
Research Article

A MapReduce Based High Performance Neural Network in
Enabling Fast Stability Assessment of Power Systems

Yang Liu,1 Youbo Liu,1 Junyong Liu,1 Maozhen Li,2 Tingjian Liu,1

Gareth Taylor,2 and Kunyu Zuo1

1School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China
2School of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK

Correspondence should be addressed to Youbo Liu; liuyoubo@scu.edu.cn

Received 2 May 2016; Revised 7 August 2016; Accepted 23 November 2016; Published 8 February 2017

Academic Editor: Huaguang Zhang

Copyright © 2017 Yang Liu et al.	is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Transient stability assessment is playing a vital role in modern power systems. For this purpose, machine learning techniques
have been widely employed to
nd critical conditions and recognize transient behaviors based on massive data analysis. However,
an ever increasing volume of data generated from power systems poses a number of challenges to traditional machine learning
techniques, which are computationally intensive running on standalone computers. 	is paper presents a MapReduce based high
performance neural network to enable fast stability assessment of power systems. Hadoop, which is an open-source implementation
of the MapReduce model, is
rst employed to parallelize the neural network. 	e parallel neural network is further enhanced
with HaLoop to reduce the computation overhead incurred in the iteration process of the neural network. In addition, ensemble
techniques are employed to accommodate the accuracy loss of the parallelized neural network in classi
cation. 	e parallelized
neural network is evaluated with both the IEEE 68-node system and a real power system from the aspects of computation speedup
and stability assessment.

1. Introduction

In recent decades, dozens of large power blackouts have
occurred. Loss of stability has been widely recognized as
the most critical factor that leads to power system collapse.
Meanwhile, modern power systems are exposed to higher
risks than ever before due to the increasingly stressed oper-
ation conditions caused by renewable energy penetrations,
electricity market gaming, insu�cient awareness technique,
and shortage of investments [1]. 	ese situations conse-
quently reduce the dynamic stability of power systems when
the severe disturbances occur.

Transient stability assessment (TSA) is an e�ective resort
to evaluate dynamic security under various operations in
control centers. To facilitate TSA, machine learning tech-
nologies have been widely applied in the past two decades,
which is well summarized in an early literature [2]. Most
of the existing works of the transient stability identi
cation
are focused on binary stable state prediction using clustering

and classi
cation. For example, Support Vector Machine,
Decision Tree, and Arti
cial Neural Network (ANN) are
the widely used approaches to detecting instability of power
systems by using postfault trajectories within a few cycles [3–
5]. On the other hand, a few of machine learning techniques
have been investigated to enable dynamic coherency iden-
ti
cation of power systems, providing critical information
for system equivalents [6], islanding control [7], and area
detection [8]. But coherency analysis has limited ability to
determine the most disturbed units, which may lead to the
eventual desynchronization.

Besides awareness of globally stable status, it is important
for emergency control to understand which generator or
group of generators have a tendency of desynchronization.
Traditional stability predicators cannot point out the leading
units while the coherency-based classi
cation needs a longer
time window to observe perturbance trajectories. 	e most
feasible solution is to establish a set of trained predictors for
each generator to enable individual identi
cation [9]. But it is

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 4030146, 12 pages
https://doi.org/10.1155/2017/4030146

https://doi.org/10.1155/2017/4030146

2 Mathematical Problems in Engineering

admitted that it is computational intensive due to the fact that
a power system normally has hundreds of generators, which
generate massive volumes of data. Few machine learning
techniques have considered the impact of the critical unstable
generators (CUGs) in TSA of power systems. As a result,
it has become a challenge for standalone machine learning
techniques running on single computers to deal with TSA
taking into account the impact of massive CUGs [10]. For
this purpose, the application of high performance computing
techniques has become a necessity.

	is paper presents HBPNN, a high performance back
propagation neural network using MapReduce computing
model. Hadoop [11–13], which is an open-source implemen-
tation of MapReduce, is
rst employed to parallelize the
neural network. 	e parallelized neural network is further
enhanced using HaLoop [14] to reduce the computation
overhead incurred in the iteration process of the neural
network. In addition, ensemble techniques are employed to
maintain high accuracy in classi
cation when datasets are
split into small data chunks and processed in parallel nodes.
	e parallelized neural network is evaluated with both the
IEEE 68-node system and a real power system from the
aspects of computation speedup and stability assessment.

	e rest of the paper is organized as follows. Section 2
discusses the related work about the application of machine
learning techniques for TSA. Section 3 presents in detail the
design ofHBPNN. Section 4 evaluates the performance of the
parallelized neural networks and analyzes the experimental
results. Section 5 concludes the paper and points out the
future work.

2. Related Work

As wide area monitoring systems (WAMS) are now being
deployed in large number of power systems, phasor measure-
ment unit (PMU) is playing an ever increasingly vital role in
dynamic security assessment [15]. A number of researches
have been carried out to assess transient stability using
PMU data. Among these research e�orts, PMU trajectories
based indicators are considered as e�cient estimators to
understand dynamic behaviors of power systems, especially
in severe disturbances. For example, Alvarez and Mercado
proposed seven trajectory based indices, which are suitable
for fuzzy inference on real-time dynamic vulnerability [16].
Furthermore, Makarov et al. [17] presented a review on
PMU-based security assessment o�ering a clear roadmap for
further development.

Machine learning techniques have been widely employed
for instability detection or stability margin estimation. How-
ever, few studies have been carried out for TSA by identifying
CUGs in power systems due to massive volumes of data gen-
erated from the large number of the CUGs. For this purpose,
this paper employs back propagation neural network (BPNN)
to identify CUGs in a timely manner.

BPNN has proven to be e�ective in classi
cation due
to its gradient-descent feature that results in its remarkable
function approximation. However, large-scale data process-
ing brings a signi
cant challenge to BPNN in computation.

Rizwan et al. [18] employed a neural network on solar
energy estimation. It is admitted that the large volume of
data makes the data processing an extremely complex task,
which a�ects the training e�ciency severely. Wang et al. [19]
pointed out that large-scale neural network becomes one of
the mainstream tools for processing massive data. Al-Masri
et al. [10] also applied adaptive neural network to evaluate
stability for every single generator, aiming at providing more
detailed stability information. But real power systems usually
have hundreds of generators. It is admitted that standalone
neural networks running on single computers can hardly
handle the problem in a reasonable time.

In order to speed up the e�ciency of BPNN, distributed
computing technologies have been employed [20–22]. Gu
et al. [23] presented a parallel neural network using in-
memory data processing techniques to accelerate neural
network. However, in their work the training data is simply
segmented into data chunks without considering accuracy
loss. Liu et al. [24] presented a MapReduce based parallel
BPNN in processing a large set of mobile data. 	is work
further employs AdaBoosting algorithm to accommodate the
loss of accuracy of the parallelized neural work. Although
AdaBoosting is a popular sampling technique, it may enlarge
the weights of wrongly classi
ed instances, which would
deteriorate the algorithm accuracy. Another major limitation
of this research lies in that it does not consider the high
overhead of Hadoop in dealing with input and output
les
in the iteration process.

To solve the issue of processing large-scale data using
BPNN in power system for stability analysis especially for
identi
cation of CUGs, the presented work in this paper
employs HaLoop to reduce the high overhead incurred in
computation iterations. It also proves feasibility of MapRe-
duce based high performance neural network on e�cient
stability assessment, providing a general tool to parallelize
the machine learning algorithms to facilitate coordinated
training to a large number of generators.

3. The Design of HBPNN

3.1. BPNN. BPNN has been proved to be e�ective in clas-
si
cation. It employs feed-forward and back propagation
mechanisms to train the parameters of the network.

In the feed-forward phase, let

(i) ��� denote weight from �th neuron to �th neuron,

(ii) �� denote bias for varying the activity of the �th
neuron,

(iii) ��� denote output of the �th neuron from last layer,

(iv) ��� denote output of the �th neuron of the current
layer,

(v) �� denote input of the �th neuron in hidden and
output layers.

	erefore, �� can be represented by

�� = ∑
�
������ + ��. (1)

Mathematical Problems in Engineering 3

In the neuron, the nonlinear equation is sigmoid func-
tion; therefore the output of the �th neuron from the current
layer to next layer can be represented by

��� = 11 + 	−�� . (2)

	e output layer
nally outputs its ���. 	e feed-forward
phase is completed.

In the back propagation phase, let

(i) Err� denote the error-sensitivity of certain layer,

(ii)
� denote the desirable output of neuron � in the
output layer,

(iii) Err� denote error-sensitivity of one neuron in the last
layer,

(iv) ��� represent corresponding weight of Err�.
	erefore, Err� in the output layer and in the hidden layers

can be represented by

Err� = �� (1 − ��) (
� − ��) ,
Err� = �� (1 − ��)∑

�
Err����. (3)

	e weight ��� and bias �� can be tuned, where
 denotes
the learning speed:

��� = ��� +
Err���,
�� = �� +
Err�. (4)

	e back propagation phase is completed. A�erward, a
second round of training starts. BPNN terminates if (5) or (6)
is satis
ed or a certain number of iterations has been reached.

min (� [2]) = min (� [(
 − �)2]) , (5)

min (� [�]) = min (� [(
 − �)� (
 − �)]) . (6)

For executing a classi
cation task, a trained BPNN only
needs to execute the feed-forward phase. 	e classi
cation
result can be achieved from the output layer of the network.

3.2. Time-Domain Simulation. 	e time-domain simulation
of power system is modeled bymeans of di�erential algebraic
equations (DAEs); the details of the model can be found
in [25]. 	e outputs of the simulation, which are the status
trajectories, can be utilized as the simulated PMU data
for further analysis. In this study, an open-source package
PST [26] is employed to simulate dynamic trajectories of
concerned parameters for random faults in a certain interval
of cycles.

3.3. BPNN Based Transient Stability Assessment. If a power
angle di�erence Δ��� between any two generators � and� exceeds a speci
ed threshold, for example, 270 or 360
degrees, the status of the system is considered as unstable.

Stability status

{1, 0}

f1

f2

fK

...

Figure 1: A BPNN based TSA.

Alternatively, the criterion using the center of inertia (COI)
is usually applied to identify power system stability, which is
expressed as

������ − �COI

���� ≤ �max ∀�, (7)

�COI = 1��
	∑
�=1
����, �� =
∑

�=1
��, (8)

where �� and �� represent rotor angle and inertia constant
of generator �, �� is the sum of ��, � is the number of
generators, and �max is instability threshold which is de
ned
as 180 degrees in this paper.

	e training phase of BPNN based TSA is illustrated in
Figure 1.

In Figure 1 �1, �2, . . . , �� are the inputs of the network.
	e output is usually an integer value with 0 indicating
instability while 1 indicates stability. A�er the training process
is accomplished, if a fault occurs, the features obtained from
a few cycles of the postfault trajectories will be fed into the
trained network to extrapolate stability status within the sub-
sequent several seconds. 	e majority of the existing works
focus on improving accuracy of global stability prediction
by improving the standalone BPNNs [8] as well as novel
input features [27]. However, the stability margin, a value
quantifying how far the current condition is from the loss of
synchronization, is a crucial indicator that enables a clearer
awareness of the dynamic impact level.

In this work, two trajectory based stability margin indi-
cators, TSI and IS [28], are used as training targets, which are
given as follows:

TSI = 360 − � (�)max360 + � (�)max

× 100, − 100 < TSI < 100,
�� = √∫�

0
{
∑
�=1
�� [�� (
) − �COI (
)]2}!
,

4 Mathematical Problems in Engineering

One CUG

Unstable generator

−1000

0

1000

2000

3000

4000

5000

6000

R
o

to
r

an
gl

e
(d

eg
re

e)

50 100 1500

Cycles

(a)

Unstable generators

Two CUGs

−600

0

600

1200

1800

2400

3000

R
o

to
r

an
gl

e
(d

eg
re

e)

50 100 1500

Cycles

(b)

Unstable generators

Two CUGs

−600

−400

−200

0

200

400

R
o

to
r

an
gl

e
(d

eg
re

e)

50 100 1500

Cycles

(c)

Unstable generators

Full CUGs

−150

−100

−50

0

50

100

R
o

to
r

an
gl

e
(d

eg
re

e)

50 100 1500

Cycles

(d)

Figure 2: Four scenarios of CUGs.

IS = 1 + tanh(���������max
− �������) , 1 ≤ IS ≤ 2,

(9)

where�(�)max is themaximal power angle di�erence between
any generator pairs during the period of � and ��(
) is power
angle of generator � at time point
.

Although there exist a wide range of features in previous
works, most of them share similar parameters. According to
these studies, the combination of these features can achieve
an adequate accuracy of stability prediction. Moreover, these
features not only are related to stability status but also contain
the inherent information of stable margins. 	erefore, the
same set of input features is selected for BPNN training.

3.4. CUG Identi
cation. CUGs are de
ned as the
rst group
of the generators whose rotor angle is di�erent from the
rest of the generators exceeding a given threshold. Actually,
CUGs are themost potential candidates of generator tripping
that can be utilized to reduce transient power mismatch
in a timely manner [29]. Figure 2 shows the power angle

trajectories of di�erent CUGs in the IEEE 68-node testing
system.

	e unstable generators belonged to the CUGs, because
their leading (or lagging) rotor angle against other units must
exceed the given threshold which is usually set to be equal to
or little smaller than the wide-accepted instability criterion.
For example, Figures 2(a) and 2(b) illustrate rotor angle
trajectories of the CUGs, which also contain all the unstable
generators. In this situation, all the generators are determined
as unstable ones at the end of observation time window, 150
cycles. But, before that, none of the generators reaches the
CUG threshold criterion. 	erefore, the strict two-cluster
instability pattern corresponds to the situation that all the
generators are CUGs, such as the case of Figure 2(d). How-
ever, unlike Figures 2(a), 2(b), and 2(d), Figure 2(c) o�ers the
di�erent pattern in which the CUGs only are part of unstable
units. Although it belongs to the leading cluster, ahead of
other leading generators, the two generators indicated in
Figure 2(c) meet the CUGs identi
cation criterion at the very
beginning of timewindows.	ese two units are considered to
be the most e�ective objects for the further control strategy.

For this purpose, the cycles of postfault rotor angle
trajectories are clustered to identify CUGs from unstable

Mathematical Problems in Engineering 5

Table 1: Critical unstable generator indicator examples.

Critical unstable generator indicator

(a) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

(b) 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

(c) 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

(d) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

generators, which are used as the target outputs of BPNN in
the training process:

(1) Execute
ve seconds’ time-domain simulation for
a permanent fault followed by a clearing action;
then collect the output rotor angle trajectory of each
generator.

(2) Scan any two rotor angle trajectories cycle by cycle
from the initial point of postfault duration. If there
is an angle di�erence Δ��� exceeding critical unstable
threshold, the power system is considered to be
critically unstable; meanwhile, record this time point
.

(3) Extract rotor angle trajectory ��(
 + Δ
) for each
generator, whereΔ
 refers to CUG validation interval.
However, if taking Δ
 as a relatively long period, such
as 3 s, it is almost not possible to distinguish them
from the subsequent unstable generators. According
to the experience, Δ
 is preferably set to be 50 cycles,
that is, 1 s.

(4) Perform k-means clustering to divide all ��(
 + Δ
)
trajectories into two groups. 	en calculate the COI
trajectory of the clustered rotor angles for each group
with time interval
 + Δ
 using (8).

(5) If the following constraint cannot be satis
ed, the
generators contained in group $which breaks (10) are
tagged as the CUGs with a binary integer of 1.������COI (
 + Δ
) − �COI (
 + Δ
)���� ≤ 180∘, $ ∈ {1, 2} . (10)

Following the above identi
cation procedure, the CUGs
of the 16-machine testing system illustrated in Figure 2 can be
indicated as shown in Table 1.

In Table 1, the CUG status is tagged by using the binary
values, one means CUG, and zero means non-CUG.

3.5. Parallelizing BPNN

3.5.1. MapReduce,Hadoop, andHaLoop. MapReduce is a dis-
tributed computing model in enabling big data processing.
	e model supplies two types of functions: Map and Reduce.
Map operates the mapping functions for major computing
tasks while Reduce operates the collecting and outputting
operations. 	e data in the processing �ow is modeled
using (key (&)-value (')) pairs. Map processes each input
key-value pair {&1, '1} and outputs intermediate output{&2, '2}. Reduce collects the output pairs with the same keys
and executes merging, shu�ing operations. Finally, Reduce
outputs the
nal results {'2}.

Hadoop framework is an open-source implementation
[11] of MapReduce. 	e framework o�ers scalability, fault
tolerance, load balancing, and a series of bene
ts for par-
allel and distributed computing in both homogeneous and
heterogeneous environments. HaLoop [14] is also based on
MapReduce and reuses most of the source code of Hadoop
but facilitates data intensive applications with iterations.

3.5.2. Bootstrapping and Majority Voting. Bootstrapping is a
kind of sampling algorithm [30]. Bene
ting from sampling
with replacement, the bootstrapped samples are able to simu-
late the sample distribution of the original dataset.	erefore,
in our parallelization work, although the original training
dataset is divided into subsets, due to the employment of
the bootstrapping, the generalization of the trained neural
network can be maintained to some extent. Majority voting
is able to indicate the major element from a dataset based on
voting. It enables HBPNN to create a strong classi
er using a
number of weak classi
ers so that the classi
cation accuracy
can be maintained.

3.5.3. HBPNN Design. Motivated by the previous work of
MapReduce based BPNN proposed by Liu et al. [32], the
algorithmcontains twophases including the generation of the
bootstrapped samples and the parallelization of the BPNN.
Initially, HBPNN inputs the original training dataset and
generates a number of * bootstrapped samples according to
the number of mappers employed. Each sample is saved in
one data chunk in the HDFS. 	e data structure for each
saved training instance in the data chunk is de
ned as below:{instance�, class�, instancetype},
where instancei represents the �th instance in a data chunk;
class� represents the �th class that instancei belonged to;
instancetype
eld is
lled a string “training” to inform the
algorithm that instancei is a training instance.

A�erward, the parallelization phase starts. Each mapper

rstly initializes the BPNN algorithm and then inputs one
data chunk. 	erefore the instances saved in the data chunk
can be
nally input into themapper one by one. If the instance
type is “training,” the BPNN in themapper starts the training
phase using the instance. In this case, instancei is employed to
execute the feed-forward phase using (1) and (2) while class�
is employed to execute the back propagation phase using (3)
to (4). As long as all the instances marked as “training” have
been processed, the BPNN has been trained. As a result, a
number of * trained classi
ers (mappers) are created in the
Hadoop cluster.

In the classi
cation phase, each testing instance
 is input
into all*mappers. In each mapper, instance
 is classi
ed by

6 Mathematical Problems in Engineering

Table 2: Input features of stability and margin of HBPNN.

Symbol De
nition-acc

� 	e accelerating power of each generator at the time of one cycle a�er the fault clearing

(!V�!
 , !��!
) 	e rate of change of both bus voltage and angles of each generator [9]

KEsum 	e total value of generators’ kinetic energy at the time of one cycle a�er fault clearing, given in [30]

ISGA An integral square generator angle index given in [28]

RTImax Maximal RTI index [31] in the interval from �cl to ��'area 	emaximal integral area of voltage amplitude variation of all the generator busbars, given in (11)

the BPNN using (1) and (2). And then the mapper outputs an
intermediate output in {key-value} form:

{instance
, class�},
where class� denotes the classi
cation result of instance
 of
one mapper, so that*mappers output* outputs.

HBPNN starts one reducer to collect the intermediate
outputs from * mappers. A�er sorting and merging, a
collectionwhich contains* classi
ed results for the instancet
is formed.

�e collection
of instancet

m classi�ed
results

{instancet, class1}
{instancet, class2}
{instancet, class3}
{instancet, classj}

{instancet, classl}
...

Inside the collection, majority voting is executed to select
the
nal classi
cation result which is ultimately output in the
form of

{instance
, result},
where result represents the
nal classi
cation result. 	e
pseudo code of HBPNN is shown by Algorithm 1.

Algorithm 1 (HBPNN).

In the training phase

(1) HBPNN generates a number of * bootstrapped
training samples which are saved in * data chunks
in HDFS.

(2) Each data chunk is input into one mapper.

(3) Each mapper initializes one BPNN.

(4) For each mapper:

BPNN inputs one instance instance�.

If instance� is a “training” instance

BPNN trains its parameters

Until all the training instances are processed.

In the classi
cation phase

(5) For each testing instance instance
:

All the*mappers input instance
.

BPNN in each mapper executes feed-forward to
classify instance
.

Each mapper outputs {instance
, class�}.
(6) One reducer collects the classi
ed results of instance

from all mappers.

(7) In the reducer, a collection of instance
 is formed:

(8) Majority voting is executed in the reducer to select the
ultimate classi
cation result for instance
.

(9) Until all the testing instances are classi
ed, algorithm
terminates.

3.6. Feature Selection. Assume that a PMUhas been deployed
on each generator bus; full parameter trajectories of gener-
ators as well as related indices proposed in previous litera-
tures can be introduced as features. However, many features
are strongly correlated with others. 	erefore, the Pearson
correlation coe�cients (PCC) method [33] is used to reduce
the redundancy of statistical index-based features. Any two
features !1 and !2 satisfying |PPC�1�2 | > 0.85 condition are
regarded to be highly correlated. Tables 2 and 3 illustrate the
selected features fed to trainHBPNN for theCUGs and global
stability, respectively. Speci
cally, the size of the time window
used to observe features is from the fault clearing time �cl to
the following 10 cycles represented as ��.

Beside the referred features, Tables 2 and 3 also include
two de
ned indices,'area and ISGS�, which can be formulated
as follows:

'area = max{∫��
�cl
('0� − '� (
)) !
} , (11)

ISGS� = ∫��
�cl
�� [:� (
) − :COI (
)]2 !
, (12)

where :�(
) and :COI(
) represent rotor speed of generator �
and COI at the time point
, respectively, �cl is the time point
of fault clearing, and �� represents the time window used to
observe the features.

3.7. Automated Sample Generation. In this work, a random
fault simulator has been developed to generate massive
samples [34]. Random fault refers to stochastic three-phase
short circuits of any transmission lines. In addition, fault

Mathematical Problems in Engineering 7

Table 3: Input features of CUGs of HBPNN.

Symbol De
nition

KE
�cl
�

	e kinetic energy of this generator at the time of one
cycle a�er the fault clearing, which is given in [30]

ISGSi
	e integral area of rotor speed deviation between
generator � and COI, which is given in (12)

�COI� (
) 	e absolute value of rotor angle deviate between
generator � and COI at each cycle point from �cl to ��

'�(
) 	e voltage amplitude of generator i at each cycle point
from �cl to �� including prefault value

clearing time is randomly set to 0.1 s to 0.35 s. 	e samples
generation is listed as below:

(1) Load base case: if the initial outage exists, trip the
component and calculate power �ow.

(2) Change- and; on each bus bymultiplying a random
number in the range of [0.8, 1.4] to simulate the load
level, distributing unbalance load to all the generators
in proportion to their base generation.

(3) Implement three-phase fault on a randomly selected
component at time��, and clear fault at��+?, where? is a random decimal in [0.1, 0.35].

(4) Perform time-domain simulation for the above ran-
domly con
gured operation and fault scenario, and
collect output trajectories to calculate features de
ned
in Tables 2 and 3 as well as the related targets.

3.8. �e Architecture of HBPNN. A�er random faults sim-
ulation is accomplished, the entire samples are stored in
HDFS. HBPNN separates the training data into pieces and
employs bootstrapping to generate bootstrapped samples.
Each piece is saved in one data chunk. And then HBPNN
initializes distributed neural networks in multiple mappers.
	ese networks can be categorized into three types, the CUG
identi
cation, stability assessment, and margin assessment.
A�erwards, eachmapper inputs one data chunk and executes
the training for the large-scale input data. As long as the
stability, margin, and CUG networks are su�ciently trained,
they can be utilized as the enhanced classi
ers of TSA.
When the testing data is fed into HBPNN, the parallel neural
network can e�ciently classify each instance and output into
its
nal classi
cation. Figure 3 shows the overall architecture
of HBPNN.

4. Experimental Results

4.1. HBPNNValidation. In order to evaluate the performance
of HBPNN, a number of experiments have been carried out
in a physical Hadoop computer cluster with 1 Gbps network
bandwidth.	e cluster contains
ve nodes, in which 4 nodes
areDataNodes and the other one is NameNode.	e deployed
frameworks are Hadoop andHaLoop. In addition, the cluster
con
gurations and details of the generated dataset are listed
in Tables 4 and 5, respectively.

Table 4: Cluster detail.

CPU Memory SSD OS

NameNode Core i7@3GHz 8GB 750GB Fedora

DataNodes Core i7@3.8GHz 32GB 250GB Fedora

Table 5: Dataset detail.

Data Instance length Number of classes Output

CUG 24 2 [0, 0] and [0, 1]
As each input in input layer of HBPNN only accepts

the value between 0 and 1, each instance is normalized
before inputting into HBPNN. For one instance instance� ={A1 A2 A3 ⋅ ⋅ ⋅ A�	}, let Amax, Amin, and DA� denote the maxi-
mum element,minimum element, and normalized A�, respec-
tively, and then

DA� = A� − AminAmax − Amin

. (13)

	e precision E can be calculated using

E = FF + � × 100%, (14)

where F and � represent the number of correctly classi
ed
and wrongly classi
ed instances, respectively.

4.1.1. Precision Validation. In the experiments 1000 training
instances and 1000 testing instances were generated. Ten
mappers were employed and each of them processed the
training instances varied from 10 to 1000. Figure 4(a) shows
that the accuracy of HBPNN increases with an increasing
number of training instances. Figure 4(a) also indicates that
when the number of training instances is small, the HBPNN
based on bootstrapping sampling outperforms the original
BPNN in terms of accuracy.

Figure 4(b) shows the stability of HBPNN in processing
small numbers of training instances for
ve times. 	is
experiment focuses on the algorithm stability. In the tests,
HBPNN and the original BPNN were trained by only ten
instances. Although a low number of training instances leads
to low accuracy, the results show HBPNN is more stable
than BPNN in all the
ve cases. And even with such a low
number of the training instances, HBPNN can also give
higher accuracy than the standalone BPNN.

4.1.2. Computation E
ciency. A number of tests were con-
ducted to evaluate the e�ciency of HBPNN in computation
using Hadoop and HaLoop, respectively. It can be observed
from Figure 5(a) that, along with an increasing size of data,
the parallel HBPNN performs faster than the standalone
BPNN. It is worth noting that the HaLoop based HBPNN
is slightly faster than the Hadoop based HBPNN due to
the reduced computation overhead in dealing with iterations
which is further illustrated in Figure 5(b).

4.2. HBPNN Application. HBPNN was applied in two power
system cases. 	e
rst case is a 68-node testing system

8 Mathematical Problems in Engineering

Gen 1 Gen 2 Gen i

Major voting Major voting Major voting

Major voting Major voting

TSI indicator

Major voting

IS indicator

Margin HBPNNs

Random faults scenarios

time-domain simulation

Feature calculation and

examples collection

Operation condition and

preset contingencies list

Hadoop distributed �le

system and MapReduce

environment

Global status = {0 or 1}

Stability HBPNNs

∼ ∼ ∼

· · ·

· · ·

CUG HBPNNsCUG = {0 1 0 1 0 0 · · · 1 0}

Figure 3: 	e architecture of HBPNN.

0

20

40

60

80

100

120

P
re

ci
si

o
n

 (
%

)

300 600 9000

Number of instances

HBPNN

Standalone BPNN

(a) Precision comparisons

0

5

10

15

20

25

P
re

ci
si

o
n

 (
%

)

2 3 4 51

Test number (th)

HBPNN

Standalone BPNN

(b) Precision stability

Figure 4: Comparison between HBPNN and standalone BPNN.

including 16 generators. 	e second case is a real power
system of SichuanGrid in China, which has 878 busbars, 1096
lines, and 109 generators. 	e details of the data samples are
listed in Table 6. 	e con
gurations of HBPNN are shown in
Table 7.

In this evaluation, the algorithm precision of the gen-
erators status prediction is tested. In terms of precision,
when the number of training instances is large, the presented
algorithm HBPNN has the same precision compared to that
of the standalone HBPNN. 	erefore, Figure 6 only lists

Mathematical Problems in Engineering 9

Standalone BPNN

Hadoop

HaLoop

0

200

400

600

800
E

�
ci

en
cy

 (
s)

2 4 8 16 32 64 128 256 512 10241

Data size (MB)

(a) Increasing data sizes

0

100

200

300

400

500

600

E
�

ci
en

cy
 (

s)

4 6 8 10 12 14 162

Number of Maps

Hadoop
HaLoop

(b) E�ciency of Hadoop and HaLoop

Figure 5: E�ciency validation in di�erent distributed platforms.

Table 6: Generated data of test system.

68-node system Sichuan power grid

Instance number Data size (MB) Instance number Data size (MB)

CUG 12000 93.75 12000 638.78

Stability 12000 11.72 12000 118.03

Margin 12000 11.79 12000 117.62

Table 7: Details of HBPNN for the test.

Scenario Mapper number BPNN number
Input

68-node/Sichuan
Hidden layer neurons Output

CUG 8 8 24/24 15 2

Stability 4 4 52/331 15 2

Margin 4 4 52/331 15 2

the precision of the HBPNN without comparison with a
standalone HBPNN algorithm.

Figure 6 recording the CUGs predicting precision of
test systems indicates that HBPNN is of satisfactorily high
precision in identifying the generators transient status during
the postfault trajectories of the power system. 	e average
precisions for all generators of the two test systems are 99.19%
and 98.63%, respectively.

In order to validate the feasibility of HBPNN in these two
cases, 2400 new samples including random multiple faults
scenarios were simulated for each testing system. 	e details
of the sample sets are shown in Table 8.

Figure 7 shows the two example scenarios of the Sichuan
grid in the status of stable and unstable cases, respectively.
	e features related trajectories in 10 cycles were fed into the
trained HBPNN, which is able to quickly provide predicted
values of the concerned targets. Table 9 shows that HBPNN
accurately classi
es the two scenarios. In addition, Figure 8
illustrates the accuracy of HBPNN of processing 2400 sam-
ples generated by the respective testing systems. It can be
observed that the accuracy of the algorithm ismore than 90%.

Table 8: Details of new testing samples.

68-node system Sichuan power grid

Stable Unstable Stable Unstable

N-1 688 112 758 42

N-2 621 179 682 118

N-k ($ ≥ 3) 436 364 523 277

Figure 9 shows that the parallel HBPNN is more e�cient
than the standalone BPNN in the two testing power systems
when the size of data samples is large as shown in Figure 9(c).
However, the parallel HBPNN is slower than the standalone
BPNNwhen the size of data is small as shown in Figures 9(a)
and 9(b) due to the fact that both Hadoop and HaLoop have
extra system overheads. Nevertheless, the HaLoop paral-
lelized HBPNN is always faster than the Hadoop parallelized
HBPNNdue to the reduced computation overhead in dealing
with iterations.

10 Mathematical Problems in Engineering

Table 9: Comparison of target and HBPNN output for two test scenarios.

Scenarios 1 (stable) Scenarios 2 (unstable)

Target output HBPNN output Target output HBPNN output

CUG Null Null 7, 9, 11, 64 7, 9, 11, 64

Stability 1 1 0 0

TSI 39.69 41.76 −96.74 −94.62
IS 1.396 1.329 1.0063 1.0027

0 5 10 15 20 25 30 35 40 45 50
92
93
94
95
96
97
98
99

100

P
re

ci
si

o
n

 (
%

)

Generator number (system I)

(a)

0 25 50 75 100 125 150
93

94

95

96

97

98

99

100

P
re

ci
si

o
n

 (
%

)

Generator number (system II)

(b)

Figure 6: Precision of predicted CUGs.

Scenarios 1: stable case

−60

−30

0

30

60

90

120

R
o

to
r

an
gl

e
(d

eg
re

e)

1 2 3 4 50

Time (s)

(a)

Scenarios 2: unstable case

0

200

400

600

800

1000

1200

1400

R
o

to
r

an
gl

e
(d

eg
re

e)

1 2 3 4 5 6 70

Time (s)

(b)

Figure 7: 	e rotor angle trajectories of two applied scenarios of Sichuan grid.

Stability TSI IS CUGs
90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

68-nodes test system

Sichuan grid system

Figure 8: 	e accuracy of HBPNN in classi
cation in the two testing systems.

Mathematical Problems in Engineering 11

CUG Stability TSI IS

0

10

20

30

40

50

60

70

E
�

ci
en

cy
 (

s)

Standalone

Hadoop

HaLoop

(a) 68-node testing system

CUG Stability TSI IS

0

100

200

300

400

500

E
�

ci
en

cy
 (

s)

Standalone

Hadoop

HaLoop

(b) Sichuan power grid system

CUG Stability TSI IS
0

500

1000

1500

2000

E
�

ci
en

cy
 (

s)

Standalone

Hadoop

HaLoop

(c) Sichuan power system with data duplication

Figure 9: 	e computation e�ciency of HBPNN on the testing power systems.

5. Conclusion

In this paper we have presentedHBPNN, a high performance
distributed neural network algorithm for fast stability assess-
ment in power systems. HBPNN is designed using Hadoop
to train large-scale training data in parallel to speed up
the training process. It further employs HaLoop to reduce
the iterative overhead that occurred in the training process.
HBPNN also employs ensemble techniques to maintain high
accuracy in parallelized classi
cation.	e work in this paper
is able to establish highly scalable computing architecture
to enable comprehensive transient stability awareness tech-
nique, including global stability prediction, stable margin
estimation, and CUGs detection.

Competing Interests

	e authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

	is work was supported in part by the National Natural
Science Foundation of China (NSFC Project, nos. 51207098
and 51437003).

References

[1] M. Negnevitsky, D. H. Nguyen, and M. Piekutowski, “Risk
assessment for power system operation planning with high
wind power penetration,” IEEE Transactions on Power Systems,
vol. 30, no. 3, pp. 1359–1368, 2015.

[2] L. Wehenkel, “Machine-learning approaches to power-system
security assessment,” IEEE Expert, vol. 12, no. 5, pp. 60–72, 1997.

[3] F. R. Gomez, A. D. Rajapakse, U. D. Annakkage, and I. T.
Fernando, “Support vector machine-based algorithm for post-
fault transient stability status prediction using synchronized
measurements,” IEEE Transactions on Power Systems, vol. 26,
no. 3, pp. 1474–1483, 2011.

12 Mathematical Problems in Engineering

[4] I. Kamwa, S. R. Samantaray, and G. Joos, “Development of
rule-based classi
ers for rapid stability assessment of wide-area
post disturbance records,” in Proceedings of the IEEE Power and
Energy Society General Meeting, Minneapolis, Minn, USA, July
2010.

[5] Y. Xu, Z. Y. Dong, J. H. Zhao, P. Zhang, and K. P. Wong, “A
reliable intelligent system for real-time dynamic security assess-
ment of power systems,” IEEE Transactions on Power Systems,
vol. 27, no. 3, pp. 1253–1263, 2012.

[6] C. Sturk, L. Vanfretti, Y. Chompoobutrgool, and H. Sandberg,
“Coherency-independent structured model reduction of power
systems,” IEEE Transactions on Power Systems, vol. 29, no. 5, pp.
2418–2426, 2014.

[7] H. You, V. Vittal, and X. Wang, “Slow coherency-based island-
ing,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 483–
491, 2004.

[8] A. Vahidnia, G. Ledwich, E. Palmer, and A. Ghosh, “Generator
coherency and area detection in large power systems,” IET
Generation, Transmission & Distribution, vol. 6, no. 9, pp. 874–
883, 2012.

[9] F. Hashiesh, H. E. Mostafa, A.-R. Khatib, I. Helal, and M.
M. Mansour, “An intelligent wide area synchrophasor based
system for predicting and mitigating transient instabilities,”
IEEETransactions on SmartGrid, vol. 3, no. 2, pp. 645–652, 2012.

[10] A. N. Al-Masri, M. Z. A. Ab Kadir, H. Hizam, and N. Mariun,
“A novel implementation for generator rotor angle stability pre-
diction using an adaptive arti
cial neural network application
for dynamic security assessment,” IEEE Transactions on Power
Systems, vol. 28, no. 3, pp. 2516–2525, 2013.

[11] http://hadoop.apache.org/.

[12] S. Prasad and S. B. Avinash, “Smart meter data analytics
using OpenTSDB and Hadoop,” in Proceedings of the 2013
IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia ’13),
November 2013.

[13] M. Khan, P. M. Ashton, M. Li, G. A. Taylor, I. Pisica, and J. Liu,
“Parallel detrended �uctuation analysis for fast event detection
on massive pmu data,” IEEE Transactions on Smart Grid, vol. 6,
no. 1, pp. 360–368, 2015.

[14] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop:
e�cient iterative data processing on large clusters,” in Proceed-
ings of the International Conference on Very Large Data Bases,
Singapore, 2010.

[15] J. De La Ree, V. Centeno, J. S. 	orp, and A. G. Phadke, “Syn-
chronized phasor measurement applications in power systems,”
IEEE Transactions on Smart Grid, vol. 1, no. 1, pp. 20–27, 2010.

[16] J. M. G. Alvarez and P. E. Mercado, “Online inference of the
dynamic security level of power systems using fuzzy tech-
niques,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp.
717–726, 2007.

[17] Y. V. Makarov, P. Du, S. Lu et al., “PMU-based wide-area
security assessment: concept, method, and implementation,”
IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1325–1332,
2012.

[18] M. Rizwan, M. Jamil, and D. P. Kothari, “Generalized neural
network approach for global solar energy estimation in India,”
IEEE Transactions on Sustainable Energy, vol. 3, no. 3, pp. 576–
584, 2012.

[19] Y. Wang, B. Li, R. Luo, Y. Chen, N. Xu, and H. Yang, “Energy
e�cient neural networks for big data analytics,” in Proceedings
of the Design, Automation and Test in Europe Conference and
Exhibition, pp. 1–2, Dresden, Germany, March 2014.

[20] A. A. Ikram, S. Ibrahim, M. Sardaraz, M. Tahir, H. Bajwa, and
C. Bach, “Neural network based cloud computing platform for
bioinformatics,” in Proceedings of the 9th Annual Conference on
Long Island Systems, Applications and Technology (LISAT ’13),
pp. 1–6, IEEE, Farmingdale, NY, USA, May 2013.

[21] V. Rao and S. Rao, “Application of arti
cial neural networks
in capacity planning of cloud based IT infrastructure,” in
Proceedings of the 1st IEEE International Conference on Cloud
Computing for Emerging Markets (CCEM ’12), pp. 38–41, Ben-
galuru, India, October 2012.

[22] A. A. Huqqani, E. Schikuta, and E. Mann, “Parallelized neural
networks as a service,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN ’14), pp. 2282–2289,
Beijing, China, July 2014.

[23] R. Gu, F. Shen, and Y. Huang, “A parallel computing platform
for training large scale neural networks,” in Proceedings of the
IEEE International Conference on Big Data, pp. 376–384, IEEE,
Silicon Valley, Calif, USA, October 2013.

[24] Z. Liu, H. Li, andG.Miao, “MapReduce-based backpropagation
neural network over large scale mobile data,” in Proceedings of
the 6th International Conference onNatural Computation (ICNC
’10), pp. 1726–1730, IEEE, Yantai, China, August 2010.

[25] P. M. Anderson and A. A. Fouad, Power System Control and
Stability, IEEE, Piscataway, NJ, USA, 2nd edition, 2003.

[26] http://www.eps.ee.kth.se/personal/vanfretti/pst/Power System
Toolbox Webpage/PST.html.

[27] A. D. Rajapakse, F. Gomez, K. Nanayakkara, P. A. Crossley,
and V. V. Terzija, “Rotor angle instability prediction using post-
disturbance voltage trajectories,” IEEE Transactions on Power
Systems, vol. 25, no. 2, pp. 947–956, 2010.

[28] G. Li and S. M. Rovnyak, “Integral square generator angle index
for stability ranking and control,” IEEE Transactions on Power
Systems, vol. 20, no. 2, pp. 926–934, 2005.

[29] Y. Liu, Y. Liu, J. Liu, M. Li, Z. Ma, and G. Taylor, “High-
performance predictor for critical unstable generators based on
scalable parallelized neural networks,” Journal of Modern Power
Systems and Clean Energy, vol. 4, no. 3, pp. 414–426, 2016.

[30] N. K. Alham, Parallelizing support vector machines for scalable
image annotation [Ph.D. thesis], Brunel University, England,
UK, 2011.

[31] K. Verma and K. R. Niazi, “A coherency based generator res-
cheduling for preventive control of transient stability in power
systems,” International Journal of Electrical Power & Energy
Systems, vol. 45, no. 1, pp. 10–18, 2013.

[32] Y. Liu, J. Yang, Y. Huang, L. Xu, S. Li, and M. Qi, “MapReduce
based parallel neural networks in enabling large scale machine
learning,” Computational Intelligence and Neuroscience, vol.
2015, Article ID 297672, 13 pages, 2015.

[33] J. Benesty, “Pearson correlation coe�cient,” in Noise Reduction
in Speech Processing, Springer, Berlin, Germany, 2009.

[34] K. Meng, Z. Y. Dong, K. P. Wong, Y. Xu, and F. J. Luo,
“Speed-up the computing e�ciency of power system simulator
for engineering-based power system transient stability simula-
tions,” IET Generation, Transmission & Distribution, vol. 4, no.
5, pp. 652–661, 2010.

http://hadoop.apache.org/
http://www.eps.ee.kth.se/personal/vanfretti/pst/Power_System_Toolbox_Webpage/PST.html
http://www.eps.ee.kth.se/personal/vanfretti/pst/Power_System_Toolbox_Webpage/PST.html

Submit your manuscripts at

https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

