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Summary

Public health research often concerns relationships between exposures and correlated count 

outcomes. When counts exhibit more zeros than expected under Poisson sampling, the zero-

inflated Poisson (ZIP) model with random effects may be used. However, the latent class 

formulation of the ZIP model can make marginal inference on the sampled population 

challenging. This article presents a marginalized ZIP model with random effects to directly model 

the mean of the mixture distribution consisting of ‘susceptible’ individuals and excess zeroes, 

providing straightforward inference for overall exposure effects. Simulations evaluate finite 

sample properties, and the new methods are applied to a motivational interviewing-based safer sex 

intervention trial, designed to reduce the number of unprotected sexual acts.
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1. Introduction

Infectious disease researchers are often concerned with reducing risky sexual behavior 

among HIV-positive individuals. One measure of risky sexual behavior is the Unprotected 

Anal and Vaginal Intercourse (UAVI) count, the number of unprotected anal or vaginal 

intercourse acts with any partner over a specified period of time. The SafeTalk program was 

developed by Golin et al. (2012) to reduce the number of unprotected sexual acts through a 

multicomponent, motivational interviewing-based, safer sex intervention. Sexual behavior 
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count data can display a distribution with excess zeros (Heilbron, 1994; Ghosh and Tu, 

2009). To examine the efficacy of the SafeTalk program over time, a randomized controlled 

clinical trial collected risky sexual behavior data at baseline and up to three follow-up visits.

Several methods have been developed for modeling correlated count data with many zeros 

such as UAVI from the SafeTalk clinical trial. Building upon the zero-inflated Poisson (ZIP) 

regression model established by Mullahy (1986) and Lambert (1992), Hall (2000) extends 

the ZIP regression model to include random effects in the Poisson process. In order to 

account for overdispersion beyond the excess zeros, Yau, Wang and Lee (2003) modify the 

zero-inflated negative-binomial (ZINB) regression model to include random effects. Instead 

of using random effects to handle correlated data, Hall and Zhang (2004) employ GEE 

methodology for zero-inflated models in order to achieve population-averaged 

interpretations. For each of these zero-inflated methods, two sets of parameter estimates are 

produced, those associated with the excess zero process that models the probability of being 

non-susceptible for the disease or condition and those associated with the count process that 

models the mean count among susceptible individuals. In many applications, the two latent 

class interpretations are not clinically supported or simply not of interest, and the zero-

inflated methodology is used as a convenient modeling technique to account for excess zeros 

in a population (Mwalili, et al., 2008).

While closely related to the zero-inflated methodology, hurdle models (including zero-

altered models) specify a model for the probability of any zero in addition to the model for 

the mean of the untruncated distribution of the count data process (Mullahy, 1986; Heilbron, 

1994). Dobbie and Welsh (2001) use the zero-altered Poisson model, modified to utilize 

GEE, to account for correlated observations. Min and Agresti (2005) extend the zero-altered 

model to include random effects.

The choice between the hurdle and zero-inflated model classes has been approached from 

various angles. Much of the literature pertaining to the analysis of count data with excess 

zeros focuses on model fit, using fit statistics to provide justification of model class choice. 

Gilthorpe, et al.(2009) argue that a priori knowledge of the data-generating mechanism 

could be used to identify the class of models from which to choose, supported by statements 

in Neelon et al.(2010) and Buu et al.(2012). Applications in which all zeros are considered 

as arising from an identical process indicate a hurdle model, rather than a zero-inflated 

model, where zeros can occur from the two different processes.

While many health-related fields are implementing zero-inflated techniques, sometimes 

health researchers wish to make inference upon an entire sampled population rather than the 

latent classes modeled by ZIP methodology (Preisser, et al., 2012). Albert et al.(2014) 

contend that interpretations for features of the marginal mixture distribution have been 

generally overlooked in the zero-inflated literature, such as the overall mean count, owing to 

the fact that ZIP models and hurdle models do not produce a direct overall estimate of 

exposure effect for the marginal mean count. In particular, transformation methods, with 

variance estimation by the delta method or resampling methods, may be used to make 

inference on overall estimates of a dichotomous exposure effect for ZIP and ZINB models 
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(Albert, et al., 2014). However, such transformations can be tedious for many analysts, and 

the treatment of continuous covariates is not necessarily apparent.

Proposing the marginalized model for longitudinal binary data, Heagerty (1999) employs 

joint models by directly modeling the marginal mean and simultaneously using a linked 

random effects model to account for correlated responses. Through this joint model, 

marginalization over random effects achieves population-averaged parameters, while 

accounting for correlated measures. Extending the marginalized model approach, Lee et al.

(2011) focus on the hurdle model formulation for Poisson and negative binomial data with 

excess zeros while marginalizing over random effects for clustering. Since Lee et al. focus 

on marginalizing over the random effects, the two sets of parameters from their 

marginalized hurdle models have the same interpretations as hurdle models for independent 

responses.

Adapting the marginalized model approach to achieve inference on the marginal mean for 

independent count responses with excess zeroes, Long et al.(2014) present a new 

marginalized ZIP model that jointly models the marginal mean and excess zero process to 

produce estimates for marginal mean inference while accounting for excess zeroes. Where 

as marginalized models often average over random effects to obtain population-average 

effect estimates, the marginalized ZIP model averages over the two ZIP model processes to 

achieve overall effect estimates for expected counts, providing parameter estimates with the 

same interpretation as Poisson regression. This article builds upon both the marginalized ZIP 

model and current ZIP methods for correlated data and proposes the marginalized ZIP model 

with random effects.

Sections 2 and 3 briefly review the ZIP model with random effects from Hall (2000) and the 

marginalized ZIP model from Long et al.(2014), respectively. Section 4 proposes the 

marginalized ZIP model with random effects, which has subject-specific parameters, and 

discusses the situation where those parameters have equivalent population-averaged 

interpretations. Section 5 presents simulation study results examining the finite sample 

performance of the new model. In Section 6, we consider data from the SafeTalk 

randomized controlled clinical trial. A discussion is provided in Section 7.

2. ZIP model with random effects

Extending Lambert's ZIP model to incorporate correlated zero-inflated count data, Hall 

(2000) developed the ZIP model with random effects. Let  where K is 

the number of independent clusters and Yi = (Yi1,…, YiTi)′, where Ti is the number of 

observations for the ith cluster. Let sij = 1 if Yij is from the first process (i.e. Yij is an excess 

zero) and sij = 2 if Yij is from the second (Poisson) process; sij is unobserved when Yij = 0. 

Then

(1)
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Where . The notation  indicates that the Poisson mean is conditional 

on the random effect bi. The log-linear and logistic regression models are

(2)

where , and Zij and Xij are the covariate vectors for the logistic and 

Poisson processes, respectively. Note that γ and β are latent class parameters, providing 

separate inference for the excess zero and Poisson processes, respectively. The log-

likelihood can be expressed

where Ω = (γ′, β′, σ), ϕ is the standard normal probability density and

(3)

where uij = I(yij = 0). Using the EM algorithm framework that Lambert (1992) proposed, 

Hall fits this ZIP model with random effects with the EM algorithm with Gaussian 

quadrature. Generally, the overall conditional mean  will depend on 

γ, β and bi through a complicated function that does not permit easy and direct inference for 

overall effects, here defined as ratios of such means when a single covariate is allowed to 

vary. Although Hall (2000) used (2) to account for correlation within the Poisson process 

only, others have utilized correlated random effects in both processes of the ZIP and hurdle 

models (Dobbie and Welsh, 2002; Min and Agresti, 2005; Ghosh and Tu, 2009; Neelon et 

al., 2010).

3. Marginalized ZIP model for independent responses

Rather than jointly modeling the excess zero probability and the latent class Poisson mean 

μi, Long, et al.(2014) instead propose the marginalized ZIP regression model, which directly 

models the marginal mean of the mixture distribution in addition to the zero-inflation 

process. For independent outcomes Yi, the marginalized ZIP model is given by

(4)
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where νi is the marginal mean, that is νi ≡ E(Yi). The elements of γ provide inference on the 

probability of an excess zero, the same interpretations as ZIP models. However, the 

modeling of the marginal mean νi allows log-incidence density rate interpretations of the 

elements of α, providing the same interpretation as in Poisson regression. The marginalized 

ZIP model utilizes the ZIP likelihood framework and the concept of marginalized models to 

marginalized over the two processes. Specifically, the Poisson process mean is redefined as 

a general function of model parameters in (4). Solving νi = (1 − ψi)μi, with substitution for 

(4), provides

This definition of μi reparameterizes the ZIP model, allowing for inference on the marginal 

mean. Using this redefined μi,  and the ZIP likelihood, the marginalized 

ZIP likelihood for (γ,α) is derived to be

Long et al.(2014) note that analysts may fit this marginalized ZIP model in SAS NLMIXED, 

providing sample code as well as details for robust (empirical) standard error estimation. 

Although derived from a reparameterization of the ZIP model, the marginalized ZIP 

parameters yield direct inference on the marginal mean rather than the latent classes and 

gives statistical analysts a new class of models to address marginal exposure effects.

4. Marginalized ZIP model with random effects

4.1. Subject-specific marginalized ZIP model

Building upon both Hall (2000) and Long et al.(2014), we present a marginalized adaptation 

of the ZIP model with random effects for repeated measures data. Rather than modeling the 

conditional Poisson process mean  as in (2), the marginalized ZIP model for clustered 

data directly models the overall subject-specific mean  through

(5)

where  and bi = (ci, di)′ follows the multivariate normal distribution with 

mean zero and covariance matrix . Above, Ni represents an off-set 

variable for situations where the incidence density νi/Ni is of interest. To account for 

clustering within each process, we propose correlated random effects ci and di and 
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corresponding column design vectors w1ij, w2ij, usually subsets of  and , respectively. 

For many applications and focus of our subsequent simulation study and example, random 

intercepts may adequately model clustering. Note that for independent responses, this 

marginalized ZIP model with random effects reduces to the Long et al.(2014) marginalized 

ZIP model.

Because  is modeled directly in this marginalized ZIP with random effects model, the kth 

parameter of α, αk, is interpreted as the subject-specific log-incidence density ratio (IDR) for 

the kth covariate; that is, for a one-unit increase in corresponding covariate xk, exp(αk) is the 

amount by which the mean  for a particular subject is multiplied, which is the same 

interpretation as in a Poisson random effects model. The direct modeling of  rather than 

the Poisson process mean  in Section 2 provides marginal mean inference often of interest 

to researchers.

For θ = (γ′, α′, Σ)′, the log-likelihood for this marginalized ZIP model with random effects 

can be written

(6)

where Φ is the multivariate normal density (0, Σ). Augmenting the ZIP likelihood presented 

in (3) similar to the Long et al.(2014) reparameterization, the marginalized ZIP likelihood 

redefines , where  is not necessarily a linear function of covariates. 

Following from the ZIP likelihood specification in (3),

(7)

Using (5) and the knowledge , solving for  gives

(8)

Rather than linking a linear function of covariates to the Poisson latent class mean, the form 

of  is derived to express a linear function of covariates on the marginal mean . Through 

substitution of (8) into (7), this subject-specific marginalized ZIP model with random effects 

may be fit using SAS NLMIXED (SAS Institute Inc, 2013), which employs an adaptive 

Gauss-Hermite quadrature to approximate the integral of the likelihood (6) over the random 

effects. For the simulation study, 25 quadrature points were used, and this was increased to 

50 quadrature points for the analysis of the SafeTalk efficacy trial (Lesaffre and Spiessens, 

2001). Additionally, SAS NLMIXED can provide robust (empirical) standard error 
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estimates of the parameters, through the likelihood-based ‘sandwich’ estimator, to address 

model misspecification (White, 1982).

4.2. Population-averaged marginalized ZIP model for clustered data

The primary objective in the marginalized models literature (e.g. Heagerty, 1999) is to 

obtain parameters with marginalized (population-averaged) interpretations rather than 

parameters with subject-specific interpretations. In Section 4.1, we described the 

marginalized ZIP model with random effects, where the ‘marginalization’ is over the two 

latent classes of the ZIP model to achieve overall exposure effect estimates. However, 

because the marginalized ZIP with random effects models , it yields 

parameters with subject-specific interpretations.

For data with repeated measures, statistical analysts usually choose between methods 

employing subject-specific (SS) parameters (mixed models) and methods having population-

average (PA) parameters (GEE), though in a few notable cases (e.g. the Gaussian mixed 

model) parameters have both interpretations. However, Ritz and Spiegelman (2004) and 

Young et al. (2007) investigate the exact nature of the relationship between SS and PA 

parameters for Poisson count data, using well-established methods (e.g. McCulloch and 

Searle, 2001). For models with log links and normally distributed random effects, the 

mathematical relationships between SS and PA parameters can be quite straightforward.

To explore the connection between SS and PA parameters for the marginalized ZIP model 

with random effects, we restate model (5) as

where the SS superscript indicates that subject-specific interpretations are appropriate for 

these parameters. Then

and

(9)

where di ∼ N(0, Σ22). From (9), defining ,
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Now consider the fully marginal model (10), where PA denotes population-averaged 

parameters

(10)

The PA parameters in (10) are multiplicatively offset from the SS parameters by the 

function  of the (ij)-th row of the model matrix for the random effects 

and respective covariance matrix. Thus, for all fixed effect covariates that do not have 

corresponding random effects, the respective parameters in αSS are equivalent to 

corresponding parameters in αPA. Consider the model with only a random intercept 

 and ; then

where  and α˜SS contain all the covariates and corresponding parameters excluding the 

intercept. In this situation, α˜SS also have population-averaged interpretations. While 

analysts may choose to include further normal random effects, such as a random slope over 

time, all parameters without a corresponding random effect have population-averaged as 

well as subject-specific interpretations because of the log link and normal random effects.

5. Simulation study

To examine the properties of the marginalized ZIP model with random effects, a simulation 

study was performed using SAS 9.3 NLMIXED. Let Yij be a zero-inflated Poisson outcome 

for the ith participant at time j, and let gi be a time-constant exposure variable of interest for 

each subject. The simulation scenario is motivated by the constant treatment assignment in 

the SafeTalk clinical trial. In the SafeTalk motivating example, Yij is the UAVI count 

outcome and gi is an indicator of randomization to the SafeTalk intervention group. For this 

simulation study, three time points were used with I(j = 2) and I(j = 3) being the indicators 

of whether an observation occurs at follow-up time 2 or 3. Data were simulated using the 

marginalized ZIP model with random effects given by

(11)

where ci, di are bivariate normal random intercepts with variances  and correlation ρ 

used to account for correlated outcomes for the ith participant. For a fixed sample, gi was 

generated from a Bernoulli(0.5) and (ci, di) were generated from a bivariate normal 
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distribution with  and ρ = −0.25. In most scenarios, we expect that the probability 

of an excess zero will be negatively correlated with the marginal mean as in our motivating 

example.

The parameters  and  are calculated with the specified values of γ and α. Using the first 

model part in equation (11) and , excess zeros and Poisson counts were 

randomly generated. Define  and . These simulations 

were performed for 100, 300, 500 and 1000 participants, respectively, with γ, α vectors 

chosen such that ,  for gi = 0 and 

,  for gi = 1. These marginal mean 

specifications correspond to IDR values of (0.97,0.97) in the unexposed group and 

(0.75,0.65) in the exposed group across follow-up time 2 and 3. Across the combinations of 

gi and time j, the total percent of zero counts ranged from 44% to 69%. For each cluster size, 

1,000 simulations were attempted, but the SAS NLMIXED procedure failed to converge for 

5% iterations. Others have reported difficulties in convergence of ZIP models with random 

effects (Min and Agresti, 2005).

Table 1 presents the raw and percent relative median bias, simulation standard deviation and 

median standard errors (model-based and robust) of each estimate from the marginalized 

ZIP model. The vectors of parameters to simulate the above values of ψij and νij are γ = 

{−0.2007, 0.2007, 0.8197, 0.2007, 0.8197} and α = {0.5596, -0.0290, -0.2877, -0.0290, 

−0.4263}.

The raw median bias is small for each cluster size K, and both the model-based and robust 

standard errors are close to the standard deviation of the parameter estimates, indicating 

adequate estimation of the variability in parameter estimates. The largest percent relative 

bias in estimating α occur for α0, α1 and α3. The parameters α1 and α3 are the log-IDR for 

times 2 and 3 relative to time 1 for the unexposed groups and have true values very close to 

0, inflating the relative bias. For K = 500, the true α3 is −0.0290 and the median bias is 

0.00638, yielding a percent relative median bias of -22.0%. Despite these inflated relative 

median biases for true parameters near zero, the marginalized ZIP with random effects 

model has low bias across the simulation scenarios.

In addition to the marginalized ZIP model with random effects, both a Poisson population-

average model with GEE estimation and a Poisson random intercept model were fit in SAS 

9.3 GENMOD and NLMIXED, respectively, for comparison in estimating the population-

average IDR. The model for the Poisson population-average model is

(12)

with unstructured covariance and model-based standard errors scaled with Pearson's chi-

square for potential overdispersion, as well as empirical (robust) standard errors; (11) 

expresses the model for the Poisson random intercept model with  representing the 

Poisson mean E(Yij|di). As discussed in Section 4.2, the parameters (α1, α2, α3, α4) from 
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(11) have population-average interpretations (since intercept is the only random effect), so 

the parameters from the Poisson population-average model with GEE estimation in (12) are 

estimating the same quantities. For time 2, Table 2 presents the relative median bias in 

estimating both the log-IDR and IDR corresponding to {α1, α2, α3, α4} for all three models, 

as well as the 95% Wald-type coverage probabilities and power.

Note that the marginalized ZIP model with random effects has lower percent relative median 

bias for most scenarios, as well as appropriate coverage. With the model-based standard 

errors in the Poisson random intercept model, the coverage probabilities are much less than 

the expected 0.95, indicating these standard errors are underestimating the extra-Poisson 

variability in the ZIP data due to the excess zeros. The robust standard errors for both 

Poisson models provide appropriate coverage of the IDR, but the marginalized ZIP model 

has increased power to detect significance in IDR over both Poisson methods, particularly 

for α2, α4 where parameter estimates deviate further from 0. Using the Pearson-scaled 

model-based standard errors, the Poisson PA models have very similar absolute bias in 

many scenarios and only slightly less coverage than the marginalized ZIP model, but there is 

a marked difference in power with the Poisson PA model having significantly less ability to 

detect differences in mean IDR.

6. Analysis of the SafeTalk efficacy trial

In safer sex counseling for people living with HIV/AIDS, an outcome of interest is 

Unprotected Anal or Vaginal Intercourse acts (UAVI), defined as the number of unprotected 

sexual acts with any partner. Researchers developed the motivational interview-based 

intervention SafeTalk to reduce the number of unprotected sexual acts (Golin et al., 2007; 

Golin et al., 2010; Golin et al., 2012). For the clinical trial examining SafeTalk efficacy, 

participants were randomized to receive either SafeTalk intervention counseling or a control 

nutritional counseling. These participants completed questionnaires about both nutritional 

and sexual behavior at baseline as well as at three follow-up visits spaced at four-month 

intervals. After data cleaning, the sample sizes at each time point are 476, 399, 363 and 301. 

The overall percentage of zero UAVI counts across both treatment groups and all visits was 

83.1%.

While some researchers may choose to focus on the latent class interpretations provided by 

the ZIP model with random effects, our collaborative researchers are interested in 

quantifying the effect of the SafeTalk intervention over time among the entire randomized 

population, leading to a choice of marginal mean inference provided by the marginalized 

ZIP model with random effects. In order to evaluate the efficacy of the SafeTalk 

intervention over time, the marginalized ZIP with random effects is fit to the UAVI counts 

at all four time points. The model of interest is
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where ci, di are bivariate normal random intercepts with covariance , j is 

the visit number, gi is an indicator of randomization to SafeTalk intervention group, and xi1 

and xi2 are fixed effects for study site.

Using SAS NLMIXED (for which the code is presented in the Appendix), the SafeTalk 

analysis results are presented in Table 3. The contrast testing treatment effect over time H0 : 

(α4, α6, α8)′ = (0, 0,0)′ is highly significant (Robust-Wald p = 0.0003), indicating that the 

SafeTalk intervention affects UAVI count. At the second follow-up visit, for which the IDR 

(and 95% Wald-type robust confidence interval) is 0.542 (0.260, 1.128), a participant 

randomized to SafeTalk has 46% fewer unprotected sexual acts with any partner than he or 

she would have if randomized to the nutritional intervention. Because the only random 

effect for the above model is a random intercept, the parameters associated with treatment 

effect from this analysis additionally have population-averaged interpretations. Thus, at the 

second follow-up visit, those participants randomized to SafeTalk had on average 46% 

fewer unprotected sexual acts with any partner than the participants randomized to the 

nutritional intervention. The SafeTalk intervention appears to have the largest effect on 

UAVI count at the first follow-up survey, where the estimated IDR (and 95% Wald-type 

robust confidence interval) of treatment effect is 0.280 (0.145, 0.542). By the third follow-

up survey, we observe less reduction in UAVI count due to SafeTalk, with an IDR of 0.769 

(0.307, 1.928). Figure 1 displays the predicted mean UAVI over time, as well as the IDR of 

treatment at each time point. The SafeTalk intervention appears to have a significant effect 

in reducing UAVI counts at the first follow-up visit, but the difference between the two 

treatment groups is reduced at each subsequent follow-up visit. From Figure 1 and Table 3, 

note that the nutritional control arm has a significant reduction in predicted UAVI count at 

the final visit, numerically represented through α7. Additionally, note that the correlation 

between the random intercepts, estimated to be -0.79, is highly significant, indicating those 

participants with higher expected UAVI counts have lower odds of excess zero latent class 

membership. In fact, if independence of the random intercepts is assumed, individual 

parameter estimates from the marginalized ZIP model differ as much as 40%, leading us to 

recommend the inclusion of correlated random effects in the two processes.

When the SafeTalk data are examined using a Poisson population-average model with GEE 

estimation and empirical standard errors, the Wald contrast with 3 degrees of freedom 

testing treatment effect is non-significant (p=0.8259). At the second follow-up, the GEE 

model estimates the IDR to be 0.768 with 95% Wald-type model-based and empirical 

confidence intervals (0.391, 1.508) and (0.403, 1.466), respectively. Using the Poisson 

random intercept model, the treatment efficacy contrast is significant when using the model-

based standard errors (p=0.0303) but non-significant when robust standard errors are used 

(p=0.8446). At the second follow-up, the random intercept model estimates the IDR to be 

0.711 with model-based and robust 95% Wald-type confidence intervals of (0.556, 0.908) 

and (0.336, 1.502). Because the simulations in Section 5 suggest that the model-based 

standard errors in the Poisson random intercept model underestimate the variability due to 

the excess zero process, the conclusions of the robust methods are preferred.
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To highlight the differences between the proposed marginalized ZIP model with random 

effects and the ZIP model with random effects from Section 2, the latter was also fit to the 

SafeTalk data, given by

where di ∼ N(0, σ2). For this model, the contrast of treatment effect is highly significant 

(p<0.0001) with β4 = −0.96, β6 = −0.89, and β8 = −0.42. In contrast to the marginalized ZIP 

model with random effects and the Poisson models which model the marginal mean directly, 

these traditional ZIP parameter estimates are the log-IDR for treatment among the non-

excess zero latent class. Among the non-excess zero latent class, those participants 

randomized to SafeTalk had 62%, 59% and 35% fewer UAVI acts than those participants 

randomized to control at the first, second and third follow-up visits, respectively.

7. Conclusion

Motivated by the aim to estimate overall exposure effects for correlated count observations 

with excess zeroes, we have proposed a marginalized ZIP model with random effects. Since 

the overall subject-specific mean is modeled directly, the parameters from this new model 

allow subject-specific inference rather than inference on the latent class components of the 

subject-specific ZIP model. Additionally, when the log link is used for the marginal mean 

and normal random effects are used, those parameters without corresponding random effects 

have both subject-specific and population-average interpretations.

The new marginalized ZIP model with random effects was applied to repeated measures 

data from a clinical trial to reduce risky sexual behavior among HIV-positive individuals. 

We observed that the robust standard errors for intervention effect parameters were notably 

larger than their model-based counterparts, suggesting the counts are overdispersed. Future 

research could extend the marginalized ZIP model for random effects to handle 

overdispersion as well as excess zeros.

In the SafeTalk data, missing at random (MAR) is assumed, meaning that the probability of 

attending a visit and having UAVI recorded depends only on observed data. There is 

evidence that the assumption of missing completely at random (MCAR) is not valid because 

those participants with any risky baseline behavior have 54.1% retention at the final visit 

versus 65.6% retention in those with non-risky baseline behavior. Maximum likelihood 

estimation of the marginalized ZIP with random effects model described in Section 4.1 

provides valid inference under MAR when the model is correctly specified (Ibrahim and 

Molenberghs, 2009).

In the simulation study, we experienced convergence issues similar to ZIP model instability 

occasionally associated with those effects in the excess zero portion of ZIP models (Min and 

Agresti, 2005). Future research includes exploring other optimization techniques with more 

stability for zero-inflated models, such as the Bayesian methods proposed in Neelon et al.
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(2010). In addition to other computational strategies, the relatively small number of 

simulation iterations with failed NLMIXED convergence could possibly be lessened by 

reducing the complexity of the excess zero model. In marginalized ZIP regression, the 

excess zero model parameters are considered nuisance parameters, as the primary 

hypotheses concern the marginalized mean. However, as unintended constraints on the 

marginal means can be introduced by the omission of covariates in the excess zero model, 

the reduction of the excess zero model should be carefully considered and rigorously 

justified.

In contrast to exclusive reliance on fit statistics or conjectures about data-generating 

mechanisms as a basis for selecting the type of count regression model for handling data 

with many zeros, we affirm that the choice between marginalized ZIP, ZIP and hurdle model 

classes should be motivated by the interpretations desired. When inference upon the overall 

marginal mean is desired, the marginalized ZIP model is preferred. The a priori choice of 

model class for zero-inflation is analogous to the a priori choice between PA and SS models 

for longitudinal data (Heagerty, 1999) where the interpretations of regressions parameters 

differ in models with non-identity link functions.

Rather than marginalizing over the two processes of the ZIP model, the ZIP model with 

random effects could be marginalized over the random effects, similar to the marginalized 

hurdle model in Lee et al. (2011). Additionally, one could marginalize over both the random 

effects and two ZIP processes to achieve a ‘doubly’ marginalized ZIP model. As shown in 

Section 4.2, the marginalized ZIP model can be used not only for subject-specific inference 

on overall conditional effects but also for population-average inference for overall effects in 

many problems.
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8. Appendix

The following SAS NLMIXED code was used for the SafeTalk motivating example.

proc nlmixed data=safetalk seed=31415;

  parms b0 0 b1 0 b2 0 b3 0 b4 0 b5 0 b6 0 b7 0 b8 0

    a0 0 a1 0 a2 0 a3 0 a4 0 a5 0 a6 0 a7 0 a8 0

    sigma1 1 sigma12 0 sigma2 1;

   /* linear predictor for the zero-inflation probability */
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   logit_psi = a0 + a1*site2 + a2*site3 + a3*v2 + a4*v2*st + a5*v3 + a6*v3*st

                  + a7*v4 + a8*v4*st + c1;

   *logit(\psi)=Z\gamma + c;

   /* useful functions of \psi */

   psi1 = exp(logit_psi)/(1+exp(logit_psi));

   *\psi = exp(Z\gamma+c)/(1+exp(Z\gamma+c));

   psi2 = 1/(1+exp(logit_psi));

   *1−\psi = (1+exp(Z\gamma+c))^−1;

   /* Overall mean \nu */

   log_nu = b0 + b1*site2 + b2*site3 + b3*v2 + b4*v2*st + b5*v3 + b6*v3*st

               + b7*v4 + b8*v4*st + d1;

   delta = log(psi2**(−1)) + log_nu;

   /* Build the mZIP + RE log likelihood */

   if outcome=0 then

        ll = log(psi1 + psi2*(exp(−exp(delta))));

   else ll = log(psi2) − exp(delta) + outcome*(delta) − lgamma(outcome + 1);

   model outcome ∼ general(ll);

   random c1 d1∼normal([0,0],[sigma1,sigma12,sigma2]) SUBJECT=urn;

   contrast “TX” b4, b6, b8;

run;

References

Albert JM, Wang W, Nelson S. Estimating overall exposure effects for zero-inflated regression models 
with application to dental caries. Statistical Methods in Medical Research. 2014; 23(3):257–278. 
[PubMed: 21908419] 

Buu A, Li R, Tan X, Zucker RA. Statistical models for longitudinal zero-inflated count data with 
applications to the substance abuse field. Statistics in Medicine. 2012; 31(29):4074–4086. [PubMed: 
22826194] 

Long et al. Page 14

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dobbie M, Welsh A. Theory & Methods: Modelling correlated zero-inflated count data. Australian & 
New Zealand Journal of Statistics. 2001; 43(4):431–444.

Ghosh P, Tu W. Assessing sexual attitudes and behaviors of young women: a joint model with 
nonlinear time effects, time varying covariates, and dropouts. Journal of the American Statistical 
Association. 2009; 104(486):474–485.

Gilthorpe M, Frydenberg M, Cheng Y, Baelum V. Modelling count data with excessive zeros: The 
need for class prediction in zero-inflated models and the issue of data generation in choosing 
between zero-inflated and generic mixture models for dental caries data. Statistics in Medicine. 
2009; 28(28):3539–3553. [PubMed: 19902494] 

Golin C, Davis R, Przybyla S, Fowler B, Parker S, Earp J, Quinlivan E, Kalichman S, Patel S, 
Grodensky C. Safetalk, a multicomponent, motivational interviewing-based, safer sex counseling 
program for people living with HIV/AIDS: A qualitative assessment of patients' views. AIDS 
Patient Care and STDs. 2010; 24(4):237–245. [PubMed: 20377435] 

Golin C, Earp J, Grodensky C, Patel S, Suchindran C, Parikh M, Kalichman S, Patterson K, Swygard 
H, Quinlivan E, Amola K, Chariyeva Z, Groves J. Longitudinal effects of safetalk, a motivational 
interviewing-based program to improve safer sex practices among people living with hiv/aids. 
AIDS and Behavior. 2012; 16(5):1182–1191. [PubMed: 21964975] 

Golin C, Patel S, Tiller K, Quinlivan E, Grodensky C, Boland M. Start talking about risks: 
development of a motivational interviewing-based safer sex program for people living with HIV. 
AIDS and Behavior. 2007; 11:72–83.

Hall D, Zhang Z. Marginal models for zero inflated clustered data. Statistical Modelling. 2004; 4(3):
161–180.

Hall DB. Zero-inflated Poisson and binomial regression with random effects: A case study. 
Biometrics. 2000; 56:1030–1039. [PubMed: 11129458] 

Heagerty P. Marginally specified logistic-normal models for longitudinal binary data. Biometrics. 
1999; 55(3):688–698. [PubMed: 11314994] 

Heilbron D. Zero-altered and other regression models for count data with added zeros. Biometrical 
Journal. 1994; 36:531–547.

Ibrahim JG, Molenberghs G. Missing data methods in longitudinal studies: a review. Test. 2009; 18(1):
1–43. [PubMed: 21218187] 

Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing. 
Technometrics. 1992; 34:1–14.

Lee K, Joo Y, Song J, Harper D. Analysis of zero-inflated clustered count data: A marginalized model 
approach. Computational Statistics & Data Analysis. 2011; 55(1):824–837.

Lesaffre E, Spiessens B. On the effect of the number of quadrature points in a logistic random effects 
model: an example. Journal of the Royal Statistical Society: Series C (Applied Statistics). 2001; 
50(3):325–335.

Long, DL. Ph D thesis. Department of Biostatistics, University of North Carolina; Chapel Hill: 2013. 
Marginalized Zero-inflated Poisson Regression. 

Long DL, Preisser JS, Herring AH, Golin CE. A marginalized zero-inflated poisson regression model 
with overall exposure effects. Statistics in Medicine. 2014; 33(29):5151–5165. [PubMed: 
25220537] 

McCulloch, C.; Searle, S. Generalized, Linear, and Mixed Models. Wiley; 2001. 

Min Y, Agresti A. Random effect models for repeated measures of zero-inflated count data. Statistical 
Modelling. 2005; 5:1–19.

Mullahy J. Specification and testing of some modified count data models. Journal of Econometrics. 
1986; 33:341–365.

Mwalili SM, Lesaffre E, Declerck D. The zero-inflated negative binomial regression model with 
correction for misclassification: an example in caries research. Statistical Methods in Medical 
Research. 2008; 17(2):123–139. [PubMed: 17698937] 

Neelon B, O'Malley A, Normand S. A Bayesian model for repeated measures zero-inflated count data 
with application to outpatient psychiatric service use. Statistical Modelling. 2010; 10(4):421–439. 
[PubMed: 21339863] 

Long et al. Page 15

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Preisser JS, Stamm JW, Long DL, Kincade ME. Review and recommendations for zero-inflated count 
regression modeling of dental caries indices in epidemiological studies. Caries Research. 2012; 
46(4):413–423. [PubMed: 22710271] 

Ritz J, Spiegelman D. Equivalence of conditional and marginal regression models for clustered and 
longitudinal data. Statistical Methods in Medical Research. 2004; 13(4):309–323.

SAS Institute Inc. SAS/STAT Software, The NLMIXED Procedure Cary, NC Version 9.3. 2013. 
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/
viewer.htm#nlmixed_toc.htm

White H. Maximum likelihood estimation of misspecified models. Econometrica. 1982; 50(1):1–25.

Yau K, Wang K, Lee A. Zero-inflated negative binomial mixed regression modeling of over-dispersed 
count data with extra zeros. Biometrical Journal. 2003; 45(4):437–452.

Young M, Preisser J, Qaqish B, Wolfson M. Comparison of subject-specific and population averaged 
models for count data from cluster-unit intervention trials. Statistical Methods in Medical 
Research. 2007; 16(2):167–184. [PubMed: 17484299] 

Long et al. Page 16

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#nlmixed_toc.htm
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#nlmixed_toc.htm


Fig 1. 
Marginalized ZIP with random effects (ci = di = 0) predicted UAVI means over time. 

Follow-up visits (FU1, FU2, FU3) are at four, eight and twelve months post-randomization.

Long et al. Page 17

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Long et al. Page 18

T
ab

le
 1

M
ar

gi
na

liz
ed

 Z
IP

 w
it

h 
R

E
 P

er
fo

rm
an

ce
 w

it
h 

1,
00

0 
Si

m
ul

at
io

ns
 a

nd
 V

ar
yi

ng
 N

um
be

r 
of

 S
ub

je
ct

s

P
ar

am
et

er
K

R
aw

 M
ed

ia
n 

B
ia

s
P

er
ce

nt
 R

el
at

iv
e 

M
ed

ia
n 

B
ia

s
Si

m
ul

at
io

n 
St

d 
D

ev
M

ed
ia

n 
St

d 
E

rr
or

M
ed

ia
n 

R
ob

us
t 

St
d 

E
rr

or

γ 0
10

0
-0

.0
03

1.
59

0.
20

61
0.

25
18

0.
25

21

30
0

-0
.0

35
17

.2
6

0.
15

10
0.

15
54

0.
15

57

50
0

-0
.0

05
2.

68
0.

10
57

0.
11

59
0.

11
55

10
00

0.
01

3
-6

.3
4

0.
07

77
0.

08
70

0.
08

70

γ 1
10

0
0.

00
6

3.
19

0.
33

69
0.

38
88

0.
36

56

30
0

-0
.0

17
-8

.5
1

0.
23

91
0.

23
79

0.
23

62

50
0

-0
.0

11
-5

.5
0

0.
17

27
0.

17
98

0.
17

47

10
00

-0
.0

04
-2

.0
8

0.
13

40
0.

13
30

0.
13

24

γ 2
10

0
-0

.0
26

-3
.1

8
0.

42
13

0.
48

08
0.

47
44

30
0

0.
01

1
1.

30
0.

28
86

0.
29

24
0.

29
04

50
0

0.
00

0
-0

.0
4

0.
20

68
0.

22
02

0.
21

79

10
00

0.
00

1
0.

11
0.

16
06

0.
16

28
0.

16
27

γ 3
10

0
-0

.0
10

-4
.8

3
0.

36
04

0.
38

57
0.

36
67

30
0

0.
00

0
-0

.1
8

0.
25

14
0.

23
84

0.
23

68

50
0

-0
.0

12
-5

.8
9

0.
16

95
0.

17
92

0.
17

30

10
00

-0
.0

09
-4

.5
9

0.
13

33
0.

13
29

0.
13

30

γ 4
10

0
0.

00
3

0.
33

0.
41

35
0.

48
68

0.
47

75

30
0

0.
00

0
0.

02
0.

30
56

0.
29

44
0.

29
41

50
0

-0
.0

03
-0

.3
5

0.
20

69
0.

22
20

0.
21

93

10
00

-0
.0

02
-0

.2
0

0.
16

64
0.

16
42

0.
16

40

α
0

10
0

0.
06

4
11

.4
9

0.
12

64
0.

16
85

0.
16

57

30
0

0.
12

4
22

.0
9

0.
09

76
0.

10
80

0.
10

74

50
0

0.
07

7
13

.7
1

0.
06

61
0.

08
03

0.
07

82

10
00

0.
05

6
10

.0
8

0.
05

30
0.

06
17

0.
06

13

α
1

10
0

-0
.0

03
9.

19
0.

16
61

0.
17

65
0.

15
82

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Long et al. Page 19

P
ar

am
et

er
K

R
aw

 M
ed

ia
n 

B
ia

s
P

er
ce

nt
 R

el
at

iv
e 

M
ed

ia
n 

B
ia

s
Si

m
ul

at
io

n 
St

d 
D

ev
M

ed
ia

n 
St

d 
E

rr
or

M
ed

ia
n 

R
ob

us
t 

St
d 

E
rr

or

30
0

-0
.0

02
5.

39
0.

11
59

0.
12

07
0.

12
00

50
0

0.
00

5
-1

6.
51

0.
08

12
0.

08
47

0.
08

20

10
00

-0
.0

03
10

.0
1

0.
06

80
0.

06
55

0.
06

52

α
2

10
0

0.
00

9
-3

.0
3

0.
25

30
0.

27
99

0.
26

32

30
0

0.
00

5
-1

.7
9

0.
18

26
0.

18
23

0.
18

22

50
0

-0
.0

04
1.

27
0.

12
51

0.
13

02
0.

12
87

10
00

0.
00

3
-0

.8
8

0.
09

97
0.

09
99

0.
09

97

α
3

10
0

0.
00

0
0.

32
0.

16
27

0.
17

26
0.

15
53

30
0

-0
.0

05
16

.8
5

0.
12

43
0.

12
01

0.
11

97

50
0

0.
00

6
-2

2.
00

0.
08

47
0.

08
47

0.
08

15

10
00

0.
00

4
-1

3.
75

0.
06

75
0.

06
54

0.
06

52

α
4

10
0

0.
00

7
-1

.6
4

0.
26

17
0.

28
23

0.
26

40

30
0

0.
00

1
-0

.2
2

0.
18

63
0.

18
48

0.
18

44

50
0

-0
.0

07
1.

58
0.

12
44

0.
13

24
0.

12
95

10
00

-0
.0

01
0.

30
0.

09
87

0.
10

06
0.

10
05

T
ru

e 
pa

ra
m

et
er

 v
al

ue
s:

 γ
 =

 {
−

0.
20

07
, 0

.2
00

7,
 0

.8
19

7,
 0

.2
00

7,
 0

.8
19

7}

α
 =

 {
0.

55
96

, -
0.

02
90

, -
0.

28
77

, -
0.

02
90

, -
0.

42
63

}

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Long et al. Page 20

T
ab

le
 2

P
er

ce
nt

 R
el

at
iv

e 
M

ed
ia

n 
B

ia
s,

 C
ov

er
ag

e 
&

 P
ow

er
 f

or
 E

st
im

at
in

g 
ID

R
 a

nd
 lo

g-
ID

R

P
er

ce
nt

 R
el

at
iv

e 
M

ed
ia

n 
B

ia
s 

(I
D

R
)†

P
er

ce
nt

 R
el

at
iv

e 
M

ed
ia

n 
B

ia
s 

(L
og

-
ID

R
)

M
od

el
-B

as
ed

 C
ov

er
ag

e
M

od
el

-B
as

ed
 P

ow
er

R
ob

us
t 

C
ov

er
ag

e
R

ob
us

t 
P

ow
er

α
1

10
0

m
Z

IP
-0

.2
7

9.
19

0.
95

6
0.

05
4

0.
94

9
0.

05
8

Po
is

so
n 

PA
-1

.8
4

64
.0

1
0.

94
4

0.
05

8
0.

92
8

0.
07

4

Po
is

so
n 

R
I

-0
.7

7
26

.7
2

0.
50

8
0.

51
5

0.
93

6
0.

06
5

30
0

m
Z

IP
-0

.1
6

1.
30

0.
96

4
0.

04
4

0.
96

1
0.

04
7

Po
is

so
n 

PA
-0

.7
4

25
.6

9
0.

95
2

0.
04

7
0.

94
0

0.
07

1

Po
is

so
n 

R
I

0.
99

-3
4.

04
0.

50
8

0.
47

6
0.

93
3

0.
07

1

50
0

m
Z

IP
0.

48
-1

6.
51

0.
95

5
0.

05
7

0.
95

2
0.

06
0

Po
is

so
n 

PA
-0

.0
8

2.
66

0.
96

1
0.

04
9

0.
93

9
0.

07
1

Po
is

so
n 

R
I

1.
39

-4
7.

56
0.

52
0

0.
46

6
0.

94
6

0.
05

3

10
00

m
Z

IP
-0

.2
9

10
.0

1
0.

93
5

0.
08

8
0.

93
8

0.
08

8

Po
is

so
n 

PA
-0

.1
7

5.
83

0.
96

1
0.

04
0

0.
94

9
0.

05
9

Po
is

so
n 

R
I

0.
91

-3
1.

18
0.

50
6

0.
52

5
0.

94
3

0.
05

7

α
2

10
0

m
Z

IP
0.

87
-3

.0
3

0.
94

9
0.

42
6

0.
94

4
0.

42
7

Po
is

so
n 

PA
-0

.3
7

1.
28

0.
91

3
0.

29
4

0.
92

3
0.

29
4

Po
is

so
n 

R
I

-2
.0

9
7.

34
0.

47
3

0.
71

8
0.

93
0

0.
26

8

30
0

m
Z

IP
0.

52
5.

39
0.

94
2

0.
33

3
0.

94
5

0.
34

1

Po
is

so
n 

PA
-0

.0
2

0.
09

0.
91

7
0.

23
7

0.
92

7
0.

23
6

Po
is

so
n 

R
I

-2
.3

6
8.

29
0.

47
2

0.
71

1
0.

93
3

0.
21

6

50
0

m
Z

IP
-0

.3
6

1.
27

0.
95

2
0.

67
5

0.
94

6
0.

68
2

Po
is

so
n 

PA
0.

27
-0

.9
2

0.
92

3
0.

41
9

0.
93

5
0.

39
5

Po
is

so
n 

R
I

-2
.3

3
8.

21
0.

49
2

0.
84

6
0.

94
1

0.
37

5

10
00

m
Z

IP
0.

25
-0

.8
8

0.
95

6
0.

84
1

0.
95

4
0.

83
7

Po
is

so
n 

PA
-0

.3
6

1.
26

0.
94

0
0.

52
5

0.
94

6
0.

49
8

Po
is

so
n 

R
I

-2
.7

7
9.

76
0.

47
9

0.
90

8
0.

94
6

0.
47

5

α
3

10
0

m
Z

IP
-0

.0
1

0.
32

0.
94

8
0.

05
8

0.
94

8
0.

07
0

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Long et al. Page 21

P
er

ce
nt

 R
el

at
iv

e 
M

ed
ia

n 
B

ia
s 

(I
D

R
)†

P
er

ce
nt

 R
el

at
iv

e 
M

ed
ia

n 
B

ia
s 

(L
og

-
ID

R
)

M
od

el
-B

as
ed

 C
ov

er
ag

e
M

od
el

-B
as

ed
 P

ow
er

R
ob

us
t 

C
ov

er
ag

e
R

ob
us

t 
P

ow
er

Po
is

so
n 

PA
-0

.7
7

26
.7

0
0.

94
8

0.
04

3
0.

93
8

0.
06

1

Po
is

so
n 

R
I

0.
33

-1
1.

22
0.

53
8

0.
47

7
0.

95
2

0.
05

2

30
0

m
Z

IP
-0

.4
9

16
.8

5
0.

94
3

0.
06

6
0.

94
3

0.
07

1

Po
is

so
n 

PA
-1

.0
5

36
.5

1
0.

95
9

0.
03

7
0.

94
6

0.
06

2

Po
is

so
n 

R
I

0.
13

-4
.4

4
0.

51
5

0.
48

3
0.

93
9

0.
06

1

50
0

m
Z

IP
0.

64
-2

2.
00

0.
93

5
0.

06
8

0.
93

3
0.

07
4

Po
is

so
n 

PA
-0

.7
3

25
.1

2
0.

95
4

0.
04

3
0.

93
3

0.
06

2

Po
is

so
n 

R
I

0.
85

-2
9.

07
0.

49
7

0.
49

9
0.

92
8

0.
05

9

10
00

m
Z

IP
0.

40
-1

3.
75

0.
94

8
0.

06
7

0.
94

6
0.

07
3

Po
is

so
n 

PA
0.

37
-1

2.
70

0.
94

1
0.

06
7

0.
95

3
0.

04
7

Po
is

so
n 

R
I

1.
48

-5
0.

64
0.

50
2

0.
48

3
0.

94
2

0.
06

8

α
4

10
0

m
Z

IP
0.

70
-1

.6
4

0.
95

7
0.

57
2

0.
95

2
0.

57
5

Po
is

so
n 

PA
-0

.0
4

0.
08

0.
94

4
0.

46
7

0.
94

2
0.

48
5

Po
is

so
n 

R
I

-1
.4

2
3.

34
0.

48
8

0.
79

2
0.

94
0

0.
44

2

30
0

m
Z

IP
0.

09
-0

.2
2

0.
95

2
0.

65
1

0.
94

8
0.

64
6

Po
is

so
n 

PA
-1

.8
4

4.
36

0.
94

7
0.

38
9

0.
93

7
0.

40
4

Po
is

so
n 

R
I

-2
.8

9
6.

88
0.

48
5

0.
83

1
0.

93
7

0.
37

8

50
0

m
Z

IP
-0

.6
7

1.
58

0.
94

5
0.

92
5

0.
94

3
0.

93
1

Po
is

so
n 

PA
0.

41
-0

.9
6

0.
93

7
0.

68
5

0.
92

8
0.

66
5

Po
is

so
n 

R
I

-2
.0

9
4.

95
0.

48
8

0.
94

3
0.

93
9

0.
64

1

10
00

m
Z

IP
-0

.1
3

0.
30

0.
94

6
0.

98
8

0.
94

7
0.

99
0

Po
is

so
n 

PA
0.

35
-0

.8
3

0.
94

0
0.

81
1

0.
93

6
0.

80
5

Po
is

so
n 

R
I

-2
.4

5
5.

81
0.

45
8

0.
98

2
0.

94
1

0.
75

5

* m
Z

IP
: M

ar
gi

na
liz

ed
 Z

IP
 m

od
el

 w
ith

 r
an

do
m

 e
ff

ec
ts

;

Po
is

so
n 

PA
: P

oi
ss

on
 p

op
ul

at
io

n 
av

er
ag

e 
m

od
el

 w
ith

 G
E

E
 e

st
im

at
io

n;

Po
is

so
n 

R
I:

 P
oi

ss
on

 r
an

do
m

 in
te

rc
ep

t m
od

el

† Si
m

ul
at

ed
 s

ce
na

ri
o:

 T
ru

e 
ID

R
s 

ex
p(

α
1)

 =
 0

.9
7,

 e
xp

(α
2)

 =
 0

.7
5,

 e
xp

(α
3)

 =
 0

.9
7,

 e
xp

(α
4)

 =
 0

.6
5

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2016 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Long et al. Page 22

Table 3
Marginalized ZIP Model with Random Effects Results: SafeTalk efficacy trial

Parameter Parameter Estimate Model-Based Std Error Robust Std Error

Zero-Inflation Model

Intercept γ0 2.1187 0.3581 0.3665

Site 2 γ1 0.1026 0.4311 0.4184

Site 3 γ2 0.2445 0.8782 0.9548

Follow-up 1 γ3 1.2709 0.3287 0.3468

Follow-up 1*Treatment γ4 0.8849 0.4144 0.4627

Follow-up 2 γ5 1.7071 0.3611 0.7011

Follow-up 2*Treatment γ6 -0.6021 0.5022 0.9185

Follow-up 3 γ7 1.0214 0.4577 0.6881

Follow-up 3*Treatment γ8 -0.3331 0.6034 1.0968

Marginalized Mean Model

Intercept α0 -0.8966 0.2803 0.2965

Site 2 α1 0.0362 0.2941 0.2893

Site 3 α2 -0.0220 0.6191 0.6442

Follow-up 1 α3 0.2011 0.1471 0.1969

Follow-up 1*Treatment α4 -1.2725 0.2197 0.3365

Follow-up 2 α5 -0.1217 0.1632 0.2264

Follow-up 2*Treatment α6 -0.6128 0.2082 0.3742

Follow-up 3 α7 -0.4762 0.2203 0.3521

Follow-up 3*Treatment α8 -0.2630 0.2611 0.4691

Variance Parameters†

σ11 9.7487 2.1328 2.4313

σ12 -4.5957 0.8270 0.7345

σ22 3.4461 0.6929 0.6599

†
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