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ABSTRACT

A new method for retrieving the wind vector from radar-image sequences is presented. This method,

called WiRAR, uses a marine X-band radar to analyze the backscatter of the ocean surface in space and

time with respect to surface winds. Wind direction is found using wind-induced streaks, which are very well

aligned with the mean surface wind direction and have a typical spacing above 50 m. Wind speeds are

derived using a neural network by parameterizing the relationship between the wind vector and the nor-

malized radar cross section (NRCS). To improve performance, it is also considered how the NRCS depends

on sea state and atmospheric parameters such as air–sea temperature and humidity. Since the signal-to-

noise ratio in the radar sequences is directly related to the significant wave height, this ratio is used to obtain

sea state parameters. All radar datasets were acquired in the German Bight of the North Sea from the

research platform FINO-I, which provides environmental data such as wind measurements at different

heights, sea state, air–sea temperatures, humidity, and other meteorological and oceanographic parameters.

The radar-image sequences were recorded by a marine X-band radar installed aboard FINO-I, which

operates at grazing incidence and horizontal polarization in transmit and receive. For validation WiRAR is

applied to the radar data and compared to the in situ wind measurements from FINO-I. The comparison

of wind directions resulted in a correlation coefficient of 0.99 with a standard deviation of 12.8°, and that

of wind speeds resulted in a correlation coefficient of 0.99 with a standard deviation of 0.41 m s�1. In

contrast to traditional offshore wind sensors, the retrieval of the wind vector from the NRCS of the ocean

surface makes the system independent of the sensors’ motion and installation height as well as the effects

due to platform-induced turbulence.

1. Introduction

This paper describes a radar-based remote sensing

technique called WiRAR, which enables the measure-

ment of the ocean surface wind from towers and ships.

A marine radar operating at X band has the capability

of measuring the backscatter from the ocean surface in

space and time under most weather conditions and in-

dependent of lighting conditions. There are no biases

due to wind sensor motion and height variations. Since

the radar measures the wind from the ocean surface

beside the platform, blockage and shadowing effects

due to the sensor platform are also strongly reduced.

Marine-radar-image sequences have previously been

used to measure two-dimensional wave spectra and sig-

nificant wave heights (Borge et al. 1999) and wave

groups (Dankert et al. 2003a). Image sequences of the

ocean surface elevation may be extracted (Dankert and

Rosenthal 2004; Borge et al. 2004; Dankert et al. 2005).

Other such measurements include the mean near-

surface current (Senet et al. 2001), current fields, and

bathymetry in inhomogeneous areas like coastal zones

or areas with current gradients (Bell 1999; Trizna 2001;

Dankert 2003). Finally, the motion of wind gusts has

been studied (Dankert et al. 2004).

The frictional force of the wind field generates sur-

face roughness that increases with wind speed (Lee et

al. 1995; Trizna and Carlson 1996; Trizna 1997; Hatten

et al. 1998). By exploiting this phenomenon, microwave

radar can measure wind vectors near the surface of the
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ocean. For radar backscatter at grazing incidence

(�85°), the normalized radar cross section (NRCS) is

proportional to the spectral density of the surface

roughness on scales comparable to the radar wave-

length (Bragg scattering). In the case of X band at graz-

ing incidence this is �1.5 cm. In addition, at grazing

incidence, radar backscatter is induced by other scat-

tering mechanisms, for example, wedge scattering

(Lyzenga et al. 1983) or small-scale wave breaking

(Wetzel 1990; Askari et al. 1996; Trizna 1997). Long

surface waves modulate small-scale surface roughness,

which in turn modulates the radar backscatter. At graz-

ing incidence the modulation stems from tilt and hy-

drodynamic modulation as well as geometrical shadow-

ing of the radar beam due to the ocean waves (Wetzel

1990). These modulation mechanisms lead to the imag-

ing of surface waves whose wavelengths are greater

than 2 times the radar resolution. The modulation of

the NRCS is mathematically described by the modula-

tion transfer function (MTF), which is a sum of the four

contributing processes: shadowing, tilt modulation, hy-

drodynamic modulation, and wind modulation. For a

detailed description of scattering and modulation

mechanisms at low grazing incidence, refer to a special

issue of IEEE Transactions on Antennas and Propaga-

tion (1998, Vol. 46, No. 1).

The NRCS is typically largest when the wind blows

directly toward the radar (upwind) and decreases to a

minimum when the wind direction is orthogonal to the

radar look direction (crosswind). Another smaller

maximum in NRCS occurs when the wind blows di-

rectly away from the radar (downwind). However, for

grazing incidence at X band with horizontal (HH) po-

larization in transmit and receive the downwind maxi-

mum does not exist (Trizna and Carlson 1996; Dankert

et al. 2003b).

The relation between the near-surface wind vector

and NRCS can be described by a geophysical model

function (GMF) of the form

�0 � a��� · u�����1 � b�u, �� cos�� � c�u, �� cos2���,

�1�

where 	0 represents NRCS, u represents wind speed,


� represents the relative angle between the radar

look and wind direction, and � is the nadir incidence

angle. The quantities a, , b, and c are empirical pa-

rameters that are typically determined by measured

data. In case of HH polarization at grazing incidence

the coefficient c � 0. The single peak stands in contrast

to radar measurements of the sea surface in X band

with VV polarization and radars operating at moderate

incidence angles where two maxima are observed, one

upwind and one downwind (Trizna and Carlson 1996;

Hatten et al. 1998). Local minima are crosswind, and

the upwind NRCS is slightly higher than the downwind

one. The single peak makes radar measurements ob-

tained with HH polarization at grazing incidence the

best choice for wind direction measurements, because

they enable the retrieval of unambiguous wind direc-

tions. Equation (1) shows that 	0 is an exponential

function of wind speed and a harmonic function of its

direction. Note that a specific NRCS value cannot be

associated with a unique wind speed and direction pair.

However, if wind direction is known a priori, it is pos-

sible to estimate wind speed.

The conventional approach using Eq. (1) is only ap-

plicable if the ocean surface is imaged over the full

azimuth to enable covering of the required upwind

peak. This is often not the case. Using the upwind peak

for a direct measurement of the wind direction is fur-

ther not very accurate and provides no information

about the local wind field. In addition, the turbulence

due to the sensor platform contaminates the downwind

measurements. For these reasons, WiRAR uses a dif-

ferent method to determine the wind vector.

The WiRAR algorithm consists of two parts. In the

first part, local wind directions are retrieved from the

wind-induced streaks that are visible in radar-image se-

quences. These streaks are aligned with the mean wind

direction. The streaks are typically imaged by the radar

at scales of approximately 50–500 m and are extracted

by a method based on derivation of local gradients [lo-

cal gradient method (LGM)] (Horstmann et al. 2002;

Koch 2004; Dankert et al. 2003b). In the second part,

the wind speed is derived from the NRCS, which is

strongly dependent on the ocean surface wind speed.

This dependency is parameterized using a neural net-

work (NN). NNs have already been successfully applied

for satellite-based wind retrieval, for example, from

spaceborne scatterometers (Richaume et al. 2000) and

synthetic aperture radar (SAR) images (Horstmann et

al. 2003, 2005).

Several studies have already analyzed the wind de-

pendency of radar data acquired at gazing incidence

(Chaudhry and Moore 1984; Lee et al. 1996; Hatten et

al. 1998; Dankert et al. 2003b). In these studies the

dependencies of the NRCS on both wind speed and

direction have been investigated. Keller et al. (1985,

1994) have studied the dependency of the NRCS on

wind speed, atmospheric stability, and sea state. They

found that under unstable conditions the NRCS is

higher than in near-neutral conditions, while the ocean-

wave radar MTF is lower. In near-neutral atmospheric

conditions the MTF decreases with long-wave slope,

while the NRCS increases.

1630 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 24



Wind speed estimates are further refined by taking

the dependency of sea surface friction on the sea state

and atmospheric conditions into account. The sea state

is described by the wave phase speed at the spectral

peak cp as well as the ratio between the signal of the

linear surface gravity waves and the background noise

[signal-to-noise ratio (SNR)]. Practice has shown that

the square root of the SNR is proportional to the sig-

nificant wave height of the observed wave field (Ziemer

1991). The SNR is independent of the wind field. Both

parameters, cp and SNR, are extracted from the radar-

image sequences. Considering all information available

from radar-image sequences makes a marine radar sys-

tem an accurate stand-alone wind sensor. The atmo-

spheric conditions are characterized by the air–sea tem-

perature difference 
�(a,s) and the air humidity qr. This

additional information further improves the accuracy of

the radar wind measurements.

The investigated radar-image sequences were re-

corded by the Wave Monitoring System (WaMoS II),

developed at the GKSS Research Centre (Geesthacht,

Germany). For validation of WiRAR, wind vectors

from 4786 radar-image sequences acquired at the

FINO-I platform are compared to the in situ measure-

ments recorded aboard FINO-I.

The paper is organized as follows. In section 2 the

radar system and available in situ data are presented. In

section 3 the wind direction retrieval algorithm is intro-

duced and validated by comparison to in situ data re-

corded at the radar platform. In section 4, NNs are

introduced and applied to wind speed retrieval from the

radar-image sequences. The dependency of the NRCS

on sea state and atmospheric conditions is shown and

considered in the neural network’s estimate of the

GMF. Finally, our wind speed estimates are compared

to the in situ measurements collected at FINO-I. Con-

clusions and an outlook are given in section 5.

2. Investigated data

The radar utilized in this paper is a commercial ma-

rine radar (Furuno FR-2125-B) with peak power output

of 25 kW operating at 9.5 GHz (X band) near grazing

incidence. The 8-ft (2.4 m) open array antenna (type

XN24AF/8) is horizontally polarized with a 0.95° hori-

zontal beamwidth. The radar antenna rotates with pe-

riod of 2.5 s (24 rpm). At a distance of �750 m the

spatial resolution is �10 m in range and �12 m in azi-

muth. All data were acquired in the near-range mode,

where the radar covers an area within a radius of �2000

m. The datasets were recorded by WaMoS II, which

enables digitizing time series of radar sea clutter images

on an operational basis. Marine radar systems are

equipped with a logarithmic amplifier, and the received

signal is not radiometrically calibrated. The backscat-

tered signal of each radar resolution cell is digitized

with 8-bit precision. Each of the radar-image sequences

investigated here consists of 32 images representing

�80 s. They cover a period from August 2003 until

November 2004, representing 4786 acquisition times

with wind speeds of up to 16 m s�1. All data were ac-

quired in the German Bight of the southern North Sea

from the research platform FINO-I, which is located at

54°N, 6.6°E in a water depth of �30 m.

The radar antenna is installed at a height of 20 m

above mean sea level. The investigated area covers

ranges between 600 and 2100 m, corresponding to graz-

ing incidence angles between 88.1° and 89.5°. With the

antenna’s vertical directivity of 20°, even ship motions

in severe sea state are compensated.

Figure 1 shows the research platform FINO-I with its

100-m-long mast. The radar antenna is mounted just

below the helideck at the northern part of the platform.

The radar-image sequence depicts a wave field propa-

gating in an easterly direction. The southern quadrant

of the images contain radar shadows originating from

the platform equipment, which have been masked

(black sector) and which were excluded from the inves-

tigations.

At FINO-I, meteorological and oceanographic pa-

rameters are measured at various heights and depths.

The instrumentation of the met mast consists of cup

anemometers and wind vanes in heights ranging from

30 to 100 m above mean sea level approximately every

10 m, which are stored as 10-min averages. The cup

anemometers are supplemented by ultrasonic anemom-

eters at 40-, 60-, and 80-m height, which are sampled at

10 Hz. In this investigation only wind measurements at

30-m height were utilized. The air temperature was

measured with modified PT100 sensors at five different

levels and the sea surface temperature at 3 m below

mean sea level. The air humidity was measured with

classical hair hygrometers at 33-, 50-, and 100-m

heights. Last but not least, the sea state, in particular

significant wave height and peak period, was measured

by a Wavec buoy located at a distance of 300–400 m off

the platform as well as by WaMoSII (Borge et al.

1999).

3. Measuring wind direction

The WiRAR wind direction retrieval is based on the

imaging of linear features aligned along the wind direc-

tion. Most of these features are associated with wind

streaks (Drobinski and Foster 2003) or streaks from
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FIG. 1. WaMoS system installed on the research platform FINO-I in the German Bight.

Various atmospheric sensors are mounted on the measurement mast and at the framework of

the complex.

1632 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 24



foam or surfactants, which are visible in the radar im-

ages at scales between 50 and 500 m (Fig. 2). These

streaks are also visible in SAR images at similar and

larger scales and have been shown to be well aligned

with the mean surface wind direction (Horstmann and

Koch 2005). We compute the orientation of these linear

features using the LGM, which has been used success-

fully for estimating SAR wind direction (Horstmann et

al. 2002; Koch 2004).

In a first step, to separate wind from other signatures

and to reduce the effect of speckle, a radar-image se-

quence is integrated over time (typically, 32 images rep-

resenting 80 s of data). This removes patterns that are

highly variable in the temporal domain such as ocean

surface waves. Only static patterns such as the shadows

and wind signatures remain visible in the integrated

radar image.

In the next step, the integrated radar image is se-

quentially smoothed and reduced to resolutions of 20,

40, and 80 m. The resulting three radar images retain

spatial scales greater than 40, 80, and 160 m. From each

of these images, local orientations are computed using

the normal to the local gradient (to within a 180° am-

biguity). From all of the retrieved orientations, only the

most frequent orientations in a predefined area are se-

lected. These resulting wind orientations typically vary

by only a few degrees, except for cases where additional

features are present in the radar image, for example,

artifacts arising from bathymetry or current shear. In

such cases the artificial structures are interpreted as

wind streaks, which is avoided by identifying the arti-

facts before applying the LGM (Koch 2004).

The 180° ambiguities can be removed in one of two

ways. Wind gusts become visible in radar-image se-

quences after filtering. The motion of these gusts can be

analyzed using an opticalflow-based motion estimation

technique [Dankert et al. (2004)]. The more standard

alternative technique is to estimate the shift of moving

image patterns between two datasets by computing the

cross-correlation function (CCF). In the latter method,

the respective propagation direction is indicated by the

location of the CCF peak. Alternatively, the shift can

also be estimated by looking at the cross-spectrum

(CS), which is defined as the Fourier spectrum of the

CCF. In the CS the shift of the different harmonic fea-

tures in the image is given by the respective phases of

the complex valued CS. The directions resulting from

the CS are always within 90° of the in situ measured

wind direction, thus resolving the 180° directional am-

biguity. Last but not least, the directional ambiguity can

be removed using the dependency of the NRCS on the

antenna look direction, because for X-band radars op-

erating at grazing incidence with HH polarization a

peak exists only in the upwind direction (Trizna and

Carlson 1996; Dankert et al. 2003b). This method is

only applicable if the ocean surface is imaged over the

full azimuth, which is often not the case. In addition to

this restriction, using the upwind peak for a direct mea-

surement of the wind direction is less accurate than the

LGM.

In Fig. 2, the resulting local mean directions are plot-

ted for a sample scale (blue arrows). It can be seen that

they agree well with the wind direction measured at the

radar platform at a height of about 30 m (red arrows).

For validation of the WiRAR wind direction re-

trieval method the radar-retrieved mean wind direc-

tions of 4786 radar-image sequences are compared to

the in situ measurements of the FINO-I platform, which

were acquired at a height of 30 m. Figure 3 gives the

comparison with the following main statistical param-

eters: correlation coefficient of 0.99, bias of 0.3°, and

standard deviation of 12.8°. The bias might be expected

on the basis that an Ekman spiral is resolved by aver-

aging over all events.

Figure 4 shows bias (solid line) and standard devia-

tion (dotted line) of radar and in situ wind direction

difference, plotted against wind speed. The dependence

of the bias on wind speed is negligible. However, the

standard deviation decreases significantly with increas-

ing wind speed as the wind streaks become more pro-

FIG. 2. Local wind directions at the ocean surface retrieved from

the mean NRCS of a radar-image sequence of 32 images taken at

FINO-I on 2 Feb 2004. The global in situ wind direction was 52°

and the wind speed 11.6 m s�1. A black sector of 90° in the south-

ern direction is not considered.
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nounced. Under weak wind conditions the NRCS is less

indicative for atmospheric than oceanic processes, such

as bathymetric effects and current shear. In such cases,

the wind directionality of the NRCS is dominated by

wind-driven ripple waves and the single peak in the

upwind direction at HH polarization and grazing inci-

dence.

4. Measuring wind speed

The WiRAR wind speed retrieval is based on the

dependence of the NRCS on the local wind vector. This

dependency is described by a GMF [Eq. (1)], which in

the following is developed using NNs. The NNs do not

require explicit models for the radar-imaging process

and can therefore be easily applied to any system con-

figuration (e.g., polarization, incidence angle, etc.). The

only requirements for application of an NN to radar

wind speed retrieval is the relative radiometric stability

of the system, which is the case for typical marine ra-

dars, such as the one used in the FINO-I setup. Unfor-

tunately, marine radar systems are normally not radio-

metrically calibrated. An NN should therefore be

trained individually for every radar system. Suppose

the relative response of all radars is similar; for ex-

ample, their wind speed dependence is within a simple

relationship. An easy calibration procedure could then

be developed. In this case the calibration phase would

consist only of a few measurements. This assumption is

not the subject of this paper and needs further investi-

gation. In the following a feed-forward back-

propagation NN (available online at http://gfesun1.

gkss.de/software/ffbp) is used as a multiple-nonlinear-

regression technique to parameterize the relationship

between the radar intensity and ocean surface wind.

An NN is built up of several layers: an input layer,

one or more hidden layers, and one output layer. Each

layer consists of “neurons”; the input layer has as many

neurons as input parameters, and the output layer has

many neurons as output parameters. The number of

hidden layers and the number of neurons in the hidden

layer(s) depends on the problem. Each neuron in a

layer is linked to each neuron of the neighboring layer

with a weight. The output value Nout of each neuron is

derived according to

Nout � S��Nbias � �
i�1

n

wixi�, �2�

where Nbias is a bias value specific to each neuron, n is

the number of incoming links, w is a weight specific to

each neuron, and x is the output value of the neuron in

the preceding layer; S is a nonlinear function assuming

monotonically increasing values between 0 and 1 as the

value of the argument goes from �� to �. The most

common nonlinear function, also used in the NNs ap-

plied here, is the Sigmoid function (1 � e�x)�1. An NN

operates sequentially from layer to layer; output neu-

rons of the first layer are given by the input values. The

output of each neuron of the first hidden layer is com-

puted by the summation of the weighted inputs, shifting

by the bias and application of the nonlinear function.

This is repeated for each layer until the output layer is

reached, giving the results of the NN. To determine an

NN, a sufficiently large set of input and output vectors

FIG. 4. Bias (black line) and standard deviation (gray line) of

difference between radar and in situ wind directions vs wind

speed.

FIG. 3. Scatterplot of in situ and radar-retrieved wind directions

(4786 datasets).
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has to be available. During the training of the NN, the

values of the biases and weights are changed to mini-

mize the error function. The resulting trained NN has to

be tested with test datasets for its generalization power,

for example, whether reasonable results are produced

for input values that are not included in the training

sample. For training of the NN, the dataset that con-

sisted of 4786 radar-image sequences was subdivided

into a training dataset and a test dataset with a ratio

of 2:1.

As discussed in Dankert et al. (2003b), there is a

strong range-dependency of the mean NRCS (inte-

grated over time), where the NRCS decreases with in-

creasing distance from the radar antenna. Due to the

very limited analog-to-digital converter (8 bit) of the

utilized radar system, saturation can occur for higher

wind speeds, especially in the near range (600–900 m),

where the sensitivity of the NRCS on wind speed is

higher at low wind speeds, while at high winds satura-

tion occurs. In the far range (1800–2100 m) the sensi-

tivity is larger for high wind speeds, whereas at low

wind speeds the wind signal cannot be separated from

the background noise. Therefore, utilization of the

mean NRCS from the different range sectors enables a

significantly better parameterization for the entire

range of wind speeds. However, at far ranges the falloff

of the NRCS depends on the refractivity profile. This

dependency needs to be investigated in further studies.

To include the dependencies of NRCS on wind di-

rection and range distance, each mean NRCS image

(image sequence integrated over time) is subdivided

into several range and azimuth bins. In our study, each

radar image is divided into subareas of five 300-m-

range intervals starting at a distance of 600 m and in

azimuth sectors of 5°. For every subarea the mean

NRCS (I1–I5) is determined.

a. Consideration of the NRCS

A schematic setup of the complete NN construction

is shown in Table 1. In a first step, following Dankert et

al. (2003b), NNs were trained using radar-measured

wind direction �w, the mean radar intensities of the five

range-azimuth cells in both crosswind directions, and

the corresponding antenna look direction �r. There are

three hidden layers with eight neurons in the first, five

in the second, and three in the third hidden layer. The

output layer consists of one neuron given by the wind

speed u30, measured at 30-m height. The additional ra-

dar parameters and parameters from external sensors

as input for the NN are explained in the following sec-

tions.

The crosswind directions are taken due to their

higher wind sensitivity. Furthermore, artifacts caused

by the platform due to wind shadowing or blockage are

imaged in the downwind or up-wind direction, respec-

tively. The crosswind directions are not influenced.

Figure 5 shows a scatterplot of in situ wind speeds u30

versus radar-retrieved wind speeds using the resulting

NN. Varying crosswind directions within �15° of the

true crosswind direction were used with the GMF. This

results in a correlation coefficient of 0.96 with a bias of

0.01 m s�1 and a standard deviation of 0.90 m s�1. Con-

sidering only the true crosswind direction slightly de-

creases the standard deviation to 0.89 m s�1. Therefore,

an accuracy of �15° for wind direction measurements is

sufficient for an accurate wind speed retrieval. In prac-

tice, the resulting parameterization can be used to es-

timate wind speeds as low as �1.0 m s�1. Physically the

TABLE 1. Schematic setup of an NN to determine a GMF for

wind speed retrieval.

�w �r I1 I2 I3 I4 I5

Input layer Add. radar parameters SNR cp

Add. external parameters 
�(a,s) qr

Hidden layers 1. layer: 8 neurons

2. layer: 5 neurons

3. layer: 3 neurons

Output layer u30

FIG. 5. Comparison of the wind anemometer wind speeds u30

(mean of 10 min) vs wind speeds retrieved from collocated marine

radar images. The radar wind speeds were retrieved using an NN

with the intensity of the mean radar image, antenna look direc-

tion, and the wind direction from the collocated anemometer data

as input (4786 datasets).
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minimum wind speed for wind-wave generation is

0.7 m s�1.

To improve the given GMF for wind speed determi-

nation, the dependencies of the NRCS on additional

parameters such as sea state and atmospheric condi-

tions have to be considered. Information on the sea

state can be extracted from the radar datasets, while

atmospheric stratification conditions, such as the air–

sea temperature difference and the relative air humid-

ity, need to be measured by external sensors.

b. Consideration of the sea state

The surface roughness over the water is primarily

dependent on the surface wind speed and therefore on

the vertical profile, which is dependent on sea state and

stratification of the atmosphere. Physical mechanisms

have been proposed accounting for the dependency of

surface stress on sea state (Geenaert 1990).

Drennan et al. (2003) found the following roughness–

wave relationship for developing wind seas (u�/cp �

0.05) with unimodal spectrum:

z0 �� � a�u��cp�b, �3�

where u� is the friction velocity; cp the phase speed of

the waves at the spectral peak (Stewart 1974; Komen

and Oost 1998; Donelan 1990); 	 is introduced as rms

surface elevation; the significant wave height, HS � 4	;

z0 is the roughness parameter (Phillips 1977); and a and

b are constants depending on the development of wind

sea.

For the purpose of implementing the additional sea

state dependency on the sea surface stress, represented

by HS (beside cp), into a wind speed parameterization

from the NRCS it is sufficient to use the wind-

independent SNR (Ziemer 1991; Izquierdo et al. 2004).

The dependency between SNR and sea state is de-

scribed below. The radar system is still able to run as a

stand-alone instrument for retrieving surface winds.

The NRCS is modulated by surface gravity waves

and a noise component. Both components are statisti-

cally independent. Sea state modulation and noise com-

ponent cannot be separated in the spatiotemporal do-

main. Using a three-dimensional fast Fourier transform

(3D FFT), an image sequence G(r, t) with location r �

(x, y) and time t is transformed into wavenumber–

frequency domain:

I�k, �� � |FFT�G�r, t��|2, �4�

with wavenumbers k � (kx, ky) and angular frequencies

�. The result is a 3D-image power spectrum I(k, �). For

each of the 4786 radar datasets the 3D-image power

spectrum is determined. In the spectral domain, wave-

numbers and frequencies of the imaged waves are con-

nected by the dispersion relation of linear surface grav-

ity waves as follows:

	�k; d, ue� � ± �gk · tanh�kd� � k · ue, �5�

where � is the intrinsic frequency, g is the gravitational

acceleration, k the modulus of the wavenumber vector

kd the water depth, and ue the velocity of encounter

between the water surface and the radar (Stoker 1957,

109–133).

After determining water depth (�30 m at FINO-I)

and velocity of encounter (between fixed platform and

near-surface current vector), by fitting the theoretical

dispersion relation to the signal coordinates of the lin-

ear surface waves in the wavenumber frequency do-

main (Young et al. 1985; Senet et al. 2001), the disper-

sion relation is used as a signal filter in the image power

spectrum to separate the linear sea state signal from the

background noise (Ziemer 1991):

I sig�k, �� � I�k, ��
�� � 	�k; d, ue��, �6�

where the delta function �(� � �) is the spectral band-

pass filter with the dispersion relation �. Figure 6

shows an example slice through a 3D-image power

spectrum. There are clearly structures visible in the

spectrum that are related to the signal of the linear

surface gravity waves. Different from single satellite

images, a 180° unambiguous wavenumber image spec-

trum is determined by integrating over the positive fre-

quencies of the signal-filtered image power spectrum.

The power of the background noise Inoi is estimated

by subtracting the power of the linear sea state Isig from

the total power I:

Inoi�k, �� � I�k, �� � Isig�k, ��. �7�

With Isig and Inoi the SNR is defined as

SNR �
�Isig�k, �� M�k� dk d�

�Inoi�k, �� dk d�
�k, � � 0. �8�

The MTF M(k) � k�� is applied in order to correct for

imaging effects (Plant 1989). The exponent was empiri-

cally determined with � � 1.2 (Borge et al. 2004).

The SNR is independent of the wind and directly

related to HS (Alpers and Hasselmann 1982):

HS � �SNR, �9�

whereas for determination of HS, calibration constants

need to be estimated by comparing radar and collo-

cated buoy data. Figure 7 gives a comparison of the

square root of determined SNR values from radar

datasets and measured collocated buoy HS. Measure-

ments were partially available for the given radar

datasets. With a correlation coefficient of 0.67 a typical

good relationship between both parameters is given.

After separating wave signal from background noise,

the SNR is determined for each radar dataset. In addi-
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tion the phase speed of the peak wave component of

the spectrum cp � �p/kp, with peak wavenumber kp and

peak frequency �p, is computed from the positive fre-

quency part of the signal-filtered power spectrum

I
�
sig(k, �).

Both parameters, SNR and cp, are analyzed for their

influence on the wind parameterization. The same NN

construction already used in section 4a is applied,

and the SNR is taken as an additional input parameter.

The resulting NN achieved a correlation coefficient of

0.97, with a bias of 0.0 m s�1 and a standard deviation of

0.76 m s�1.

Before taking cp into account the SNR is analyzed for

a dominating sea state signal. For low-wind cases with a

low SNR there are no modulating wind waves, and cp

cannot be determined. For a GMF considering cp, such

low-wind situations have to be excluded. Training an

NN using the intensities of the mean radar image, the

antenna look direction, the wind direction from the col-

located anemometer, and cp results in an NN that

FIG. 6. Wavenumber–frequency slice through the 3D wavenumber–frequency power spectrum of a time series

of 32 radar images. The modulation signal of the sea state is significantly imaged in its linear parts and located on

the dispersion shell (solid curve), which spans the dispersion filter for signal and noise separation (area between

dotted curves).
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achieves a correlation coefficient of 0.96, a bias of

0.0 m s�1, and a standard deviation of 0.86 m s�1 when

compared to the in situ measurements.

Taking the SNR into account improves the correla-

tion coefficient to 0.97 with a standard deviation of

0.66 m s�1. This parameterization can measure wind

speeds below 1 m s�1. This is the most accurate mea-

surement that can be obtained from marine radar with-

out considering any external sensors.

c. Consideration of the atmospheric conditions

The stratification conditions in the lower marine at-

mospheric boundary layer (MABL), mainly denoted by

the air–sea temperature difference, affect the stability

of the air–sea interface and therefore also the wind

profile. In turn, the wind profile influences the radar

backscatter of the ocean surface. This leads at equiva-

lent wind speeds in 10-m height to a higher NRCS at

the sea surface in the case of an unstable MABL than

for neutral and stable conditions (Keller et al. 1989).

Again an NN is trained considering additionally the

air and sea temperature differences, which were mea-

sured by external in situ sensors. The main statistical

parameters improve compared to the previously

trained NNs, resulting in a correlation coefficient of

0.98, a negligible bias, and a standard deviation of

0.61 m s�1. This parameterization can be used to esti-

mate wind speeds as low as �0.75 m s�1.

The dependency between air temperature �air, and

relative air humidity qr is denoted

qr � q�qs��air�, �10�

where q is the absolute or specific humidity, and qs is

saturation specific humidity. The air density is closely

related to relative humidity (or specific humidity, but

the relative humidity is the measured value at FINO-I).

A water molecule weight only 62.2% as much as the

average dry air molecule. If dry air at a certain pressure

and temperature has a density �a,d, moist air of specific

humidity q has the same number of molecules per unit

volume, but the density per unit volume of moist air is

a,m � a,d�1 � q���1 � 1.608q�. �11�

With increasing relative humidity the density of moist

air decreases. This results in a decreasing friction or

small-scale roughness at the sea surface.

As a fourth investigative step, the dependency of

relative air humidity qr on the small-scale roughness

and therefore the NRCS is additionally considered in

the parameterization for the radar wind speed measure-

ments. The NN setup with three hidden layers (eight

neurons in the first, five in the second, and three in the

third layer) is the same as for the other parameteriza-

tions without humidity.

In Fig. 8, in situ wind speeds are plotted against the

wind speed resulting from marine radar images using

the last GMF. The corresponding statistics of the com-

parison are given in the upper left of the scatterplots.

The correlation coefficient is 0.99, with a bias of

0.01 m s�1 and a standard deviation of 0.41 m s�1. The

resulting parameterization statistically enables the re-

trieval of wind speeds as low as �0.75 m s�1.

d. Discussion

Overall, the sea surface stress is related to the mean

wind speed at some reference level. The mean wind

speed is thereby dependent on the sea state and the

stratification conditions, given by the air–sea tempera-

ture difference and the relative air humidity. The sea

state is characterized by the wave spectrum and its

spectral and integral parameters. The mentioned inves-

tigations have shown that the main parameters are the

SNR, which is proportional to H2
S, and the peak wave

phase speed cp, which is determined from peak wave

frequency �p and peak wavenumber kp.

Table 2 gives a complete overview of comparisons of

WiRAR wind speeds from each of the derived GMFs

with in situ wind measurements. The first block sum-

marizes all GMFs, considering only parameters deter-

mined from the radar datasets, as NRCS for the range-

FIG. 7. Scatterplot of �SNR and buoy HS for the given radar

datasets where buoy measurements were available (2623

datasets).
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direction bins in crosswind directions, antenna viewing

direction, wind direction, cp, and/or SNR. Adding cp to

the input-parameter list gives only a minor improve-

ment in accuracy, whereas the SNR strongly improves

the accuracy of the radar measurements. The second

block shows an improvement in accuracy when the NNs

incorporate external information about atmospheric

conditions. The last block summarizes NNs using

NRCS, sea state, and atmospheric information.

Figure 9 shows the importance of sea state and at-

mospheric conditions when estimating wind speed. The

bias (black curves) and standard deviation (gray

curves) of the difference between radar and in situ wind

speed are plotted against SNR (Fig. 9a), wave phase

velocity at the spectral peak cp (Fig. 9b), air–sea tem-

perature difference (Fig. 9c), and relative air humidity

(Fig. 9d). The solid curves use the GMFs without con-

sidering any additional sea state and/or atmospheric pa-

rameters. The dashed curves show the resulting GMFs

after adding the parameter indicated by the abscissa.

Additionally, histograms (gray filled) of the available

data are given.

Adding the SNR to the wind speed parameterization

strongly improves the standard deviation for low SNRs.

Further, the bias is decreasing for SNRs between 0.4

and 0.8. Taking cp into account for the GMF improves

the standard deviation only slightly, while strongly de-

creasing the bias for cp between 6 and 8 m s�1. The

slight effect of cp on the wind parameterization is ex-

plained with the given frequency distribution of cp,

which is concentrated between values of 8 and 12 m s�1.

For this range the bias is about zero.

For the air–sea temperature difference the NN is un-

der- and overestimating the wind speed for stable and

unstable MABL, respectively. Especially under stable

conditions the radar wind speeds are too low. Under

equal wind speed conditions the sea surface friction and

therefore the NRCS is lower for a stable MABL than

for an unstable one. This is in agreement with theory

and the observations of Keller et al. (1989). In the tran-

sition region the agreement is very good. Thus, accurate

wind speed estimates require some knowledge of the

atmospheric stability, which is given by the air–sea tem-

perature difference. Considering the air–sea tempera-

ture difference results in an improvement of the bias

and the standard deviation for both the unstable and

stable conditions.

For low relative air humidity there is a high bias for

the NN without considering humidity (solid curve). The

NN is overestimating the wind speed, because the

NRCS is larger for dryer air at the same stratification

conditions and wind speed, for example, u30. At higher

relative air humidities the bias is lower, which is mainly

caused by the higher number of datasets recorded un-

der these conditions. Therefore, the additional knowl-

edge of the air humidity, together with air–sea tempera-

ture difference and radar measurements, is important.

Considering the relative air humidity as an additional

atmospheric parameter results in an improvement of

both bias and standard deviation for the whole humid-

ity range (dashed curve).

In Fig. 10, the curves were retrieved using GMFs and

TABLE 2. Main statistical parameters resulting from the various

GMFs considering the different input data.

Input parameters

Correlation

coefficient

Bias

(m s�1)

	xy

(m s�1)

NRCS, �r, �w 0.959 0.01 0.90

NRCS, cp, �r, �w 0.955 0.00 0.86

NRCS, SNR, �r, �w 0.971 0.00 0.76

NRCS, cp, SNR, �r, �w 0.973 0.02 0.66

NRCS, qr, �r, �w 0.976 0.00 0.70

NRCS, 
�(a,s), �r, �w 0.980 0.01 0.63

NRCS, qr, 
�(a,s), �r, �w 0.990 0.01 0.43

NRCS, SNR, 
�(a,s), �r, �w 0.988 0.00 0.49

NRCS, cp, SNR, 
�(a,s), �r, �w 0.987 0.01 0.47

NRCS, SNR, qr, 
�(a,s), �r, �w 0.992 0.00 0.41

NRCS, cp, SNR, qr, 
�(a,s), �r, �w 0.989 0.01 0.42

FIG. 8. Comparison of the wind anemometer wind speeds u30

(mean of 10 min) vs wind speeds retrieved from collocated marine

radar images. The radar wind speeds were retrieved using an NN

with the intensity of the mean radar image, antenna look direc-

tion, the wind direction from the collocated anemometer, SNR,

air–sea temperature difference, and relative air humidity data as

input (4786 datasets).
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taking different additional parameters into account:

only NRCS, antenna look direction, wind direction, and

no additional sea state and/or atmospheric parameters

(solid); additionally the SNR (long dashed); SNR and

cp (short dashed); additionally only the air–sea tem-

perature difference (dash–dot); and air–sea tempera-

ture difference and relative air humidity (dash–dot–

dot). The dotted curves give the result for the GMF

taking all parameters into account.

The first GMF gives a bias changing from negative to

higher positive values at wind speeds above 3 m s�1.

The other parameterizations, which include a measure

of stability, show a bias that is nearly zero up to 10 m s�1.

All GMFs have a rather constant standard deviation.

Above 10 m s�1 the bias increases significantly. The

NNs are defined to force a total bias of zero. Due to the

insufficient number of available data at higher wind

speeds for the training of NNs, the bias is only very low

for wind speeds below 10 m s�1. This problem is solv-

able by considering for the training of the NN a uniform

wind speed distribution in the radar data.

5. Conclusions and outlook

A marine radar wind sensor, based on a new meth-

odology for wind vector measurement called WiRAR,

is described and validated with datasets from the

FINO-I research platform in the German Bight. The

system uses a marine X-band radar as sensor with HH

polarization. It is demonstrated that radar-image se-

quences of the ocean surface provide reliable informa-

tion on ocean winds.

The marine X-band radar provides time series of ra-

dar backscatter images from the ocean surface. The

radar technique thereby allows measurements under

most weather conditions. In contrast to typical in situ

sensors like anemometers, influences of the radar mea-

surements by movements of ships or platforms and lo-

cal turbulences induced by the platform installations

are negligible. With the preexisting installations of ra-

dar systems on marine structures, harbors, platforms,

and ships, the measurements can be acquired in a very

cost-efficient way.

FIG. 9. Bias (black curves) and standard deviation (gray curves) of radar-retrieved wind

speeds and in situ wind speeds over SNR, cp, air–sea temperature difference, and relative air

humidity. The solid curves give the parameterizations without considering additional sea

state/atmospheric parameters. The dashed curves were retrieved using GMFs considering the

SNR, cp, 
�a,s, and relative air humidity. Histograms (gray filled) of all training/test datasets

are plotted.
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The NRCS of the ocean surface at X band with HH

polarization and at grazing incidence is strongly depen-

dent on the surface wind speed, wind direction, antenna

look direction, and range distance, as well as on sea

state and atmospheric conditions in the lower MABL.

This provides the opportunity to develop an algorithm

for remote measurements of surface wind vectors from

radar images.

The algorithm, WiRAR, consists of two steps. In step

one, wind directions are derived from wind-induced

streaks, which are oriented in wind direction. This is

done by determining the local gradients in the mean

NRCS image, which give the orientation of the wind

streaks, leaving a 180° ambiguity. The ambiguity is re-

moved by analyzing the movement of wind gust pat-

terns in radar-image sequences. Comparison to in situ

measurements resulted in a correlation of 0.99, with a

bias of 0.3° and a standard deviation of 12.8°.

Wind speeds are retrieved in a second step from the

dependence of the NRCS on wind speed and wind di-

rection. This dependency is parameterized by training

of an NN considering different input parameters, all

retrieved from the radar datasets: the mean NRCSs in

the crosswind direction at five different ranges (in the

crosswind direction the wind field is not disturbed by

the platform itself), the radar-retrieved wind direction,

as well as the SNR and peak wave phase speed cp,

which provide information about the sea state. This

gives already very good and practicable results with a

correlation coefficient of 0.97, a bias of 0.0 m s�1, and a

standard deviation of 0.66 m s�1.

Wind speed estimates improve significantly when

air–sea temperature is included as an additional input

parameter. This is due to the additional dependence of

the NRCS on the stability in the lower MABL. Com-

parison of radar-derived wind speeds (considering all

these parameters) to in situ wind speeds measured at

the platform at 30-m height resulted in a correlation of

0.99, with a bias of 0.0 m s�1 and a standard deviation of

0.49 m s�1.

The air humidity, which is also provided at FINO-I

along with many other meteorological parameters, has

been taken into account as an additional parameter de-

scribing the atmospheric stability. The results could

again be improved, resulting in a correlation of 0.99,

a bias of 0.0 m s�1, and a standard deviation of 0.41 m s�1.

The datasets investigated here were limited to wind

speeds up to � 16 m s�1. However, Hatten et al. (1998)

have shown that for wind speeds up to 23 m s�1 no

saturation in the NRCS occurs. Recently, more datasets

from FINO-I are being received together with collo-

cated meteorological in situ data, which will be consid-

ered for the purpose of covering a larger range of wind

speeds in the WiRAR parameterization.

Because the radar system measures the wind-induced

roughness at the ocean surface boundary layer, it in fact

gives a measure of the wind-induced surface stress or

momentum flux and therefore the friction velocity u�.

Based on this, in a next step, WiRAR will be taken

directly for measuring u� (Horstmann and Dankert

2006). The main advantage is that no additional air–

water–temperature or humidity measurements are required.

Acknowledgments. All radar-image sequences were

kindly made available by the company Ocean-Waves

(Lüneburg, Germany). The in situ data were kindly

provided by the Bundesamt für Seeschifffahrt und Hy-

drographie (BSH) (Hamburg, Germany).

REFERENCES

Alpers, W., and K. Hasselmann, 1982: Spectral signal to clutter

and thermal noise properties of ocean wave imaging synthetic

aperture radars. Int. J. Remote Sens., 3, 423–446.

Askari, F., T. Donato, and J. Morrison, 1996: Detection of ocean

wave fronts at low grazing angles using an X-band real ap-

erture radar. J. Geophys. Res., 101, 20 883–20 898.

Bell, P., 1999: Shallow water bathymetry derived from an analysis

of X-band marine radar images of waves. Coastal Eng., 37,

513–527.

Borge, J. N., K. Hessner, and K. Reichert, 1999: Estimation of the

significant wave height with X-band nautical radars. Proc.

18th Int. Conf. on Offshore Mechanics and Arctic Engineering

FIG. 10. Bias (black curve) and std dev (gray curve) in wind

speed of comparisons of anemometer wind speeds to radar wind

speeds for intervals of 0.2 m s�1. Radar wind speeds are deter-

mined without additional sea state or stratification parameters

(solid curves), and considering additionally the sea state (dashed

curves), the stratification conditions (dash–dot curves), or all pa-

rameters (dotted curve). In addition the histogram of wind speeds

is plotted.

SEPTEMBER 2007 D A N K E R T A N D H O R S T M A N N 1641



(OMAE’99), OMAE99/OSU-3063, St. John’s, NL, Canada,

American Society of Mechanical Engineers.

——, G. Rodríguez, K. Hessner, and P. González, 2004: Inversion

of marine radar images for surface wave analysis. J. Atmos.

Oceanic Technol., 21, 1291–1300.

Chaudhry, A., and R. Moore, 1984: Tower based backscatter mea-

surements of the sea. IEEE J. Oceanic Eng., 9, 309–316.

Dankert, H., 2003: Retrieval of surface-current fields and

bathymetries using radar-image sequences. Proc. Int. Geo-

science and Remote Sensing Symp. (IGARSS’03), Toulouse,

France, Geoscience and Remote Sensing Society, 2671–2673.

——, and W. Rosenthal, 2004: Ocean surface determination from

X-band radar-image sequences. J. Geophys. Res., 109,

C04016, doi:10.1029/2003JC002130.

——, J. Horstmann, S. Lehner, and W. Rosenthal, 2003a: Detec-

tion of wave groups in SAR images and radar-image se-

quences. IEEE Trans. Geosci. Remote Sens., 41, 1437–1446.

——, ——, and W. Rosenthal, 2003b: Ocean wind fields retrieved

from radar-image sequences. J. Geophys. Res., 108, 3352,

doi:10.1029/2003JC002056.

——, ——, and ——, 2004: Ocean surface winds retrieved from

marine radar-image sequences. Proc. Int. Geoscience and Re-

mote Sensing Symp. (IGARSS’04), Anchorage, AK, Geo-

science and Remote Sensing Society, 1903–1906.

——, ——, and ——, 2005: Wind and wave field measurements

using marine X-band radar-image sequences. J. Oceanic

Eng., 30, 534–542.

Donelan, M. A., 1990: Air–sea interaction. The Sea, B. LeMe-

haute and D. M. Hanes, Eds., Ocean Engineering Science,

Vol. 9, Wiley and Sons, 239–292.

Drennan, W., H. Graber, D. Hauser, and C. Quentin, 2003: On

the wave age dependence of wind stress over pure wind seas.

J. Geophys. Res., 108, 8062, doi:10.1029/2000JC000715.

Drobinski, P., and R. Foster, 2003: On the origin of near-surface

streaks in the neutrally-stratified planetary boundary layer.

Bound.-Layer Meteor., 108, 247–256.

Geenaert, G., 1990: Measurements of the angle between the wind

stress vector in the surface layer over the North Sea. J. Geo-

phys. Res., 91, 7667–7679.

Hatten, H., F. Ziemer, J. Seemann, and J. Nieto-Borge, 1998:

Correlation between the spectral background noise of a nau-

tical radar and the wind vector. Proc. 17th Int. Conf. on Off-

shore Mechanics and Arctic Engineering (OMAE’98), Lisbon,

Portugal, American Society of Mechanical Engineers.

Horstmann, J., and W. Koch, 2005: Measurement of ocean surface

winds using synthetic aperture radars. J. Oceanic Eng., 30,

508–515.

——, and H. Dankert, 2006: Estimation of friction velocity using

tower based marine radars. Proc. Int. Geoscience and Remote

Sensing Symp. (IGARSS’06), Denver, CO, Geoscience and

Remote Sensing Society, 1323–1326.

——, W. Koch, S. Lehner, and R. Tonboe, 2002: Ocean winds

from RADARSAT-1 ScanSAR. Can. J. Remote Sens., 28,

524–533.

——, H. Schiller, J. Schulz-Stellenfleth, and S. Lehner, 2003:

Global wind speed retrieval from SAR. IEEE Trans. Geosci.

Remote Sens., 41, 2277–2286.

——, D. Thompson, F. Monaldo, S. Iris, and H. Graber, 2005: Can

synthetic aperture radars be used to estimate hurricane force

winds? Geophys. Res. Lett., 32, l22801, doi:10.1029/

2005GL023992.

Izquierdo, P., J. C. N. Borge, C. G. Soares, R. S. González, and

G. R. Rodríguez, 2004: Comparison of wave spectra from

nautical radar images and scalar buoy data. J. Waterw., Port,

Coastal, Oceanic Eng., 131, 123–131.

Keller, W. C., W. J. Plant, and D. Weissman, 1985: The depen-

dence of X band microwave sea return on atmospheric sta-

bility and sea state. J. Geophys. Res., 90, 1019–1029.

——, V. Wismann, and W. Alpers, 1989: Tower-based measure-

ments of the ocean C-band radar backscattering cross sec-

tion. J. Geophys. Res., 94, 924–930.

——, ——, R. A. Petitt, and E. A. Terray, 1994: Microwave back-

scatter from the sea: Modulation of received power and

Doppler bandwith by long waves. J. Geophys. Res., 99, 9751–

9766.

Koch, W., 2004: Directional analysis of SAR images aiming at

wind direction. IEEE Trans. Geosci. Remote Sens., 42, 702–

710.

Komen, G., P. A. E. M. Janssen, V. Makin, and W. Oost, 1998: On

the sea state dependence of the Charnock parameter. Global

Atmos. Ocean Syst., 5, 367–388.

Lee, P., and Coauthors, 1995: X-band microwave backscattering

from ocean waves. J. Geophys. Res., 100, 2591–2611.

——, J. Barter, E. Caponi, M. Caponi, C. Hindman, B. Lake, and

H. Rungaldier, 1996: Wind-speed dependence of small-

grazing-angle microwave backscatter from sea surfaces.

IEEE Trans. Antennas Propag., 44, 333–340.

Lyzenga, D., A. Maffet, and R. Shuchman, 1983: The contribution

of wedge scattering to the radar cross section of the ocean

surface. IEEE Trans. Geosci. Remote Sens., GE-21, 502–505.

Phillips, O. M., 1977: Dynamics of the Upper Ocean. 2d ed. Cam-

bridge University Press, 336 pp.

Plant, W. J., 1989: The modulation transfer function, concept and

applications. Radar Scattering from Modulated Wind Waves,

G. J. Komen and W. A. Oost, Eds., Kluwer Academic, 155–

172.

Richaume, P., F. Badran, M. Crepon, C. Mejia, H. Roquet, and S.

Thiria, 2000: Neural network wind retrieval from ERS-1 scat-

terometer data. J. Geophys. Res., 105, 8737–8751.

Senet, C., J. Seemann, and F. Ziemer, 2001: The near-surface

current velocity determined from image sequences of the sea

surface. IEEE Trans. Geosci. Remote Sens., 39, 492–505.

Stewart, R., 1974: The air–sea momentum exchange. Bound.-

Layer Meteor., 6, 151–167.

Stoker, J., 1957: Water Waves: The Mathematical Theory with Ap-

plications. Wiley-InterScience, 567 pp.

Trizna, D., 1997: A model for Brewster angle effects on sea sur-

face illumination for sea scatter studies. IEEE Trans. Geosci.

Remote Sens., 35, 1232–1244.

——, 2001: Errors in bathymetric retrievals using linear dispersion

in 3-d FFT analysis of marine radar ocean wave imagery.

IEEE Trans. Geosci. Remote Sens., 39, 2465–2469.

——, and D. Carlson, 1996: Studies of dual polarized low grazing

angle radar sea scatter in nearshore regions. IEEE Trans.

Geosci. Remote Sens., 34, 747–757.

Wetzel, L., 1990: Electromagnetic scattering from the sea at low

grazing angles. Surface Waves and Fluxes, G. L. Geernaert

and W. L. Plant, Eds., Vol. 2, Remote Sensing, Kluwer Aca-

demic, 109–171.

Young, I., W. Rosenthal, and F. Ziemer, 1985: A three-

dimensional analysis of marine radar images for the determi-

nation of ocean wave directionality and surface currents. J.

Geophys. Res., 90, 1049–1059.

Ziemer, F., 1991: Directional spectra from shipboard navigation

radar during LEWEX. Directional Ocean Wave Spectra, R. C.

Beal, Ed., The Johns Hopkins University Press, 80–84.

1642 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 24


