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All surfaces that can be described by col-
lections of equations, especially the para-
metric ones, can be treated uniformly as
implicit surfaces. The idea of numerical
implicitization makes this possible. We in-
troduce a marching method for the triangu-
lation of implicit surfaces. The method pro-
duces coherent nets of triangles, even for
sets of intersecting surface patches.
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1 Introduction

Surface triangulations are necessary in applying fi-
nite element methods for solving mechanical prob-
lems and for displaying surfaces by ray tracing or
other hidden line algorithms. A parametric surface
can be a triangulated by triangulating its (plane) ar-
ea of definition. However, the images of these tri-
angles in object space may vary unacceptably for
the application. Thus we need suitable methods of
triangulation even for parametric surfaces. Triangu-
lation algorithms for implicit surfaces are available
in the literature. [ALGN'91; BL'88; LO'87; SC'93;
WY'86]. All these methods divide the space into
suitable polyhedrons (cubes, tetrahedrons) and de-
termine the section of the given implicit surface
with the edges of these polyhedrons.
The intention of this paper is to introduce a march-
ing method to build a mesh of triangles successive-
ly by starting with a point or a prescribed polygon.
The triangulation is terminated by several bound-
ing polygons (on the given surface) or a global
bounding box. (A similar idea is used in the recent-
ly published paper [BAXU'97] on algebraic sur-
faces.) The method will be established for implicit
surfaces. With the idea of numerical implicitizat-
ion introduced in [HA'97], the triangulation is ap-
plicable to any surface for which foot points (i.e.,
points of minimal distance to the surface) can be
determined.The main advantages of the triangula-
tion presented in this paper are:

1. The data structure is simple.
2. The termination of the triangulation by pre-

scribed polygons makes it possible for the user
to generate a coherent net for intersecting sur-
face patches (Sects. 3.9, 3.11).

3. The method is applicable not only for implicit sur-
faces, but also for parametric or more general sur-
faces.

Numerical implicitization of a surface F means
that a real function f exists such that F is implic-
itly represented by f � 0, and for a point x the
function value f �x� and the gradient Ñf(x) can be
determined numerically. Usually we choose f so
that f �x� is the shortest oriented distance of point
x from the surface F and call f � 0 the normal
form of F analogously to the Hessian normal form
of a plane. Ñf(x) for the oriented distance function
is just the unit normal at the corresponding foot
point. Especially the normal form of a surface pro-
vides an easy representation of its offset surfaces:
they are the level surfaces f �x� � c. Thus, there
is even an advantage to implicitizing an implicit
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surface. The main advantage is that surfaces with
different kinds of definitions (parametric, implicit,
etc.) can be treated in a uniform way considering
intersection, blending, and at least triangulation.
The performance of numerical implicitization is
described in [HA'98]. It is based on suitable algo-
rithms for determining foot points on surfaces.

2 The triangulation algorithm

The formulation of the triangulation algorithm us-
es no special representation of the surface to be tri-

angulated. The operations depending on the repre-
sentation are hidden in the procedure surfacepoint
(defined below).
The next subsection gives a survey and basic ideas
of the algorithm. Then the procedure surfacepoint
and the data structure are introduced, and the steps
of the algorithm are explained in detail.

2.1 The idea of the algorithm

Step 0: Choose a point s in the neighborhood of the
the surface. Determine the corresponding surface
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Fig. 1. Basic notions for the triangulation algorithm

Fig. 2. Dividing (left) and uniting (right) the actual front
polygon
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point p1. Surround p1 with a regular hexagon
q2, ... , q7 in the tangent plane. With procedure sur-
facepoint, determine the points p2, ... , p7 corre-
sponding to the starting points q2, ... , q7. The tri-
angles of the surface hexagon are the first six trian-
gles of the triangulation (Figs. 1, 3).
We call the ordered array of points p2, ... , p7 the
first actual front polygon P0. If the triangulation
should be limited (not necessary for closed surfac-
es) by closed surface curves G1, G2, ... (c.f. exam-
ples below) we determine bounding front polygons
P1, P2, ... on these curves.
For special surfaces (cylinder, torus, etc.) it might
be convenient to start with a prescribed actual front
polygon first (c.f. Sect. 3).

Step 1. For every point of the actual front polygon
P0, we determine the angle of the area till to be tri-

angulated. We call these angles front angles
(Fig. 1).

Step 2. Check if any point pi of the actual front
polygon is near
± a point of P0 that is different from pi and its
neighbors or
± a point of any other front polygon Pk, k>0.

In the first case, divide the actual front polygon P0
into a smaller one and an additional front polygon
(see Figs. 2, 8a, b).
In the second case, if pi is near a point of the front
polygon Pm then unite the polygons P0, Pm to a
new and larger actual front polygon. Delete Pm.
(see Figs. 2,8d, e)

Step 3. Determine a front point pm of the actual
front polygon P0 with a minimal front angle. Sur-

a

b

c Fig. 3a±c. The first steps of the algorithm
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round pm by triangles with angles »60ë. Delete pm
from the polygon P0 and insert the new points into
the actual front polygon P0.

Step 4. Repeat steps 1±3 until the actual front poly-
gon P0 consists of only three points that generate a
new triangle. If there is another (nonempty) front
polygon left, it becomes the new actual front poly-
gon P0 and steps 1±3 are repeated. If there are no
more front polygons, then the triangulation is fin-
ished.
If the surface is not bounded, the triangulation
should be limited by bounding polygons on the
surface or a global bounding box (c.f. Sect. 3).

2.2 The procedure surfacepoint

An essential step of the triangulation algorithm is
to determine a surface point p that is near a given
point q in the vicinity of a surface. q�p need not be
exactly perpendicular to the surface. Because near-
ly all surfaces can be numerically implicitized, we
give a solution for implicit surfaces.
We start with an implicitly given surface F:f(x)=0
for which the gradient Ñf exists and is not zero for
any point of consideration and a point q in the
neighborhood of the surface.
The following procedure surfacepoint calculates a
surface point p, a normal and two tangent vectors
at p.

1. (a) u0=q
(b) repeat uk�1 :� ukÿ f uk� �

rf uk� �2rf uk� �
(Newton step for the function
gk(t):=f(uk+tÑf(uk)))
until ||uk+1�uk|| is sufficiently small.
Surface point p=uk+1.

2. The surface normal at surface point p is
n:=Ñf(p)=jj:::jj.

3. For tangent vectors we choose
t1:=(ny, �nx, 0)=jj:::jj if nx>0.5 or ny>0.5
else t1:=(�nz, 0, nx)=jj:::jj
and t2:=n�t1 where (nx, ny, nz):=n.

2.3 The data structure

For the construction of the triangles, we need a
step length dt>0 that is approximately the length
of the edges.

The points of the triangulation get current num-
bers. For any point pi we keep the following infor-
mation:

l The coordinates
l The surface normal n and tangent vectors t1, t2
such that n, t1, t2 are orthonormal
l The actual front angle if pi is an actual front
point
l The boolean variable angle_changed with
angle_changed=true if the actual front angle
was changed and has to be recalculated

the boolean variable border_point. It is set
to true if point pi is on the border of the triangula-
tion and should be ignored in further consider-
ations (recalculation of front angle, distance check
(Step 2).

The triangles are numbered consecutively. For
each triangle, we store the numbers of the vertices.
The front polygons P0, P1, ... are represented by
the integer arrays of their point numbers.

2.4 Step 0

Let s be a starting point in the vicinity of the sur-
face. The procedure surfacepoint determines the
first point p1 of the triangulation and the orthonor-
mal system n1, t11, t12. The following six points
p2, ... , p7 are the results of procedure surfacepoint
applied to

qi�2 :� p1� dtcos�ip=3�t11� dtsin�ip=3�t12;

i :� 0; :::; 5;

which are points of a regular hexagon in the tan-
gent plane at p1.
We get the first six triangles (Fig. 3a):

(p1, p2, p3), (p1, p3, p4), (p1, p4, p5), (p1, p5, p6),
(p1, p6, p7), (p1, p7, p2).

2.5 Step 1

If a point p0i of the actual front polygon
P0=(p01, p02, ... , p0N0

) has just been inserted or if
a neighbor of p0i is a new point, then it is necessary
to recalculate the actual front angle w at point p0i.
Let
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v1 :� p0; iÿ1 if i> 1 or v1 :� p0N0
if i� 1;

v2 :� p0; i�1 if i<N0 or v2 :� p01 if i�N0 and

(x1, h1, z1) the coordinates of v1, (x2, h2, z2) the co-
ordinates of v2 in the local orthonormal system n,
t1, t2 at point p0i,
w1:= polar angle of (x1, h1), w2:=polar angle of
(x2, h2). Then the front angle at point p0i is
w=w2�w1 if w2³w1 otherwise w=w2�w1+2 p.
(Fig. 3b).

2.6 Step 2

In order to prevent new triangles from overlapping
existing triangles, we check:

l The distances of pairs of points of the actual
front polygon P0. If there are points p0i, p0j, i<j,
that are neither neighbors nor neighbors of neigh-
bors and ||p0i�p0j||<dt, then the actual front poly-
gon is split into the new actual front polygon
p01, ... , p0i, p0j, ... , p0N0

) with N0�(j�i�1) points
and a further front polygon (p0i, ... , p0j) with
j�i+1 points (Figs. 2, 6). p0i and p0j must not be in-
volved in later distance checks.
l The distance of the points of the actual front
polygon P0 to points of all further front polygons
Pk, k> 0. If there are points p0iÎP0 and pmjÎPm
with ||p0i�pmj||<dt, then the polygons

P0=(p01, ... , p0N0
) and Pm=(pm1, ... , pmNm

are united with the new actual front polygon

P0=(p01, ... , p0i, pmj, ... pmNm
, pm1, ... ,

pmj, p0i, ... , p0N0
)

with N0+Nm+2 points (Fig. 2). The points p0i and
pmj appear twice! Before any further action is tak-
en, one should determine the front angles of these
points when they first appear in the polygon P0
and first surround with triangles, see step 3, that
point with the smallest angle then the second
(Fig. 8e). After this operation, the first appearance
of these two points is deleted from the actual front
polygon. The points p0i and pmj must not be in-
volved in later distance checks.

Remarks

1. For ºsimpleº surfaces, the distance check can be
omitted (see Sect. 3.1, 3.7).

2. Before applying the distance check, one should
complete points with front angles smaller than
(about) 60ë.

3. The rare case of ºbadº near points p0i, pmj that
are connected by an already triangulated area
(Fig. 4) can be detected by calculating the angle
w at point p0i described in step 1 using pmj in-
stead of v2. p0i, pmj are ºbadº near points if w
is greater than the front angle at point p0i.

4. An essential acceleration of the distance check
can be achieved by using bounding boxes of
the front polygons.

2.7 Step 3

Let p0m be a point of the actual front polygon P0
with a minimal front angle w. Complete the trian-
gulation at point p0m in the following way:

1. Determine the neighbors v1, v2 of p0m (c.f. step
1).

2. Determine the number of triangles nt to be gen-
erated.
Let nt:=trunc(3w/p)+1, Dw:=w/nt
Correct Dw for extreme cases.
If Dw<0.8 and nt>1, then nt®nt�1 and
Dw=w/nt (Fig. 5a).
If nt=1 and Dw>0.8 and ||v1�v2||>1.2 dt then
nt=2 and Dw® Dw/2 (Fig. 5b).
If w<3 and (||v1�p0m||£0.5 dt or ||v2�p0m||£0.5 dt)
then nt=1 (Fig. 5c).

3. Generate the triangles.
If nt=1, we get one new triangle: (v1, v2, p0m).
Otherwise let q0, qnt

be the orthogonal projec-
tion of v1, v2 into the tangent plane at point
p0m and let qi be the result of a rotation of
p0m+dt(q0�p0m)/||q0- p0m|| by the angle iDw
around the normal at surface point p0m for
i=1, ... , nt�1. (If a global bounding box is valid,
the chord p0mqi is truncated and the variable
border_point of the corresponding new
surface point is set to true. Border points will
not be considered any more.) Applying proce-
dure surfacepoint on qi, we get the new
points pN+i, i=1, ... , nt�1, where N is the total
number of points already existing and nt new
triangles (see Fig. 3b, c):

v1; pN�1; p0m

ÿ �
; pN�1; pN�2; p0m

ÿ �
; . . . ;

pN�ntÿ1; v2; p0m

ÿ �
:
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4. Renew the actual front polygon.
Delete point p0m and, if nt>1, insert the new
points pN�1; . . . ; pN�ntÿ1:
All boolean variables angle_changed at points
v1, v2, pN�1; . . . ; pN�ntÿ1: are set to true to en-
sure recalculation of their front angles.

3 Examples

3.1 Sphere

Triangulation of the sphere x2+y2+z2�4=0 with a
starting point (1, 1, 1) and a step length dt=0.3.
Figure 6 shows the first four actual front polygons
and the situation after the generation of 101 and
1531 triangles. The total triangulation of the sphere
involves 1544 triangles.

3.2 Cylinder

Triangulation of the cylinder x2+y2�1=0

1. With starting point (1, 0, 0) and dt=0.2 before
and after the first splitting of the actual front
polygon. The cylinder is bounded by a bounding
box (Fig. 7a±c).

2. With points on the top circle as the starting ac-
tual front polygon and points on the basic circle
as a bounding front polygon (Fig. 7d).

3.3 Torus

The triangulation of the torus

�x2� y2� z2� r2ÿ a2�2ÿ 4r2�x2� y2� � 0;

r� 1; a� 0:35

v2
v1

p 0m

v2
v1

p 0m

v1

v2

p 0m

v1

v2

p 0m

p 0m

v1
v2

p 0m

v1
v2

a b c

4

Fig. 4. Bad near points and their detection

Fig. 5a±c. Corrections for extreme cases

5a 5b 5c
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with dt=0.1 as shown in Fig. 8 with starting point
(1, 0, 0.5). We see the stages before and after the
first dividing of the front polygon P0 (Fig. 8a,
b), before and after uniting front polygon P0 with
front polygon P1 that was generated by the first di-
viding (Fig. 8c, d), and the complete triangulation.
Figure 9a shows a triangulation of a torus part
starting with a polygon on a circle as first actual
front polygon P0 and a bounding polygon on a sec-

ond circle. It also shows an entire torus where the
starting and bounding polygons coincide.

3.4 Six-peak surface

The triangulation of the rather complicated implic-
it surface

(3 x2�y2)2y2�(x2+y2)4�z3�0.001 z=0

starting hexagon

minimal front angle
b

a

c

Fig. 6a±g. Triangulation of a sphere

minimal front angle

minimal front angle

final triangulation (front view)a hole remaining on the back
f g

d

e
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actual front polygon

actual front polygon

front polygon 

first actual front polygon

of actual front polygon
before and after first division

bounded by bounding box
final triangulation

bounding front polygon

Π

Π

Π

Π Π

Π
0

0

1

1

0

0

a

b

c d

Π1

Π1 Π0

Π1Π0before and after first uniting of and

Π0

Π0

Π0
before and after first dividing of a

b

d

ec

f

Fig. 7a±d. Triangulation of a
cylinder

Fig. 8a±f. Triangulation of a torus

7a

7b

7c 7d

8a

8b

8c

8d

8e

8f
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Fig. 9a±b. Triangulation of a torus (continued)

Fig. 10. Triangulation of a six-peak surface

Fig. 11. Triangulation of a surface of genus 3

Fig. 12. Triangulation of an approximation of three horizontal cylinders

9a

9b
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Fig. 13. Triangulation of an approximation of a set of surfaces

Fig. 14. Triangulation of an approximation of a set of offset surfaces

Fig. 15. Triangulation of a sphere with six holes
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is possible without dividing and uniting. For
Fig. 10, the starting point is (0, 0, 0.1), the step
length dt=0.07, and the bounding box �1.2£x,
y£1.2, �0.3£z£1.

3.5 Surface of genus 3

Figure 11 shows a triangulation of the implicit sur-
face of genus 3 with the equation

r4
z z2ÿ 1ÿ x=rx� �2ÿ y

�
ry

ÿ �2
� �

xÿ x1� �2�y2ÿ r2
1

� �
x2� y2ÿ r2

1

ÿ �
x� x1� �2�y2ÿ r2

1

� �
� 0

and parameters rx=6, ry=3.5, rz=4, r1=1.2, x1=3.9,
starting point (0, 3, 0), and step length dt=0.3.
The triangulation consists of 7354 triangles.

3.6 Approximation of three horizontal
cylinders

Given are three horizontal cylinders
f1(x): =x2+(z�5)2�4=0, f2(x):=(y+4)2+z2�4=0, and
f3(x): =(y�4)2+z2�4=0.

The implicit surface f:=f1f2f3�c=0, c>0, is a
smooth approximation of the set of three cylinders.
Figure 12 shows a triangulation of the approxima-
tion surface for c=2287.5587, step length dt=0.5,
and bounding box �7£x, y,£7, �7£z£5. The trian-
gulation consists of 5297 triangles.

3.7 Approximation of a set
of intersecting surfaces

Given are:
1. The implicit surface

xÿ 2� �4�y4ÿ r4
1 � 0; r1 � 2

2. The parametric surface patch

x=(10 v�5, 10 u�5, 6(u�u2+v�v2)),
0£u£1, 0£v£0.8

3. The parametric surface patch

x=(6(u�u2+v�v2)�5, 10 u�5, 10 v�5),
0£u£1, 0.5£v£1.

Let f1(x)=c1, f2(x)=c2, f3(x)=c3 be the numerically
implicitized pencils of offset surfaces (c.f.
[HA'97]) of the first, second, and third surfaces.
The given surfaces fulfill the equations f1=0,
f2=0, f3=0, respectively. The implicit surface

Fig. 16. Triangulation of a set of
two intersecting surfaces
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Fig. 17: Triangulation of a blending surface of three intersecting cylinders

Fig. 18. Triangulation of a G2-continuous set of surfaces
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f(x):=f1(x) f2(x) f3(x)=c>0 is a smooth approxima-
tion of the set of the three given surfaces. Fig-
ure 13 shows the triangulation of f(x)=c for
c=0.2. The triangulation is limited by a bounding
box.
If we take the equation (f1(x)�c1) (f2(x)�c2)
(f3(x)�c3)=c>0, we get a smooth approximation
of the set of offset surfaces f1(x)=c1, f2(x)=c2,
f3(x)=c3. Figure 14 shows the case c1=c2=c3=0.4
and c=0.2.

3.8 Sphere with six holes

Figure 15 shows a triangulation of the sphere
x2+y2+z2�r2 truncated by the planes x=�a, y=�a,
z=�a with r=2, a=1.6. The six boundaries (circles)
are used for generating the first actual front poly-
gon P0 and five bounding front polygons
P1, ... , P5. The triangulation uses the step length
dt=a p/30 and consists of 2206 triangles.

3.9 Set of two intersecting surfaces

Figure 16 shows a triangulation of the two inter-
secting surfaces x4+y4+z4=16 and x2+(z�1.1)2=1.
A polygon on the intersection curve is used for
the first actual front polygons of both the surfaces.
The cylinder is truncated by a bounding box.

3.10 G2-continuous blending
of three cylinders

The implicit surface

(1��) (x2+y2�1) (x2+z2�1)

(y2+z2�1)��(9�x2�y2�z2)3=0

is a G2-continuous (i.e., curvature continuous)
blending surface of the three cylinders
x2+y2�1=0, x2+z2�1=0, y2+z2�1=0 (c.f. [LI,HO,-
HA'90]). The parameter � chosen for Fig. 17 is
0.0003.
The triangulation starts with starting point (1, 1, 1)
near the surface (c.f. step 0 of the algorithm). It is
limited by six bounding polygons P1, ... , P6 on
the curves of contact (circles) with the cylinders
using step length dt=p/20 and consisting of 8062
triangles.

3.11 G2-continuous set of surfaces

Given are:

1. The implicit surface

x� 1:2� �4� y� 1� �4ÿr4
1 � 0; r1 � 1:3;

2. The parametric surface patch

x=(10 v�5, 10 u�5, 6(u�u2+v�v2)),
0£u£1, 0£v£0.8.

Let f1(x)=c1, f2(x)=c2 be the numerically impliciti-
zed pencils of offset surfaces (c.f. [HA'97]) of the
first and second surface. (The given surfaces full
fill the equations f1=0, f2=0).
We establish two blending surfaces (c.f. [LI,HO,-
HA'90]):

1: f3 x� � :� 1ÿm� � f1 x� �
c1

f2 x� �
c2

ÿm 1ÿ f1 x� �
c1
ÿ f2 x� �

c2

� �3

� 0; 0< m< 1

(c.f. [HA'97]) is a G2-continuous blending sur-
face between the given surfaces.

2. f4(x):=(1�l) f1(x)�l(z�z4)3=0, 0< l< 1;
is a G2-continuous closure of the cylinder (top).

The parameters for Fig. 18 are: c1=1, c2=1, �=0.1,
l=0.8, z4=5.

4 Conclusion

Each of the pictures shown in this paper was pro-
duced within seconds. Thus, a fast and simple
method for the triangulation of implicit surfaces
has been introduced. Using numerical implicitizat-
ion the method is applicable to nearly arbitrary sur-
faces. Further investigation will consider the opti-
mization of triangulations produced by the given
method.
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