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Abstract—In this paper, we propose an efficient distributed
fuzzy associative classification model based on the MapReduce
paradigm. The learning algorithm first mines a set of fuzzy
association classification rules by employing a distributed version
of a fuzzy extension of the well-known FP-Growth algorithm.
Then, it prunes this set by using three purposely adapted types
of pruning.

We implemented the distributed fuzzy associative classifier
using the Hadoop framework. We show the scalability of our
approach by carrying out a number of experiments on a real-
world big dataset. In particular, we evaluate the achievable
speedup on a small computer cluster, highlighting that the
proposed approach allows handling big datasets even with modest
hardware support.

I. INTRODUCTION

Association rule mining has become a very popular method
for generating highly accurate classification models, called as-
sociative classifiers (ACs). Such models have been extensively
studied in the literature [1], [2], [3] and have been recently
exploited in a large number of real world applications, such as
detection phishing activities in websites [4], and text analysis
[5].

The generation of an associative classifier is typically
performed in two steps. First, a set of classification association
rules (CARs) is mined from the training set. Then a subset
of high quality CARs is selected by pruning redundant or
noisy information. The selected CARs are used to predict the
class labels when the model is used for classifying unlabeled
patterns.

Even though associative classifiers are often “interpretable”
by the user and ensure high accuracy in pattern classification,
these models suffer from two main weaknesses [6]. First,
association rule mining algorithms deal with binary or cate-
gorical itemsets. On the other hand, real data objects are often
described by numerical continuous features. Thus, appropriate
discretization algorithms have to be applied to transform con-
tinuous feature domains into a set of items. The discretization
process determines the data ranges (bin boundaries) and the
number of bins. Then, each value is assigned to the bin which
contains it. Since transitions between bins are generally grad-
ual, recently a number of associative classification approaches
have proposed to adopt fuzzy boundaries, thus leading to the
so-called fuzzy associative classifiers (FACs) [7], [8], [9].

Second, when the number of training data objects is huge,
the complexity of the learning process grows exponentially
in terms of both time and memory. This issue is much more
evident when dealing with classification datasets belonging
to the so-called big data [10]. We recall that big data are
mainly defined by three characteristics: volume, variety and
velocity. Whenever these three characteristics increase, the
classical software tools and technologies lose their capability
of capturing, storing, managing and analyzing data. Indeed, in
the framework of big data classification, classical algorithms
for building classification models are practically inapplicable:
the design and implementation of novel learning algorithms
for dealing with big data is currently a challenging task [11].

When dealing with FACs another drawback occurs: the use
of fuzzy partitions makes the fuzzy CAR mining process more
complex. Indeed, while in the case of crisp partitions an input
value supports a unique item, in the case of fuzzy partitions,
an input value can support more than one fuzzy item. Thus,
the number of possible fuzzy association rules is higher than
the number of possible crisp rules. The approaches proposed
so far in the literature for generating fuzzy association rules
have limited the complexity by considering only the most
frequent fuzzy item for each attribute [12], [13], thus achieving
a good trade-off between the number of association rules and
the amount of information described by these rules.

In this paper, we propose an efficient fuzzy associative
classification scheme for dealing with big data. The pro-
posed approach, based on the MapReduce paradigm [14],
is a distributed version of our Associative Classifier based
on a Fuzzy Frequent Pattern (AC-FFP) mining algorithm,
recently introduced in [9]. We first mine fuzzy associative
classification rules by employing a distributed implementation
of the fuzzy frequent pattern mining algorithm proposed in
AC-FFP [9]: this algorithm is a fuzzy extension of the well-
known FP-Growth algorithm [15]. Then, we select a set of
fuzzy CARs by performing a distributed pruning step. In the
specialized literature, a number of association rule mining
approaches, mainly based on the MapReduce paradigm, have
been proposed [16], [17]. In particular, recent distributed
implementations of Apriori [18], [19] and FP-Growth [20],
[21] algorithms have been discussed. To the best of our
knowledge, no method has however investigated distributed
implementations of fuzzy association rule mining algorithms
and their integration into classification models for handling big
data.



We implemented the proposed approach on the Hadoop
framework [22]. We carried out experiments on a real-world
big dataset with 5 millions instances for evaluating the scala-
bility and the achievable speedup of our distributed approach
on a small computer cluster. We highlighted how our approach
turns to be suitable to practically address big datasets even with
modest hardware support.

The paper is organized as follows. Section II provides some
preliminaries on fuzzy associative classifiers and MapReduce.
Section III briefly describes the AC-FFP algorithm and then
explains the distributed approach, including the details of each
single phase that runs on the computer cluster. Section IV
presents the experimental setup and discusses the results in
terms of speedup and scalability. Finally, in Section V, we
draw final conclusions.

II. PRELIMINARIES

A. Fuzzy Associative Classifiers

Association rules are rules in the form Z → Y , where Z
and Y are set of items. These rules describe relations among
items in a dataset [23] and have been widely employed in the
market basket analysis [24].

In the fuzzy associative classification context, given a set
of attributes X = {X1, . . . , Xf , . . . , XF } and a fuzzy partition
Pf = {Af,1, . . . , Af,Tf

} of Tf fuzzy sets defined for each
attribute Xf , the single item is defined as the couple If,j =
(Xf , Af,j), where Af,j is one of the fuzzy sets defined in the
partition Pf of variable Xf , f = 1, ..., F . A generic fuzzy
classification association rule (FCAR) is expressed as:

FCARm : FAntm → Cjm (1)

where Cjm is the class label selected for the rule within the
set C = {C1, . . . , CL} of possible classes and FAntm is a
conjunction of items. More familiarly, rule FCARm can be
represented as:

FCARm : IF X1 is A1,jm,1
AND . . .AND XF is AF,jm,F

THEN Y is Cjm

where Y is the classifier output.

The rule base of an FAC contains a set of M FCARs. Each
rule FCARm in the rule base has associated a rule weight
RWm, which expresses a certainty degree of the classification
in the class Cjm for a pattern belonging to the fuzzy subspace
delimited by the antecedent of rule FCARm.

Let on = (xn, yn) be the nth object in the training set T ,
with xn = [xn,1 . . . , xn,F ] ∈ ℜF and yn ∈ C. The strength of
activation (matching degree of the rule with the input) of rule
FCARm is calculated as:

wm(xn) =

F∏

f=1

Af,jm,f
(xn,f ), (2)

where Af,jm,f
(x) is the membership function associated with

the fuzzy set Af,jm,f
.

The association degree hm(xn) with the class Cjm is
calculated as

hm(xn) = wm(xn) ·RWm (3)

Different definitions have been proposed for the rule weight
RWm [25]. As discussed in [26], the rule weight of each fuzzy
rule FCARm can improve the performance of FACs. In this
paper, we adopt the fuzzy confidence value, or certainty factor
CF, defined as follows:

RWm = CFm =

∑
xn∈Cjm

wm(xn)
∑N

n=1 wm(xn)
(4)

where N is the number of objects contained in the training set
T .

In the association rule analysis, support and confidence are
the most common measures to determine the strength of an
association rule. Support and confidence of a rule FCARm

can be expressed as follows:

fuzzySupp(FAntm → Cjm) =

∑
xn∈Cjm

wm(xn)

N
(5)

fuzzyConf(FAntm → Cjm) =

∑
xn∈Cjm

wm(xn)∑
xn∈T wAntm(xn)

(6)

where N is the number of objects in the training set
T , wm(xn) is the matching degree of rule FCARm and
wFAntm(xn) is the matching degree of all the rules which
have the antecedent equal to FAntm.

B. MapReduce

In 2004, Google proposed the MapReduce programming
framework [14] to divide the computation flow into a set
of independent tasks and distribute them across large-scale
clusters of machines. MapReduce is a programming model
based on functional programming that divides the computa-
tional flow into two main phases: Map and Reduce. The overall
computation is organized around 〈key, value〉 pairs: it takes
a set of input 〈key, value〉 pairs and produces a set of output
〈key, value〉 pairs.

To execute a user program, the MapReduce execution
environment distributes the independent Z map tasks and R
reduce tasks across the computer cluster. While the number
of map tasks is automatically determined by the number of
the input splits for partitioning the dataset, the number of
reduce tasks is defined by the user. Each map task defined
by the user reads the contents of the corresponding input split
formatted as 〈key1, value1〉 pairs and produces a list of inter-
mediate 〈key2, value2〉 pairs as output: map(key1, value1) →
list(key2, value2). The environment groups and sorts all the
map task output data according to the intermediate keys key2,
and then, for each unique key, passes the computational flow
to the reduce tasks. Each reduce task processes the key and
the associated value list as input and generates a new list of
values as output: reduce(key2, list(value2)) → list(value3).
Finally, the output of each reduce task is appended to the
output final file.

In the last years, several open source projects have been
developed to handle massive data, but the most popular open
source execution environment for the MapReduce paradigm
is Apache Hadoop [22]. It allows the execution of custom
applications that rapidly process big datasets stored in its
distributed file system, called Hadoop Distributed Filesystem
(HDFS).



III. THE PROPOSED ALGORITHM

In this section, first we introduce the AC-FFP mining
algorithm we proposed in [9]. Then, we describe the distributed
approach in detail.

A. AC-FFP

AC-FFP is a classifier which exploits a fuzzy version of the
well-known FP-Growth [15] algorithm for generating the fuzzy
association rules. In AC-FFP, the rule learning is performed
in three phases: (i) discretization, (ii) fuzzy FCAR mining
and (iii) FCAR pruning. In the following, for the sake of
brevity, we introduce just a short description of AC-FFP: more
information can be found in [9].

In the first phase, the discretization of continuous attributes
is performed by using the multi-interval discretization algo-
rithm based on entropy proposed by Fayyad and Irani [27]. For
each feature Xf , the algorithm outputs a set of bin boundaries
{bf,1, . . . , bf,Qf

}, where ∀r ∈ [1, . . . , Qf − 1], bf,r < bf,r+1,
and bf,1 and bf,Qf

are, respectively, the minimum and the max-
imum values in the universe of Xf . For each pair (bf,r, bf,r+1

of bin boundaries, we compute the middle point mf,r as

mf,r =
bf,r+bf,r+1

2 . Then, as shown in Figure 1, a strong
fuzzy partition Pf is generated by defining triangular fuzzy
sets with the cores positioned in correspondence to each bin
boundary and middle point. At the end of the discretization
phase, Tf = 2 ·Qf −1 fuzzy sets are defined for each feature.
If no bin boundary has been found by the algorithm for feature
Xf , then no fuzzy set is generated and the feature is discarded.

Fig. 1. An example of strong fuzzy partition obtained by the fuzzification
of the output of the Fayyad and Irani’s discretizer.

In the second step, the algorithm mines FCARs from
the training set by employing a fuzzy version of the well-
known FP-Growth algorithm for mining frequent patterns.
The generation of the rules involves two scans of the overall
training set and is very similar to the classic FP-Growth [15]
with the only difference that the items correspond to fuzzy
sets. In the first scan, the AC-FFP computes the fuzzy support
of each fuzzy sets Af,j , defined as

fuzzySupp(Af,j) =

∑N
n=1 Af,j(xf,n)

N
(7)

where xf,n is the value of the f th feature of the object on.

Only the fuzzy sets (frequent fuzzy sets), which have a
support higher than the support threshold minSup, are retained.
The frequent fuzzy sets are sorted in descending order ac-
cording to their support and organized in a list, named flist.
In the second scan, the dataset consisting only of frequent

items is compressed into a frequent pattern tree, called FP-
Tree. Then, FP-Growth recursively mines patterns by dividing
the compressed dataset into a set of projected datasets, each
associated with a frequent item or a pattern fragment. For each
pattern fragment, only its associated conditional dataset needs
to be examined. Thus, the problem of mining frequent itemsets
is converted into building and searching trees recursively.

To limit the complexity, the generation of the FP-Tree is
performed by transforming the object on into a fuzzy object
õn = (x̃n, yn) where x̃n = {A1n,j1n

, . . . , AZn,jZn
} and

Ain,jin
, in ∈ [1, . . . , F ], jin ∈ [1, . . . , Tin ], indicates the

frequent fuzzy value selected for the feature in. The values in
x̃n are sorted according to the flist. Note that, for strong fuzzy
partitions, each xn would generate 2F possible patterns since
each xf,n value on the universe of continuos feature belongs to
two fuzzy sets. Thus, to limit the number of possible patterns,
the x̃n contains only the fuzzy sets with the highest matching
degree from the two fuzzy sets associated with value xf,n.
If the selected fuzzy set is not present in the flist, then it is
discarded. Obviously, the number of features, which describe
x̃n, can be lower than F . As in the classic FP-Growth, the
fuzzy object is added to the FP-Tree, considering the frequent
fuzzy sets in x̃n as labels of the FP-Tree nodes. Note that
whether a node already exists in the tree, the corresponding
counter is simply incremented by 1. This approach achieves
a good trade-off between complexity and quality of the rules.
Indeed, each rule FCARm mined from the FP-Tree represents
the rule with the highest matching degree for the specific
object on. Other rules, which could be mined from on, would
have a lower matching degree and probably would be pruned.
Only the rules with support, confidence and χ2 value higher
than, respectively, minSup, minConf and minχ2 thresholds are
maintained.

The last step, which requires two additional scans of the
overall training set, aims to prune redundant rules or noise
information generated in the previous phase by performing
three different types of pruning. The first one, which involves
the third scan of the dataset, prunes rules with fuzzy support
and confidence lower than minFuzzySupp and minFuzzyConf,
respectively. These thresholds correspond to minSupp and
minConf adapted to the number of conditions and number of
instances of each class, respectively, so as to take into account
both the effect of the product t-norm as conjunction operator
and the imbalance of datasets. They are calculated respectively
as follows:

minFuzzySuppg = minSupp · 0.5g−1 (8)

minFuzzyConfCj
= minConf ·

NCj

NMajorityClass
(9)

where minSupp is the minimum support determined by the
expert and g ∈ [1..F ] is the rule length, NMajorityClass is
the number of occurrences of the majority class label in the
data set, NCj

is the number of occurrences of the consequent
class Cj in the training set and minConf is the minimum
confidence fixed by the expert. In the second type of pruning,
redundant rules are removed. First, the AC-FFP generates a
rule ranking by sorting the rules according to their confidence,
fuzzy support, and the number of antecedents, respectively.
Second, if exists an FCARm with lower rank and more
specific than another fuzzy rule FCARl, then FCARm is



pruned. In the third type of pruning, which involves the
last scan of the training set, the AC-FFP maintains only the
fuzzy rules that correctly classify at least one data object by
performing the training set coverage step. Indeed, only those
rules FCARm with matching degree higher than the fuzzy
matching degree threshold wm = 0.5gm−1 where gm is the
rule length of FCARm, are considered. At the end of the four
scans of the training set, the selected rules are inserted into the
rule base and they are used to classify unlabeled patterns.

The AC-FFP adopts the weighted vote [28] as the reasoning
method. Given an input pattern x̂ = [x̂1 . . . , x̂F ], each fuzzy
rule in the RB gives a vote for its consequent class as follows:

VCk
(x̂) =

∑

FCARm∈RB;Cjm=Ck

wm(x̂) · 2gm · CFm (10)

where wm(x̂) is the matching degree of FCARm for the input
x̂, gm is the number of antecedent conditions of FCARm and
CFm is the certainty factor. As stated in Section II, the AC-
FFP uses the confidence of the rule as certainty factor. The
input pattern is classified into the class corresponding to the
maximum total strength of vote or as unknown, if x̂ activates
no rule.

B. The Distributed Approach

In order to deal with big data, we implemented a distributed
version of the AC-FFP algorithm (denoted as DAC-FFP in
the following), which is based on the MapReduce paradigm.
In particular, we parallelized the last two steps of the AC-
FFP. The discretization process and the generation of the
fuzzy partitions are performed, as in the first step of the AC-
FFP algorithm, by using a reduced training set, obtained by
randomly extracting a percentage S of objects from the overall
training set. Once the fuzzy partitions have been defined, the
DAC-FFP distributes on the cluster nodes the fuzzy CARs
mining and pruning steps.

The distributed fuzzy CAR mining approach extracts, for
each class label, K non-redundant fuzzy association rules,
characterized by the highest confidence, by performing two
scans of the overall training set. The implementation is based
on the Parallel FP-Growth (PFP-Growth) proposed by Li et al.
[20] for efficiently parallelizing the frequent patterns mining
without generating candidate item sets. First, the algorithm
selects the frequent items, builds the flist and then distributes
item-projected datasets on each node for building local and
independent FP-Trees. An item-projected dataset T (If,j) con-
tains only objects, also called item-projected objets, where the
items are sorted according to the flist and the items with lower
support than If,j are removed. In the last phase, the algorithm
aggregates the results and, for each item, selects the highest
supported patterns.

We adapted the PFP-Growth algorithm to generate frequent
FCARs characterized by a high fuzzy confidence. As shown
in Figure 2, the overall fuzzy FCAR mining process is carried
out by performing three MapReduce phases: (i) parallel fuzzy
counting, (ii) parallel fuzzy FP-Growth, and (iii) parallel rules
selection.

The parallel fuzzy counting phase scans the dataset and
counts both the fuzzy support for selecting the frequent fuzzy
sets, and the number of occurrences of each class label. A

Fig. 2. The overall FCAR Mining process of the DAC-FFP algorithm.

fuzzy set is frequent if its fuzzy support is higher than a
minimum threshold minSup fixed by the expert. The MapRe-
duce framework divides the entire training set into blocks and
assigns each of them to a map task. Each map task is fed by
input key-value pairs represented as 〈key = r, value = or〉,
where or = (xr, yr) is the rth object of the training set block.
For each fuzzy set Af,j ∈ Pf , the mapper outputs a key-value
pair 〈key = Af,j , value = Af,j(xr,f )〉, where Af,j(xr,f )
is the membership degree of the ffh component of xr to
the jth fuzzy set of partition Pf . Obviously, only the fuzzy
sets with matching degree higher than zero are considered.
Since we use strong partitions, for each xr, we output at
most 2F values. Finally, the mapper outputs also the key-
value pair 〈key = yr, value = 1〉. The reducer is fed by a
list of corresponding values for each key: a set of membership
degrees for the fuzzy sets, and a set of 1’s for the class labels.
The reducer input is formatted as 〈key = Af,j , value =
list(Af,j)〉 and 〈key = Cj , value = list(Cj)〉, respectively,
and outputs 〈key = Af,j , value = fuzzySupp(Af,j))〉,
where fuzzySupp(Af,j) is calculated according to the Eq.
7, and 〈key = Cj , value = size(list(Cj))〉.

At the end of the first MapReduce phase, the algorithm
selects only the fuzzy sets whose support is larger than the
support threshold minSup, stores them in the flist, sorting in
descending order according the fuzzy support, and prunes the
other ones. Only the frequent fuzzy sets will be considered in
the subsequent phases. Since flist is generally small, this step



can efficiently be performed on a single machine.

The second MapReduce phase, parallel fuzzy FP-Growth,
mines fuzzy CARs whose support, confidence and χ2 values
are higher than minSup, minConf and minχ2 thresholds,
respectively. The approach is very similar to the classical
parallel FP-Growth described by Li et al. [20] with the only
difference that we extend the projected dataset and projected
object concepts to the fuzzy context. Indeed, each mapper
computes the item projected objects so that the reducers are
able to build the item-projected datasets, and then to generate
local conditional FP-Trees. We recall that in our case an item
is defined as If,j = (Xf , Af,j). In the following we denote the
Af,j-projected dataset as T (Af,j). Since, the local conditional
FP-Trees are independent of each other, the fuzzy CARs can
be mined by each node independently of the other nodes.

As in the first phase, each mapper reads a key-value pair
〈key = r, value = or〉 in the training set block, and then
builds the fuzzy object õr from or. As stated in Section
III-A, for each xr,f value, the mapper extracts the fuzzy sets
Af,j with the highest matching degree from the two fuzzy
sets activated by xr,f . Then, the mapper sorts the fuzzy sets
according to the flist. If a fuzzy set is not present in the flist
then it is discarded. Finally, the mapper retrieves the class label
Cjn and, for each extracted fuzzy set, outputs the key-value
pair 〈key = indexAf,j

, value = Af,j − projected object〉,
where indexAf,j

is the index of the fuzzy set Af,j in the
flist.

The MapReduce framework groups all the item-projected
objects with the same index, and passes them to the reducer.
Each reducer is able to process the Af,j-projected training
sets independently, and generates the associated FCARs. In-
deed, the reducer receives in input key-value pairs 〈key =
indexAf,j

, value = T (Af,j)〉, builds the local conditional FP-
Tree and recursively mines the FCARs, as described in [15].
As in the AC-FFP, if a node already exists in the tree, the
corresponding counter is simply incremented by 1 and no other
information about the matching degrees are maintained.

Finally, when rules are extracted from the FP-Tree, only
those FCARs whose support, confidence and χ2 values are
greater than the relative thresholds are considered. In particu-
lar, reducers output 〈key = null, value = FCARm〉 pairs,
where FCARm is the mth generated rule. Note that the
MapReduce framework automatically determines the number
of conditional FP-Trees assigned to each reducer through
the default partition function hash(key) mod R, where R
is the number of reducers. Even though our implementation
ensures more or less the same number of conditional FP-
Trees processed by each reducer, such distribution does not
necessarily guarantee a perfect load balancing among all the
nodes, because the time spent in processing each specific FP-
Tree depends on the number and length of its path [21], [29].

Since the number of the rules generated in the previous
step can be very high, the next MapReduce phase, parallel
rules selection, selects only the top K non-redundant rules for
each class label Cj . Each mapper is fed by an input key-value
pair formatted as 〈key = m, value = FCARm〉 and outputs
a pair 〈key = Cjm , value = FCARm〉, where Cjm is the
class label associated with FCARm. Each reducer processes
all rules with the same class label, and selects the best K

significant non-redundant rules. As for the AC-FFP algorithm,
a rule FCARm is more significant than another FCARl if
and only if:

1) conf(FCARm) > conf(FCARl)
2) conf(FCARm) = conf(FCARl) AND

supp(FCARm) > supp(FCARl);
3) conf(FCARm) = conf(FCARl) AND

supp(FCARm) = supp(FCARl) AND
RL(FCARm) < RL(FCARl).

where conf(.), supp(.), and RL(.) are the confidence, the
support and the rule length respectively. A fuzzy rule FCARl

is pruned if and only if exists a rule FCARm with higher rank
and more general than FCARl. A rule FCARm : FAntm →
Cjm is more general than a rule FCARl : FAntl → Cjl ,
if and only if, FAntm ⊆ FAntl. For each of these K rules
the reducer outputs a key-value pair 〈key = null, value =
FCARm〉.

At the end of the fuzzy FCAR mining, the algorithm
performs two additional scans of the overall dataset to prune
noisy information. Figure 3 depicts the two MapReduce phases
involved in the pruning.

Fig. 3. The overall FCAR Pruning process of the DAC-FFP algorithm.

In the first one, a rule FCARm is discarded if the fuzzy
support and confidence are lower than a minFuzzySupp and
minFuzzyConf thresholds calculated according to formulas
8 and 9, respectively. The mapper is fed by the training set
block where each input takes the form 〈key = r, value = or〉.
Moreover, each mapper loads and ranks the rules mined
in the previous steps into a ranked list and calculates the
membership degree of each rule for or according to Eq.
2, by using the product as t-norm for implementing the
conjunction operator. For each FCARm with membership
degree higher than zero, the mapper outputs the key-value pair



〈key = indexFCARm
, value = wm(xr)〉, where the key is the

index of rule FCARm in the ranked list and wm(xr) is the
membership degree of rule FCARm. Note that, when the class
label Cjm of rule FCARm is different from class label yr of
object or, the mapper outputs a negative value, −wm(xr), thus
the reducer is able to properly compute the fuzzy support and
the fuzzy confidence. Indeed, each reducer inputs a key-value
pair as 〈key = indexFCARm

, value = list(wm)〉, where
list(wm) is the list of all non-zero matching degrees for the
rule FCARm. The fuzzy support and the fuzzy confidence
are calculated according to Equations 5 and 6, where the
numerators of both equations is computed by considering only
the positive wm, and the denominator of the second one is
computed by considering the absolute value of each element
in the list(wm). Finally, each reducer outputs only FCARs
with confidence and support higher than minFuzzySupp and
minFuzzyConf , respectively.

The last type of pruning is carried out by performing the
training set coverage phase. Since the mapper is fed with
a training set block, the key-value input pair is 〈key =
r, value = or〉. Further, each mapper loads and ranks the
filtered rule set extracted in the previous phase. As in the AC-
FFP, a counter initialized to 0 is associated with each object
or. The mapper scans the rule list and, for each FCARm,
if xr matches the rule, then the counter is incremented by
1. Only those rules with matching degree higher than the
fuzzy matching degree threshold wm = 0.5gm−1, where gm
is the rule length of FCARm, are considered. If the FCARm

correctly classifies xr, the mapper outputs a key-value pair as
〈key = indexFCARm

, value = null〉, where the key is the
index of the FCARm in the ranked list. When the counter is
higher than a coverage threshold δ, the corresponding object
is not considered anymore. The reducer receives as input the
key-value pair 〈key = indexFCARm

, value = null〉, gets the
rule from the ranked list and outputs 〈key = null, value =
FCARm〉.

Note that the overall process is carried out by performing
five MapReduce phases that involve four training set scans.

To classify unlabeled objects, we perform the same reason-
ing method described in Section III-A.

IV. EXPERIMENTAL STUDY

We tested our method on a real-word big dataset, namely
Susy, extracted from the UCI repository1. Susy is characterized
by 18 input features, 5 millions instances and 2 classes.

We implemented our algorithm by using Apache Hadoop
1.0.4 as the reference MapReduce implementation and per-
formed all the experiments using a small computer cluster with
one master and three slave nodes. All the nodes are connected
by a Gigabit Ethernet (1 Gbps) and run Ubuntu 12.04. The
master node has a 4-core CPU (Intel Core i5 CPU 750 x
2.67 GHz), 4 GB of RAM and a 500GB Hard Drive. Each
slave node has a 4-core CPU with Hyperthreading (Intel Core
i7-2600K CPU x 3.40 GHz), 16GB of RAM and 1 TB Hard
Drive. The training sets stored in the HDFS are split into blocks
with the default size (64MB).

1Available at https://archive.ics.uci.edu/ml/datasets.html

We adopted the following values of the parameters in the
experiments: MinSupp = 0.01, MinConf = 0.5, δ = 4,
minχ2 = 20%. These parameters are equal to the ones used
in [9] for AC-FFP. Further, the number K of FCARs per class
label mined by the FCAR mining process is set to 10,000.

We recall that the aim of this paper is not to highlight
the effectiveness of DAC-FFP as classifier. On the other hand,
DAC-FFP is the distributed version of AC-FFP and we have
already analyzed the effectiveness of AC-FFP in [9] . By using
non-parametric statistical tests, we have shown that AC-FFP
outperforms in terms of accuracy other well-known associative
classifiers, such as CMAR [1], and is statistically equivalent
to two recent fuzzy associative classifiers, namely FARC-HD
[7] and D-MOFARC [8]. On the other hand, to the best of our
knowledge, there are no fuzzy associative classifier implemen-
tations that can handle big datasets. However, for the sake of
completeness, we performed a five-fold cross-validation on the
Susy dataset: the average values of classification rate achieved
by DAC-FFP on the training and test sets were 74.627% and
74.619%, respectively. Just to give a glimpse of the goodness
of these results, in another paper, where the Susy dataset was
used with the K-NN classifier in the framework of prototype
reduction for big data classification [30], the best average
values of classification rates using a five-fold cross-validation
were 69.41% and 72.82% on training and test sets, respectively.

In the following, we investigate the performance of the
DAC-FFP in term of scalability.

A. Scalabilty

In order to evaluate the scalability of the proposed ap-
proach, we use as metric the speedup σ, which is commonly
used in parallel computing. As stated by the speedup definition,
the efficiency of a program using multiple computing units
can be calculated comparing the execution time of the parallel
implementation against the corresponding sequential version.
Unfortunately, due to the large size of the dataset, the sequen-
tial implementation of the algorithm is impracticable because it
would take an unreasonable amount of time. To overcome this
drawback, we take as reference execution for our experiments
a run over Q∗ identical cores with Q∗ > 1. We redefine the
speedup formula on n computing units as follow:

σQ∗(n) =
Q∗ · τ(Q∗)

τ(n)
(11)

where τ(n) is the program runtime using n computing units
and Q∗ is the number of computing units used to run the
reference execution. In our tests, we have assumed Q∗ = 6.
Further, the computing units are uniformly distributed across
the cluster so that each slave exploits 2 cores. Note that, in
our case, σ6 takes care of the basic overhead due to both the
Hadoop platform and the thread interference.

According to the scalability experiments, we perform sev-
eral executions by varying the number of switched-on cores
per node, keeping the same number of running cores per
node for avoiding unbalanced loads. Obviously, σQ∗(n) makes
sense only for n ≥ Q∗, where the speedup is expected to be
sub-linear due to the increasing overhead from the Hadoop
procedures, the contention of shared resources between cores,
and the necessary sequential parts of our algorithm. In practice,



we considered 6, 9, and 12 cores distributed on the three
slave nodes. Note that our CPUs are equipped with the
HyperThreading technology, which allows running two distinct
processes per core. However, the performance gain due to
HyperThreading highly depends on the target application, and
in our case, specific tests showed that HyperThreading yields
really limited performance improvements. For this reason we
disabled the HyperThreading Technology and used only the
available physical CPUs in all our experiments.

Considering the structure of our algorithm, the number of
reducers is set equal to the number of cores available on the
slaves.

Table I summarizes the results of the experiments and
Figures 4 and 5 show, respectively, the speedup and the
execution time according to the whole dataset.

TABLE I. SPEEDUP OF DAC-FFP ALGORITHM.

# Cores Time (s) Speedup σ6(Q)/Q (Utilization)

6 10645 6 1.00

9 7847 8.14 0.90

12 6457 9.89 0.82
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Fig. 4. The speedup of DAC-FFP.
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Fig. 5. The execution time of DAC-FFP varying the number of available
cores.

Note that Hadoop automatically determines the number of
Z mappers that, with the default settings, is driven by the
HDFS block size. For the Susy dataset, Hadoop instantiates
36 mappers. Furthermore, if Z ≤ Q, where Q is the number
of available cores, then all the mappers are executed simul-
taneously on the cluster and the global runtime practically

corresponds to the longest of the mappers’ runtimes. On the
other hand, if Z > Q, Hadoop runs Q mappers in parallel, and
then queues the remaining (Z −Q) mappers. As soon as one
of the running mappers completes, Hadoop schedules a new
mapper from the queue.

In the ideal case of the same execution time for all the
mappers, the map phase for each MapReduce stage would
require ⌈Z

Q⌉ iterations. With the Susy dataset, this corresponds

to 6, 4 and 3 iterations on 6, 9 and 12 cores, respectively.
This observation can be used to get a very rough estimation
of the runtime expected with a certain number of cores,
once the runtime with another given number of cores has
been recorded. For instance (see Table I), we expect that
runtime decreases from 10645 seconds with 6 cores to about
10645×4÷6 = 7097 and 10645×3÷6 = 5323 seconds with
9 and 12 cores, respectively. As it can be noticed, such values
do not excessively differ from the recorded ones. Obviously,
such an estimation cannot be accurate and the actual runtimes
are necessarily higher due to: (i) the incurred overheads, (ii)
the different execution times of the mappers (they may even
be assigned different input sizes, as for the case of the mapper
assigned to the last HDFS block), and (iii) the influence of the
different reducing phases.

As regards the third item, we recall that the number
of reducers, denoted as R, can be set by the user and,
in our tests, is equal to the number of available cores Q.
Indeed, each reducer processes the values associated with
the intermediate key generated by the Z mappers. With the
default settings, Hadoop determines the queue of intermediate
keys assigned to each reducer through the default partition
function hash(key)modR. If the partition function distributes
uniformly all the intermediate keys, then the queues processed
by each reducer have more or less the same size.

In our algorithm, the time spent by each MapReduce
phase is driven essentially by the map phases, except for
the parallel fuzzy FP-Growth. In this case, the most of the
execution time is dominated by the reducer activites for mining
fuzzy CARs from the local conditional FP-Trees. Indeed, the
mappers generate as many intermediate keys (149 in our tests)
as the number of frequent fuzzy sets in the flist, thus each
reducer processes about 25, 17 and 13 conditional FP-Trees
in the 6, 9 and 12 cores cases, respectively. As stated in
Section III-B, even though the number of conditional FP-Trees
processed by each reducer is the same, such distribution does
not necessarily guarantee a perfect load balancing among all
the nodes, because the time spent in processing each specific
FP-Tree depends on the number and length of its paths [21],
[29].

However, the actual speedup σ6 in our experiments is quite
close to the ideal value, i.e. the number of CUs2: σ6(9)/9 =
0.90 and σ6(12)/12 = 0.82. Within the limitations due to the
different experimental settings, this result is in line with [20]
where the utilization is 0.768.

2The value σ1/Q is the standard utilization index; in our case, as σi(n) ≤
σj(n) ∀n ≥ j, the utilization index σ6/Q may be slightly greater than
standard utilization.



V. CONCLUSION

We have recently proposed AC-FFP, a fuzzy associative
classifier based on a fuzzy version of the well-known FP-
Growth. AC-FFP has proved to be very effective in terms of
accuracy, but results to be quite heavy both in terms of compu-
tational complexity and memory occupation. For this reason,
in this paper, we have shown a MapReduce distributed version
of the AC-FFP learning algorithm, based on a distributed
implementation of the fuzzy FP-Growth. This version is able to
process millions of objects. Further, the MapReduce paradigm
and the distributed file system integrated in the Hadoop frame-
work allow us to efficiently parallelize the computation flow
across computer clusters by providing a robust and transparent
environment that takes care of communications between them
and possible failures. We tested the speedup of the algorithm
on a real-world big dataset with 5 millions instances by using
personal computers connected by a Gigabit Ethernet. The
experimental results show that the algorithm achieves speedup
close to the ideal achievable targets. We would like to point
out that these results are obtained by using commodity cluster
computing and not specific dedicated hardware.
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