the other hand, CL only contains a communication link:

CL = (MC,RC, 1.3, 3.8, 129.76) (5)

This link is indicated in the figure by means of the shaded area.

5. HYBRID MAPPER-SCHEDULER

The proposed Hybrid Mapper-Scheduler (HMS) receives as input a TCDFD and its
deadline, and schedules and maps this TCDFD on the target architecture, aiming at
reducing the reconfiguration overhead and using as few hardware resources as possi-
ble, while meeting the application deadline and the communication constraints. For
this purpose, the algorithm also receives as input the inter-region bandwidth provided
by the target architecture.

As Figure 4 shows, the algorithm consists of three different stages: a pre-processing
of the input data, a mapping phase and a scheduling phase. First of all, the pre-
processing step extracts information from the input TCDFD about its snapshots and
partitioned snapshots that will be used in the next two phases. Then, the mapping
phase is performed in order to obtain a solution. Finally, in the scheduling phase both
bitstream prefetch and reuse scheduling techniques based on partial reconfiguration
are applied on this solution in order to further reduce the impact of the reconfiguration
overhead. It is important to note that these two techniques have been widely explored
in the literature for their use in reconfigurable systems [Resano et al. 2005]; [Clemente
et al. 2011b]; [Li 2002]. Hence, we are not pioneers of their utilization on reconfigura-
ble systems, but of applying these ideas targeting TCDFDs on complex reconfigurable
systems.

Finally, it is important to point out that the pre-processing and mapping phase steps
of the proposed HMS are applied at design time, whereas the scheduling phase is
carried out at run time. The reason of applying the latter at run time is to make the
scheduler adaptable to the execution of a sequence of TCDFDs unknown at design
time. This is a common assumption in embedded systems, since even though the set
of applications that are to be executed in the system is well-known at design time, the
actual sequence of execution of these applications may be known only at run time. In
this context, it is advantageous to make the scheduling decisions at run time, since it
allows to greatly reduce the impact of the reconfiguration overhead of these bitstreams,
which is critical for the system performance. A number of papers in the literature
have previously discussed this point [Resano et al. 2005]; [Clemente et al. 2011b] and
succesfully applied run-time scheduling on reconfigurable systems.

5.1. Pre-processing

First of all, the algorithm divides the application in a set of snapshots, i.e., intervals
of time when the co-existing tasks are always the same (Figure 4, Step 1). For this
purpose, it selects all the beginning and finishing instants of time of all the tasks in
the TCDFD {bti, eti, ∀ti ∈ T}, sorts them decreasingly, and creates the snapshots by
selecting two consecutive items of this sorted list. Thus, for the MPEG-4 Layer 2 case
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study (Figure 5.a), this sorted list is: {0, 0.4, 0.57, 1.3, 3.8, 6.3}, and the snapshots Sn1−
Sn5 are: (0− 0.4), (0.4− 0.57), (0.57− 1.3), (1.3− 3.8) and (3.8− 6.3), respectively. Each
snapshot is then translated into a traditional DFD that comprises the tasks in the
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given interval of time and their communication links. The weight of each node in the
DFD represents the size of the task, whereas the weight in each communication link
represents the bandwidth (measured in Mbit/s) of the involved communication. Figure
5.b shows an example of the DFDs that are obtained from the snapshots extracted in
Figure 5.a. Thus, DFD 1 contains the VLD task, DFD 2 contains IDCT and MC, DFD
3 contains MC, DFD 4 contains MC and RC, and DFD 5 contains RC. Note that the
two tasks in DFD 4 are connected because a communication link exists between both
of them in the initial TCDFD. However, this does not occur between tasks IDCT and
MC, which belong to DFD 2.

A communication link between two tasks in these DFDs is said to be critical if the
bandwidth required in this communication is greater than the inter-region bandwidth
that the target architecture guarantees to provide (in the following we will refer to this
bandwidth as threshold bandwidth). Hence two tasks connected with a critical commu-
nication constraint must be mapped together in the same RU; otherwise the commu-
nication constraints are not met and the specified system cannot be implemented on
the device. For our target architecture, this applies to communications whose band-
width is greater than 100 Mbit/s, since this is the bandwidth provided by its inter-
region NoC. For the case of the MPEG-4 Layer 2 application, the communication link
between Tasks MC and RC is 129.76 Mbit/s. Hence these two tasks must be mapped
in the same RU of our architecture in order to meet this communication constraint. In
any case, the threshold bandwidth is an input parameter to our mapper-scheduler.

We also assume that there are enough RUs in our system to fit at the same time
all the tasks belonging to the snapshot that uses the greatest amount of resources.
On the one hand, this assumption is sufficient to guarantee the feasibility of the map-
ping/scheduling problem, and that the FPGA provides enough area to map a significant
part of the application, i.e., one of its snapshots. On the other hand, this hypothesis
guarantees that two cores that communicate in the same time period can also be con-
figured on the device at the same time.

Once the snapshots have been obtained, the algorithm partitions the DFDs of these
snapshots into several groups of tasks or islands of tasks (each one of them will even-
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tually be mapped onto a different RU in the system). Thus, the resulting set of islands
of the snapshot that has been partitioned constitute a partitioned snapshot (Step 2).
This set of partitioned snapshots constitutes a first solution, which will be iteratively
refined in the rest of the HMS algorithm (Steps 3-13) in order to obtain the final solu-
tion (Step 14).

It is important to note that each island will eventually correspond to a bitstream.
However, the following two conditions must be met:

(1) The number of islands generated must not exceed the number of available RUs in
the system, in order to allow all the islands of the same partitioned snapshot to be
mapped on the device at the same time.

(2) The nodes connected through critical communications must be mapped in the same
RU (i.e., they must belong to the same island in the generated partitioned snap-
shot), which is a sufficient condition to maximize the bandwidth between them.

In order to generate the partitioned snapshots while meeting these conditions, we
use an external partitioner named CHACO [Hendrickson and Leland 1994]. This tool
receives as input the DFD associated to a snapshot and the number of islands to ge-
nerate, and it returns as output a partitioned snapshot of that DFD into the specified
number of islands. CHACO always tries to balance the partitioned snapshot that it
generates, so its primary objective is that the sums of the values of the nodes assigned
to the same island are as similar as possible. CHACO also offers the possibility of
specifying constraints to map in the same islands the tasks connected by critical com-
munication links, which ensures that the communication constraints are always met
in the first set of partitioned snapshots that are generated at the end of this step. In
our case, HMS uses CHACO to obtain as few islands as possible when generating a
partitioned snapshot, starting from the minimum possible number of islands that can
accommodate the tasks, and iteratively increasing it until a feasible mapping is found
(this is done in Steps 2 and 7 in Figure 4). This strategy leads to better results with
respect to spreading the tasks on all the available islands on the device, as shown in
the experimental results of Section 6.

After HMS carries out these two steps, the following phase of the HMS algorithm
maps the generated partitioned snapshots sequentially, by taking into account the
reconfiguration overhead introduced in the transitions between two consecutive map-
pings.

5.2. Mapping Phase

Once the pre-processing has been performed, the algorithm evaluates the quality of the
first solution obtained (Figure 4, Step 3) by calculating its execution time (including
the reconfiguration overhead), and stores it (Step 4). In order to obtain the execution
time of the solution, in this step the algorithm invokes the module that performs the
scheduling phase (further explained in Subsection 5.3), which applies the prefetch and
replacement techniques that promote the reuse of the bitstreams to minimize the im-
pact of the dynamic partial reconfigurations.

The same metric (total execution time) is also used in Step 5 to guide the schedu-
ling process: HMS continues iterating until the execution time of the current solution
is lower than its deadline. Thus, if this condition is true (Step 5), the current solu-
tion is selected as the final one that the mapping phase returns (Step 14). Otherwise,
the algorithm applies an iterative process to reduce its execution time (Steps 6-13).
In each iteration, the algorithm selects the transition between two consecutive par-
titioned snapshots that generates the greatest reconfiguration overhead (Step 6) and
tries to eliminate it by merging both of them (Step 7). If this process succeeds, the two
partitioned snapshots are said to be mergeable.
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Initially all the transitions between two consecutive partitioned snapshots are po-
tentially mergeable; i.e., they are not yet proven to be non-mergeable. However, during
the execution of the algorithm, if HMS is able to merge them, then it indeed considers
them as mergeable. A merging process between two mergeable partitioned snapshots
returns as result two compatible partitioned snapshots. Let I (ti) indicate the island
to which the task ti belongs, then two consecutive partitioned snapshots PS1 and PS2

are compatible if the following conditions hold true:

∀ti, tj ∈ TasksPS1 ∪ TasksPS2,
[

[I (ti) = I (tj)]PS1
↔ [I (ti) = I (tj)]PS2

]

(6)

∀ti, tj ∈ TasksPS1 ∩ TasksPS2,
[

[clink (ti, tj)]PS1
↔ [clink (ti, tj)]PS2

]

(7)

On the one hand, Equation (6) means that, for all the tasks in partitioned snapshots
PS1 and PS2, if tasks ti and tj belong to the same island in PS1, they also belong to
the same island in PS2 and vice-versa. Hence, if PS2 and PS1 are compatible, no extra
reconfiguration overhead is introduced to map an island of PS2, unless that island
only contains tasks that do not appear in PS1, since in that case the island is not
loaded for the execution of PS1. On the other hand, the Equation (7) means that, for
all the common tasks in PS1 and PS2, if tasks ti and tj are connected by means of a
communication link in PS1, they are also connected in PS2, and vice-versa.

Let us now describe the operation of the merging process. At the beginning of the
algorithm, each partitioned snapshot is said to belong to a different compatibility class.
A compatibility class is a set of partitioned snapshots that are all compatible with each
other. This means that, as soon as two consecutive partitioned snapshots are merged
(e.g. PSi and PSi+1), then HMS will make them compatible and, therefore, they will
belong to the same compatibility class. From the point of view of HMS, this means that
any future merging process that involves either PSi or PSi+1 will actually involve both
of them and the resulting partitioned snapshots will belong to the same compatibility
class again. Thus, if after merging PSi and PSi+1, the algorithm decides to merge
PSi+1 and PSi+2, it will have to merge PSi, PSi+1 and PSi+2. This process is applied
in this way independently of the size of the compatibility classes involved.

In other words, if HMS designates PSi and PSi+1 to be merged, it will actually merge
all the partitioned snapshots that are compatible either with PSi or with PSi+1; i.e.:

PS merged = {PSj ∈ PS : Comp (PSj , PSi) ∨ Comp (PSj , PSi+1)} (8)

where PS indicates the set of partitioned snapshots in the application, and
Comp (PSj , PSi), indicates that the partitioned snapshots PSj and PSi are compa-
tible. Note that in this equation, PSi and PSi+1 are assumed to be merged.

The merging operation is described by means of the example in Figure 6, which
shows the merging process between PS1 and PS2 of the MPEG-4 Layer 2 application.
For the sake of simplicity, let us assume that the compatibility classes of PS1 and
PS2 only contain the partitioned snapshots PS1 and PS2, respectively. Hence, this
merging process just involves PS1 and PS2, not other partitioned snapshots. Figure 6.a
shows an example of initial partitioning for the MPEG-4 Layer 2, Figure 6.b depicts
the merging process of its two first partitioned snapshots and Figure 6.c shows the
final ones.

In the first step of the merging process, a virtual graph (V G) is created such that
the following two conditions hold true:

∀ti, tj ∈ Tasks,
[

ti ∈ PS1 ∨ ti ∈ PS2 ↔ ti ∈ V G
]

(9)

∀ti, tj ∈ Tasks,
[

[clink (ti, tj)]P1
∨ [clink (ti, tj)]PS2

↔ [clink (ti, tj)]V G

]

(10)
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Equation (9) specifies that, if a given task ti of the application exists either in PS1

or in PS2, it will be included in V G. On the other hand, according to Equation (10),
if tasks ti and tj are connected by means of a communication link in either PS1 or in
PS2, they will also be connected in V G.

Then, the algorithm executes CHACO in order to partition V G, and it finally selects
the islands from there to generate the new partitioned snapshots according to the
following formula:

∀si ∈ Snapshots, ∀ij ∈ IslandsV G,
[

∃tz ∈ Tasks (ij) : used (tz, si) → ij ∈ PS′

i

]

(11)

This expression means that, for each snapshot (si) and for each island (ij) of the par-
titioned virtual graph, if ij contains at least one task (tz) that is used in the snapshot
si (according to the initial specification of the application), it will be selected to belong
to the new partitioned snapshot associated with that snapshot (PS′

i). In this example,
the island that contains the tasks VLD and IDCT is selected to belong to PS′

1 because
VLD belongs to S1, even though IDCT does not (according to the initial specification of
Figure 2). Note that, in this case, IDCT appears shaded, indicating that it is loaded in
the system but not used in that snapshot. The same situation occurs for VLD with the
island that contains the tasks VLD and IDCT for PS′

2.
Also, note that the constraints depicted in Equations (6)-(11) ensure that all the

tasks that had to be mapped together in the initial partitioned snapshots because
of a critical communication link between them, will be assigned again to the same
island at the end of the merging process. The reason is that we explicitly ensure that
the involved communication link is finally included in both merged (i.e., compatible)
partitioned snapshots, as well during all the merging process.

Once the involved partitioned snapshots have been merged, HMS must check
whether the new solution is feasible, i.e., if the sums of the sizes of the tasks assigned
to the same partitioned snapshot do not exceed the size of a single RU (Step 8). If
the solution is not feasible, that transition is marked as non-mergeable (Step 12), and
the algorithm will not try to perform this merging process again. Then, the algorithm
checks if it can continue merging partitioned snapshots (Step 13), by determining if
there is at least one pair of mergeable partitioned snapshots. If so, at least another
iteration of the algorithm is performed, since the solution still does not meet the given
temporal constraints. Otherwise, the best solution found is marked as the final solu-
tion (Step 14).

On the other hand, if the solution is feasible, it is evaluated (Step 9). If it is better
than the best one found so far (Step 10), it is replaced (Step 4), and the algorithm
checks if it meets the temporal constraints (Step 5) and continues again as explained
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above. Otherwise, the transition between the two partitioned snapshots is marked as
temporarily non-mergeable (Step 11), meaning that the algorithm will not try to merge
it again, unless one of the two partitioned snapshots involved in the transition (or one
of the compatibility classes they belong to) is later part of a successful merging process.
For instance, if the transition between PS1 and PS2 has been marked as temporarily
non-mergeable, and HMS merges PS2 and PS3, the transition between PS1 and PS2

becomes potentially mergeable again. This process is required in order not to prema-
turely rule out moves that may improve the solution later during the optimization.

In a nutshell, the mapping phase of HMS applies a set of optimizations that corres-
pond to the merging operations between consecutive partitioned snapshots. The more
partitioned snapshots are involved, the more global that optimization is. Each mer-
ging process involves the reduction of the reconfiguration overhead between the two
involved partitioned snapshots, although more hardware resources are used (for in-
stance, in Figure 6.c, PS′

1 maps the task IDCT, whereas PS1 does not). Hence, the
more globally optimized a solution is, the more hardware resources it uses. For this
reason, HMS stops iterating as soon as the temporal constraints are met. Otherwise,
the solution would still meet the same constraints, however using more hardware re-
sources.

5.3. Scheduling Phase

Once the mapping phase has been carried out, in this phase HMS schedules at run
time the execution of the bitstreams that have just been generated, but taking into
account the following three conditions:

(1) There is only one interface to perform dynamic reconfiguration, therefore the bit-
streams must be configured sequentially.

(2) If two bitstreams belong to the same partitioned snapshot PS, then they must be
executed in parallel.

(3) If two bitstreams belong to consecutive partitioned snapshots PS1 and PS2, all the
bitstreams that belong to PS1 must be executed before the ones that belong to PS2.

For this purpose, the scheduler firstly sorts the bitstreams in a sequence of reconfi-
gurations (Step 15) in such a way that:

∀b1, b2 ∈ Bitstreams,
[

PS (b1) < PS (b2) → pos seq (b1) < pos seq (b2)
]

(12)

This expression means that, if the partitioned snapshot to which b1 belongs (PS (b1))
is executed before the partitioned snapshot to which b2 belongs (PS (b2)), and since two
partitioned snapshots cannot be executed in parallel, then b1 is placed before b2 in the
sequence of reconfigurations.

Once this sequence has been obtained, HMS applies both bitstream prefetch and
reuse techniques to further reduce the impact of their reconfigurations (Figure 4, Step
16). For this purpose, and in order to simplify the complexity of the scheduler, it only
considers some specific time instants following an event-triggered approach. In other
words, when certain events occur the scheduler makes the proper decisions.

Four different events trigger its execution: new app, which is generated when the
information of a new application is received; end of reconfiguration, which is generated
when a new bitstream has been loaded, reused bitstream, which is generated when
the scheduler detects that a bitstream can be reused since it was already loaded in a
previous execution; and end of execution, which is generated when all the bitstreams
belonging to the same partitioned snapshot finish their execution.

Each time an event is captured, the scheduler triggers the reconfiguration of the
following bitstream in the sequence of reconfigurations. Since only one reconfigura-

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 J. A. Clemente et al.

ALGORITHM 1: The proposed run-time scheduling phase of HMS

// RC: Reconfiguration circuitry
CASE event IS
new app:
1: if (RC == idle) then
2: look for reconfiguration (&rec sequence);
3: end if;

end of reconfiguration or reused bitstream (bitstream B):
4: if (all bitstreams loaded (PartSshot (B)) and finished execution (PartSshot (B)-1)) then
5: start execution (PartSshot (B));
6: end if;
7: if (RC == idle) then
8: look for reconfiguration (&rec sequence);
9: end if;

end of execution (Partitioned Snapshot PS):
10: if (RC == idle) then
11: look for reconfiguration (&rec sequence);
12: end if;
13: if (all bitstreams loaded (PS+1)) then
14: start execution (PS+1);
15: end if;
end CASE;

tion can be carried out at a time (because, nowadays, reconfigurable devices feature
only one reconfiguration circuitry), the scheduler applies bitstream prefetch in order
to load the configurations belonging to a partitioned snapshot in advance, while a pre-
vious partitioned snapshot may still be executing. Thus, the reconfiguration overhead
between two consecutive partitioned snapshots is further reduced, even in the case
they are not compatible.

Algorithm 1 outlines this process. When a new application arrives and the recon-
figuration circuitry is idle (Lines 1-3), the system attempts to load the first recon-
figuration in the reconfiguration sequence. In case of the end of reconfiguration or
reused bitstream events (associated to a bitstream B), the system checks if all the
bitstreams that belong to the same partitioned snapshot PS as B (PartSshot(B) in the
figure) have already been loaded in the system, and if PartSshot(B)−1 has finished its
execution (Line 4). If so, the scheduler executes PartSshot(B) (Line 5), triggering the
execution of all its bitstreams in parallel. In addition, if the reconfiguration circuitry
is idle, it tries to load the next bitstream in the reconfiguration sequence (Lines 7-9).

Finally, for the end of execution event (associated to a partitioned snapshot PS), the
scheduler checks again if the reconfiguration circuitry is idle in order to perform a
new reconfiguration (Lines 10-12). Then, if all the bitstreams belonging to partitioned
snapshot PS+1 have already been loaded, the scheduler triggers their execution (Lines
13-15).

Each time the function look for reconfiguration() is invoked, the scheduler must de-
cide in which RU to load the next bitstream in the sequence. For this purpose, it firstly
checks if the tasks belonging to that bitstream have already been loaded in any of the
available RUs. If so, that bitstream is reused, and hence no reconfiguration overhead
is generated. Otherwise, a replacement victim is selected according to the Longest For-
ward Distance (LFD) replacement policy [Belady 1966]. We have chosen this technique
because it has been proven to be the one that guarantees the optimal reuse rate, which
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Fig. 7. Example of execution of the MPEG-4 Layer 2 application using our HMS approach

has a direct impact on the reconfiguration overhead reduction. However, any other
run-time replacement technique could also be applied instead, such as the one that
is proposed in [Clemente et al. 2011b], which has been proved to be very efficient in
highly dynamic scenarios.

The benefits of these optimizations can be seen in Figure 7 by means of an example.
It shows the execution of the MPEG-4 Layer 2 application on a system with 3 RUs
following the mapping that is shown in Figure 6.a, and assuming that each bitstream
takes 1 ms to be reconfigured.

Figure 7.a shows an ideal execution with no reconfiguration overhead. In this case
we can observe that the lower-bound execution time is 6.3 ms.

Then, Figure 7.b shows the execution of this application including the reconfigura-
tions of the bitstreams but without any prefetch and reuse optimizations. In this case,
the system carries out 6 reconfigurations, and the total execution time is 12.3 ms. Ho-
wever, when the prefetch and reuse techniques of the scheduling phase in HMS are
applied (Figure 7.c), the execution time is reduced to 9 ms. Indeed, in this case some
reconfigurations can be partially or totally overlapped with the execution of other bit-
streams (the bitstreams with the tasks IDCT and MC-RC). In addition, note that in
this case the reconfiguration of the bitstreams that only contain the tasks MC (belon-
ging to PS3) and RC (belonging to PS5) do not generate any overhead, since they can
be reused from the previous execution of the same tasks (which also belong to PS2 and
PS4, respectively).

Finally, Figure 7.d shows the benefits of applying the optimizations of the mapping
and scheduling phases of our HMS algorithm altogether. In this case, we show again
the execution of the MPEG-4 Layer 2 application, but this time considering that the
merging process between the partitioned snapshots PS1 and PS2 depicted in Figure
6 has been executed. As the figure shows, in this case the system only carries out 3
reconfigurations, since a new bitstream VLD - IDCT has been created and it is used
in PS1, and reused in PS2. As a consequence of this, the new execution time is just 8
ms, 1 ms less than the same execution when PS1 and PS2 were not merged (Figure
8.c). In addition, note that the resources consumption does not increase either, since
the application is again executed in 3 RUs.
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6. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of the proposed approach on real reconfigura-
ble platforms, by means of both state-of-the-art multimedia applications and synthetic
benchmarks.

6.1. Experimental Setup

As real-world case studies, we have considered the H.264 video coding standard
[Roitzsch 2007]; [Lindroth et al. 2006]; [Mei-hua et al. 2007] and the MP3 audio de-
coder [Theelen et al. 2008]; [Taghipour et al. 2008]. The former is a state-of-the-art
evolution of the MPEG-4 Layer 2 video coding standard, which is commonly used for
the recording, the compression and the distribution of high-definition videos in Blu-
ray discs. The codec features a considerably higher computational complexity than
the MPEG-4, although from a structural perspective [Roitzsch 2007] it only contains
6 tasks (featuring an average size of 1672 FPGA slices). The MP3 audio decoder, on
the other hand, has been chosen because it consists of a considerably higher number of
computational tasks (15 tasks with an average size of 343 FPGA slices), thus providing
different challenges to the proposed algorithm.

Finally, in order to better analyze how the efficiency of our HMS scales on larger
problem sizes, we have also evaluated it with a set of 100 synthetic benchmarks that
represent the structure of complex and modular real-world applications that we expect
to appear in the upcoming years, and which feature a considerably large structural
complexity. These benchmarks are composed of 50 tasks (which can be considered as
the execution of 1 application consisting of 50 cores, 2 applications consisting of around
25 cores each one, etc.), each one of which contains from 1 to 5 disjoint lifetimes that
span from 0 to 100 ms, in such a way that they all contain at least 10 snapshots. The
sizes of the tasks range from 100 to 500 slices. All these parameters are selected by
following discrete uniform distributions. Furthermore, for all the snapshots extracted
from these synthetic benchmarks, there is a 10% chance for a communication between
two tasks to be critical, and the sums of the sizes of all the sets of tasks connected
through critical communications is less than the size of a RU. Hence they can always
be mapped in the same RU in such a way that their communication constraints are
met. This set of parameters has been selected by following the trends of real-world
applications. Let us consider the size of the tasks: we observed that applications with
more tasks tend to be more specialized, and consequently cores require a lower area.
Among the applications we have analyzed, the H.264 includes 6 cores with an average
area of 1670 slices, whereas the MP3 includes 15 cores with an average area of 363
slices. As a consequence, we opted for selecting a task area that is closer to the more
complex applications, i.e., we focused on tasks with an area no larger than 500 slices.
Similar considerations led to the determination of the percentage of critical communi-
cations, the number of lifetimes, and the number of snapshots.

Even though the proposed tuning is consistent with respect to the trends shown
by real applications, we nonetheless did not limit our experimental analysis to a spe-
cific set of synthetic benchmarks. In particular, additional experiments were conducted
with different number of cores (20, 50 and 100), different core size (maximum 500,
1000 and 2000 slices), and different percentages of critical communications (5%, 10%
and 15%), which are not all reported in this manuscript for the sake of simplicity, since
we did not observe significant variations in the quality of the final results. In fact,
the comparison with other SoA approaches in terms of reconfiguration overhead and
number of reconfigurations differ by quantities between 1 and 2% with respect to the
results reported in this paper.
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Fig. 8. Reconfiguration overhead of HMS with respect to the mappers in [Murali et al. 2006a] and [Beretta
et al. 2011b], and the scheduler in [Clemente et al. 2011b], for different values of the time margin

In our experiments we have compared our HMS with other SoA approaches [Murali
et al. 2006a]; [Beretta et al. 2011b]; [Clemente et al. 2011b] from the point of view of
two metrics: reconfiguration overhead reduction (Subsection 6.2) and resources saving
(Subsection 6.3). The first one is a conventional SoA mapper that optimizes area usage
for a sole DFD through a communication-driven methodology. However it does not take
into account the reconfiguration overhead between two consecutive mappings, which
clearly leads to sub-optimal results. The second one is again a mapper for DFDs, but
it also considers reconfiguration overhead, as opposed to other SoA approaches and
representation models (see Section 3). However, these two approaches do not take into
account the order of execution of the DFDs that correspond to the snapshots of the
applications in order to further optimize the execution of the application, contrarily
to the presented HMS. In addition, they do not apply any prefetch of the involved
configurations either. Finally, the third approach is a conventional scheduler targeting
DFGs that aims at minimizing task reconfiguration overhead by means of prefetch and
reuse techniques.

The presented HMS also admits comparison with conventional schedulers from the
point of view of an additional metric: total application execution time. In fact, these
approaches feature an important drawback: They do not consider the information re-
garding potential task co-existency between tasks, hence the resulting schedule consi-
derably enlarges the total execution time of the applications. Thus, for instance, accor-
ding to our measurements, the scheduler in [Clemente et al. 2011b] increases the total
execution time of the MP3, H.264 and the synthetic benchmarks by 62%, 37% and 42%
respectively, with respect to HMS. Since [Murali et al. 2006a] and [Beretta et al. 2011b]
do not lack this problem (as any other conventional mapper), in the next subsection we
have decided to compare them using the reconfiguration overhead reduction metric.
It is also a more accurate metric that is typically used to evaluate the efficiency of a
scheduling approach.

The MP3 case study and the synthetic benchmarks have been evaluated by using
a programmable system with 12 RUs implemented in a XilinxTMXUPV5-LX110T de-
velopment board, which features a Virtex-5 FPGA. As a consequence, the number of
slices per RU is equal to 622, and the reconfiguration of each RU requires approxima-
tely 4 ms. On the other hand, for the H.264 application [Lindroth et al. 2006]; [Mei-hua
et al. 2007], we have assumed a target architecture containing 5 RUs of 8200 logic ele-
ments, and a reconfiguration overhead of 3.09 ms per RU.
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6.2. Reconfiguration Overhead Reduction

Figure 8 shows the reconfiguration overhead generated when using HMS on the eva-
luated applications with different timing constraints. For that purpose we have used a
metric that we have named time margin, which is the difference between the optimal
execution time of the application and its deadline. In each case we have averaged the
single results obtained with different numbers of RUs: from 4 to 12 RUs for the MP3
and the synthetic applications and from 2 to 5 RUs for the H.264 codec, since the latter
contains considerably fewer tasks than the other two applications.

As previously mentioned in Subsection 5.1, during the pre-processing phase, HMS
uses the CHACO partitioner [Hendrickson and Leland 1994] to obtain as few islands
of tasks as possible when generating the partitioned snapshots. The reason is that
this option always performs better than spreading the partitioned snapshots over all
the available reconfigurable units (as the results in this section will demonstrate).
In the results, we will refer to this optimization as Partitioning Reduction or PR. In
order to evaluate this point, Figure 8 shows how HMS performs when it includes both
implementation options: when it spreads the partitioned snapshots (labeled as HMS
in the figure) and when it does not (labeled as HMS+PR).

For the H.264 codec (Figure 8.a), the SoA mappers generate a constant average re-
configuration overhead of 8.5 and 9.3 ms, respectively. These overheads are indepen-
dent of the value of the time margin of the applications, since these algorithms do not
effectively consider any scheduling information.

However, the remaining scheduling approaches clearly outperform these results. On
the one hand, the SoA scheduler reduces the average reconfiguration overhead by 4.67
and 3.9 ms, respectively, with respect to the SoA mappers. This result may seem very
efficient; however, as already discussed in Subsection 6.1, this approach leads to a sig-
nificant increase in the total execution time of the application (in this case, 37%). For
this reason conventional schedulers are completely unpractical to target TCDFDs. On
the other hand, both HMS and HMS+PR reduce the reconfiguration overhead by up to
5.4 ms with respect to the communication-driven SoA mapper. This means an average
reduction of 63.5%. The reason of this speed-up is that the SoA mappers do not exploit
the information about the order in which the bitstreams must be mapped, while HMS
exploits it to reduce the reconfiguration overhead between two consecutive mappings.
In addition, they do not apply any task prefetch to load the reconfigurations in ad-
vance. In this case, both HMS and HMS+PR achieve the same results. However, as
the number of tasks in the application grows (Figures 8.b and 8.c), the gap in perfor-
mance between both approaches increases. The reason is that if the application has
more tasks, the space solution for our mapping approach is broader, and hence the
HMS+PR technique has more opportunities to apply the PR optimization. This means
an additional reduction in the reconfiguration overhead up to 40%. Note also that, for
the MP3 case study, the reconfiguration overhead reduction achieved by HMS+PR is
significantly higher, up to 89% with respect to the SoA communication-driven mapper,
which is a very good result.

In Figure 8 we can also observe that, for both HMS and HMS+PR, the reconfigura-
tion overhead grows as the value of the time margin increases. The reason is that HMS
stops iterating as soon as it finds a solution that meets the given deadline. Note also
that, when the time margin is set to 0, the proposed approach still generates solutions
with reconfiguration overhead greater than zero. The reason is that the first bitstream
of each application can never be reused nor prefetched, since in our experiments we
assume that each application is solely executed on the system.

For the synthetic benchmarks, it is also important to mention that our HMS ap-
proach always managed to find a feasible mapping for each one of the tested bench-
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Fig. 9. Number of RUs used by our HMS with respect to the SoA mappers in [Murali et al. 2006a]; [Beretta
et al. 2011b], for different values of the time margin

marks. However, that was not possible for the SoA mappers, since they only obtained a
feasible solution for the 41% of the cases. The reason is that these mappers do not take
into account the criticality of the communications between tasks in order to map them
in the same RU and therefore to meet the communication constraints among tasks.
This illustrates another important advantage of the proposed approach from the point
of view of the feasibility of the generated solutions.

6.3. Resources Saving

Figure 9 shows the Number of RUs used by the HMS and HMS+PR approaches, com-
paring them with the SoA mappers for different values of the time margin. For the
H.264 codec and the MP3 decoder (Figures 9.a and 9.b), both HMS and HMS+PR save
up to 60% and 75% of the available RUs with respect to these approaches. Figure 9.c
shows a similar trend for the synthetic benchmarks. In this case, the RUs saved reach
up to 34% and 46% the RUs consumption of the SoA approaches, for both HMS and
HMS+PR respectively, when the time margin is 40 ms.

Furthermore, looking at the results in Figure 9, one can observe that as the value of
the time margin increases, the fewer number of RUs are needed. The reason is that,
as the value of this parameter increases, the algorithm iterates fewer times. Thus, it
returns a solution that may show a degradation in terms of performance with a co-
rresponding area usage reduction, as the HMS iterations (see Subsection 5.2) aim at
reducing the time overhead between two consecutive mappings, at the cost of incur-
ring into additional consumption of RUs. Hence, looking at both Figures 8 and 9, we
can observe that all the possible solutions offer different trade-offs between these two
optimization objectives. Each one of these can be selected by tuning the value of the
time margin. Thus, if this parameter is strict, HMS tries to optimize the performance
of the solution, at the cost of using a greater number of RUs, and viceversa.

Finally, note that the RUs savings described in this section can have different im-
pacts on the system performance: Thus, HMS can be used to fit only one application
in an embedded system that features an extremely restricted reconfigurable resources
area, or in order to maximize the system throughput. Since this is highly dependent
on the final users needs, we consider that the management of this is out of the scope
of the described methodology.

6.4. Benefits of the Prefetch

This subsection discusses the benefits of the prefetch optimization that is applied du-
ring the scheduling phase of HMS. For this purpose, we have calculated the reconfi-
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numbers of available RUs (a, b), and the corresponding improvements in terms of communication overhead
and power consumption (c)

guration overhead and the number of reconfigurations generated when the synthetic
benchmarks are executed using the SoA mappers, HMS and HMS+PR (the MP3 and
the H.264 applications show a similar behavior).

For this experiment we have set the time margin to 0, and we have calculated the
results when the number of available RUs ranges from 4 to 12. Figure 10 shows that,
as the number of available RUs increases, both HMS and HMS+PR reduce the re-
configuration overhead generated (Figure 10.a). However, this occurs in spite that the
number of performed reconfigurations increases, especially if the algorithm does not
spread the partitioned snapshots in the RUs (HMS and HMS+PR approaches, Figure
10.b). This is due to the prefetch that is applied during the scheduling phase of HMS.
Indeed, the figure shows that the shape of the plot for the SoA mappers is exactly the
same in Figures 10.a and 10.b, since no prefetch is applied in these cases and hence
the reconfiguration overhead is simply the number of reconfigurations multiplied by
the overhead generated by one single bitstream. However, for the HMS and HMS+PR
approaches, we can observe that, as the number of RUs in the system increases, the
reconfiguration overhead generated decreases (Figure 10.a) in spite that the number
of reconfigurations incrases (Figure 10.b).

This trend shows that both versions of HMS apply more and more prefetch when
a greater number RUs is available in the system, since the reconfiguration overhead
of each approach is no longer proportional to the number of reconfigurations that are
carried out.

Next, in Figure 10.b we can also observe that, for 12 RUs, the number of reconfi-
gurations carried out by our HMS+PR approach is greater than both SoA mappers,
conversely to the remaining cases depicted in the figure. Although this does not have
any negative effect in the reconfiguration overhead of the system (see Figure 10.a), it
is well known that more reconfigurations lead to a greater power consumption. For
instance, according to our experimental measurements taken with a logic analyzer in
our hardware platform, the power consumed due to the dynamic reconfigurations by
a hardware multi-tasking system deployed on a XUPV5-LX110T development board
that uses the ICAP configuration port controlled by a MicroBlaze processor is 0.3W,
under the following setup: ICAP read and write FIFO depths to 128 and 64 words (4
bytes each), ICAP block size to 32 words, and partial bitstreams being fetched from
the off-chip compact FLASH memory. This is a typical setup for carrying out partial
reconfigurations through the ICAP port for this board.

Finally, in Figure 10.c we have compared the proposed HMS+PR approach with
the SoA reconfiguration-driven mapper (the results of the comparison with the SoA
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communication-driven mapper are similar and have been omitted for the sake of
brevity), in terms of both reconfiguration overhead reduction and power consump-
tion reduction. This comparison has been performed by taking into account a different
number of RUs, ranging from 4 to 12. As shown in this figure, the proposed HMS+PR
approach reduces the reconfiguration overhead from 50% to more than 250% (around
185% in the average), while moderately reducing also energy consumption in most of
the cases (up to 40%, and around 20% in the average). However, in some cases (such as
in the one consisting of 12 RUs), the energy consumption of the SoA reconfiguration-
driven mapper is slightly lower (around 15%) than the one of the proposed HMS+PR
approach, but this penalty is traded for a considerable increase of the reconfiguration
overhead (more than 200%).

Also, note that the SoA reconfiguration-based mapper generates fewer reconfigura-
tions than the communication-driven one, since the former was explicitly optimized to
take into account the dynamic reconfigurations.

7. CONCLUSIONS

This paper presents an alternative task representation model that enhances current
task representation models, in particular Data Flow Graphs (DFGs), Control and Data
Flow Graphs (CDFGs), Petri Nets and Data Flow Diagrams (DFDs), by combining
their respective features. This new model has been named Temporal Constrained Data
Flow Diagrams (TCDFDs), and it is able to capture at the same time the data depen-
dencies among the tasks of the applications and whether several tasks constitute a
pipeline and thereby should coexist in time.

In addition, since none of the state-of-the-art approaches is able to efficiently map
and schedule TCDFDs in reconfigurable systems, this article also proposes a mapping-
scheduling methodology specially designed for TCDFDs. Experimental results show
that the proposed approach outperforms other state-of-the-art mapping and schedu-
ling approaches [Murali et al. 2006a]; [Beretta et al. 2011b]; [Clemente et al. 2011b],
reducing the total application execution time by up to 62%, and saving up to 75% of
the available hardware resources for the execution of a set of real-world case studies
and synthetic benchmarks. In addition, it also reduces the reconfiguration overhead
by up to 89%, at the cost of increasing the number of reconfigurations that are carried
out (and hence the power consumption of the system) in some punctual cases.
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