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ABSTRACT

Context. Ongoing measurements of the cosmic radiation (nuclear, electronic, and γ-ray) are providing additional insight into cosmic-
ray physics. A comprehensive picture of these data relies on an accurate determination of the transport and source parameters of
propagation models.
Aims. A Markov Chain Monte Carlo method is used to obtain these parameters in a diffusion model. By measuring the B/C ratio
and radioactive cosmic-ray clocks, we calculate their probability density functions, placing special emphasis on the halo size L of the
Galaxy and the local underdense bubble of size rh. We also derive the mean, best-fit model parameters and 68% confidence level for
the various parameters, and the envelopes of other quantities.
Methods. The analysis relies on the USINE code for propagation and on a Markov Chain Monte Carlo technique previously developed
by ourselves for the parameter determination.
Results. The B/C analysis leads to a most probable diffusion slope δ = 0.86+0.04

−0.04 for diffusion, convection, and reacceleration, or
δ = 0.234+0.006

−0.005 for diffusion and reacceleration. As found in previous studies, the B/C best-fit model favours the first configuration,
hence pointing to a high value for δ. These results do not depend on L, and we provide simple functions to rescale the value of the
transport parameters to any L. A combined fit on B/C and the isotopic ratios (10Be/9Be, 26Al/27Al, 36Cl/Cl) leads to L = 8+8

−7 kpc and
rh = 120+20

−20 pc for the best-fit model. This value for rh is consistent with direct measurements of the local interstallar medium. For the
model with diffusion and reacceleration, L = 4+1

−1 kpc and rh = 3+70
−3 pc (consistent with zero). We vary δ, because its value is still

disputed. For the model with Galactic winds, we find that between δ = 0.2 and 0.9, L varies from O(0) to O(2) if rh is forced to
be 0, but it otherwise varies from O(0) to O(1) (with rh ∼ 100 pc for all δ >∼ 0.3). The results from the elemental ratios Be/B, Al/Mg,
and Cl/Ar do not allow independent checks of this picture because these data are not precise enough.
Conclusions. We showed the potential and usefulness of the Markov Chain Monte Carlo technique in the analysis of cosmic-ray
measurements in diffusion models. The size of the diffusive halo depends crucially on the value of the diffusion slope δ, and also on
the presence/absence of the local underdensity damping effect on radioactive nuclei. More precise data from ongoing experiments are
expected to clarify this issue.

Key words. methods: statistical – cosmic rays

1. Introduction

Almost a century after the discovery of cosmic radiation,
the number of precision instruments devoted to Galactic cos-
mic ray (GCR) measurements in the GeV-TeV energy range
is unprecedented. The GeV γ-ray diffuse emission is being
measured by the F satellite (The Fermi-LAT Collaboration
2009), while the TeV diffuse emission is within reach of ground
arrays of Cerenkov Telescopes (e.g., H, Aharonian et al.
2006; M, Abdo et al. 2008). The high-energy spectrum
of electrons and positrons uncovered some surprising and still

debated features (A, Chang et al. 2008; F, Abdo et al.
2009; H, Aharonian et al. 2008, 2009; P, Adriani et al.
2009a; P-, Torii et al. 2008). For nuclei, many experi-
ments (satellites and balloon-borne) have acquired data, that re-
main to be published (C, Ahn et al. 2008; T, Ave
et al. 2008; A, Panov et al. 2008; P). Anti-protons
are also being measured (P, Adriani et al. 2009b) and
are targets for future satellite and balloon experiments (A-
02, B-Polar). Anti-deuteron detection should be achieved in
a few years (A-02, Choutko & Giovacchini 2008; G, Fuke
et al. 2008). A complementary view of cosmic-ray propagation
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is given by anisotropy measurements from ground experiments
of high energy (e.g., the Tibet Air Shower Arrays, Amenomori
et al. 2006; Super-Kamiokande-I detector, Guillian et al. 2007;
E-, Aglietta et al. 2009). This multi-messenger and multi-
energy picture will soon be completed: neutrino detectors are
still in development (e.g., I, K3e), but identifying
the sources of the GCRs should be within reach a few years after
data collection (Halzen et al. 2008).

All these measurements are probes to understanding and un-
covering the sources of cosmic rays, the mechanisms of propa-
gation, and the interaction of CRs with the gas and the radiation
field of the Galaxy (Strong et al. 2007). It is important to de-
termine the propagation parameters, because their value can be
compared to theoretical predictions for the transport in turbu-
lent magnetic fields (e.g., Casse et al. 2002; Ptuskin et al. 2006;
Minnie et al. 2007; Tautz et al. 2008; Yan & Lazarian 2008, and
references therein), or related to the source spectra predicted
in acceleration models (e.g., Marcowith et al. 2006; Uchiyama
et al. 2007; Plaga 2008; Reville et al. 2008; Reynolds 2008,
and references therein). The transport and source parameters are
also related to Galactic astrophysics (e.g., nuclear abundances
and stellar nucleosynthesis – Silberberg & Tsao 1990; Webber
1997), and to dark matter indirect detection (e.g., Donato et al.
2004; Delahaye et al. 2008).

In the first paper of this series (Putze et al. 2009, here-
after Paper I), we implemented a Markov Chain Monte Carlo
(MCMC) to estimate the probability density function (PDF) of
the transport and source parameters. This allowed us to constrain
these parameters with a sound statistical method, to assess the
goodness of fit of the models, and as a by-product, to provide
68% and 95% confidence level (CL) envelopes for any quantity
we are interested in (e.g., B/C ratio, anti-proton flux). In Paper I,
the analysis was performed for the simple Leaky Box Model
(LBM) to validate the approach. We extend the analysis for the
more realistic diffusion model, by considering constraints set by
radioactive nuclei. The model is the minimal reacceleration one,
with a constant Galactic wind perpendicular to the disc plane
(e.g., Jones et al. 2001; Maurin et al. 2001), allowing for a cen-
tral underdensity of gas (of a few hundreds of pc) around the
solar neighbourhood (Donato et al. 2002).

The paper is organised as follows. In Sect. 2, we recall the
main ingredients of the diffusion model, in particular the so-
called local bubble feature. We briefly describe the MCMC tech-
nique in Sect. 3 (the full description was given in Paper I). We
then estimate the transport parameters in the 1D and 2D geom-
etry. In Sect. 4, this is performed at fixed L (halo size of the
Galaxy), using the B/C ratio only. The analysis is extended in
Sect. 5 by taking advantage of the radioactive nuclei to break
the well-known degeneracy between the parameters K0 (normal-
isation of the diffusion coefficient) and L. We then present our
conclusions in Sect. 6.

2. Propagation model

The set of j = 1 . . .n equations governing the propagation of n
CR nuclei in the Galaxy is described in Berezinskii et al. (1990).
It is a generic diffusion/convection equation with energy gains
and losses. Depending on the assumptions made about the spa-
tial and energy dependence of the transport coefficients, semi-
analytical or fully numerical procedures are necessary to solve
this set of equations. The solution also depends on the boundary
conditions, hence on the geometry of the model for the Galaxy.

Several diffusion models are considered in the literature
(Webber et al. 1992; Bloemen et al. 1993; Strong & Moskalenko
1998; Jones et al. 2001; Maurin et al. 2001; Berezhko et al. 2003;

Shibata et al. 2006; Evoli et al. 2008; Farahat et al. 2008). We
use a popular two-zone diffusion model with minimal reaccel-
eration, where the Galactic wind is constant and perpendicular
to the Galactic plane. The 1D and 2D version of this model are
discussed, e.g., in Jones et al. (2001) and Maurin et al. (2001).
For the sake of legibility, the solutions are given in Appendix A.

Below, we reiterate the assumptions of the model, and
describe the free parameters that we constrain in this study
(Sect. 2.4).

2.1. Transport equation

The differential density N j of the nucleus j is a function of the to-
tal energy E and the position r in the Galaxy. Assuming a steady
state, the transport equation can be written in a compact form as

L jN j +
∂

∂E

(

b jN j − c j ∂N
j

∂E

)

= S j. (1)

The operator L (we omit the superscript j) describes the diffu-
sion K(r, E) and the convection V(r) in the Galaxy, but also the
decay rate Γrad(E) = 1/(γτ0) if the nucleus is radioactive, and
the destruction rate Γinel(r, E) =

∑

IS M nISM(r)vσinel(E) for colli-
sions with the interstellar matter (ISM), in the form

L(r, E) = −∇ · (K∇) + ∇ · V + Γrad + Γinel. (2)

The coefficients b and c in Eq. (1) are respectively first and sec-
ond order gains/losses in energy, with

b (r, E) =

〈

dE

dt

〉

ion, coul.

− ∇.V
3

Ek

(

2m + Ek

m + Ek

)

+
(1 + β2)

E
× Kpp, (3)

c (r, E) = β2 × Kpp. (4)

In Eq. (3), the ionisation and Coulomb energy losses are
taken from Mannheim & Schlickeiser (1994) and Strong &
Moskalenko (1998). The divergence of the Galactic wind V

gives rise to an energy loss term related to the adiabatic expan-
sion of cosmic rays. The last term is a first order contribution in
energy from reacceleration. Equation (4) corresponds to a dif-
fusion in momentum space, leading to an energy gain. The as-
sociated diffusion coefficient Kpp (in momentum space) is taken
from the model of minimal reacceleration by the interstellar tur-
bulence (Osborne & Ptuskin 1988; Seo & Ptuskin 1994). It is
related to the spatial diffusion coefficient K by

Kpp × K =
4
3

V2
a

p2

δ (4 − δ2) (4 − δ) , (5)

where Va is the Alfvénic speed in the medium.
The source term S j is a combination of i) primary sources

q j(r, E) of CRs (e.g., supernovae); ii) secondary fragmentation-
induced sources

∑mk>m j

k
nISM(r)vσk→ j

frag (E)Nk(r, E); and iii) sec-

ondary decay-induced sources
∑

k Nk(r, E)/(γτk→ j

0 ). In particu-
lar, the secondary contributions link one species to all heavier
nuclei, coupling together the n equations. However, the matrix
is triangular and one possible approach is to solve the equation
starting from the heavier nucleus (which is always assumed to
be a primary).
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Fig. 1. Sketch of the model: sources and interactions (including energy
losses and gains) are restricted to the thin disc ∝2 hδ(r). Diffusion K and
convection Vc transport nuclei in both the disc (half-height h) and the
halo (half-height L). The Galaxy radial extension is R. The local bubble
is featured to be a cavity of radius rh in the disc devoid of gas.

2.2. Geometry of the Galaxy and simplifying assumptions

The Galaxy is modelled to be a thin disc of half-thickness h,
which contains the gas and the sources of CRs. This disc is em-
bedded in a cylindrical diffusive halo of half-thickness L, where
the gas density is assumed to be 0. CRs diffuse into both the disc
and the halo independently of their position. A constant wind
Vc perpendicular to the Galactic plane is also considered. This is
summarised in Fig. 1 (see next section for the definition of rh).

We use the δ(z) approximation introduced in Jones (1979),
Ptuskin & Soutoul (1990), and Webber et al. (1992). Considering
the radial extension R of the Galaxy to be either infinite or fi-
nite leads to the 1D version or 2D version of the model, re-
spectively. The corresponding sets of equations (and their so-
lutions) obtained after these simplifications are presented in
Appendix A. These assumptions allow for semi-analytical so-
lutions of the problem, as the interactions (destruction, spalla-
tions, energy gain and losses) are restricted to the thin disc. The
gain is in the computing time, which is a prerequisite for the
use of the MCMC technique, where several tens of thousands of
models are calculated. These semi-analytical models reproduce
all salient features of full numerical approaches (e.g., Strong &
Moskalenko 1998), and they are useful for systematically study-
ing the dependence on key parameters, or some systematics of
the parameter determination (Maurin et al. 2010).

We note that most of the results of the paper are based on
the 1D geometry (solutions only depend on z), which is less
time-consuming than the 2D one in terms of computing time1.
The parameter degeneracy is also more easily extracted and un-
derstood in this case (Jones et al. 2001; Maurin et al. 2006).
Nevertheless, the results for the 2D geometry are also reported,
as it has been used in a series of studies inspecting stable nuclei
(Maurin et al. 2001, 2002), β-radioactive nuclei (Donato et al.
2002), standard anti-nuclei (Donato et al. 2001, 2008, 2009) and
positrons (Delahaye et al. 2009). It has also been used to set con-
straints on dark matter annihilations in anti-nuclei (Donato et al.
2004), and positrons (Delahaye et al. 2008). The reader is re-
ferred to these papers, and especially Maurin et al. (2001) for
more details and references about the 2D case.

1 The 2D solution is based on a Bessel expansion/resummation
(see Eq. (A.14)). For each Bessel order, an equation similar to that for
the 1D geometry needs to be solved. Nine Bessel orders are in many
cases enough to ensure convergence (Maurin et al. 2001), but at least
100 orders are required in the general case, which multiply the comput-
ing time by roughly the same amount.

2.3. Radioactive species and the local bubble

Our model does not take into account all the observed irregular-
ities of the gas distribution, such as holes, chimneys, shell-like
structures, and disc flaring. The main reason is that as far as sta-
ble nuclei are concerned, only the average grammage crossed
is relevant when predicting their flux (which motivates LBM).
As such, the thin-disc approximation is a good trade-off be-
tween having a realistic description of the structure of the Galaxy
and simplicity.

However, the local distribution of gas affects the flux cal-
culation of radioactive species (Ptuskin et al. 1997; Ptuskin &
Soutoul 1998; Donato et al. 2002). We consider a radioactive nu-
cleus that diffuses in an unbound volume and decays with a rate
1/(γτ0). In spherical coordinates, appropriate to describe this sit-
uation, the diffusion equation reads

− K△rG +
G

γτ0
= δ(r). (6)

The solution for the propagator G (the flux is measured at r = 0
for simplicity) is

G(r
′) ∝ e−r′/

√
Kγτ0

r′
· (7)

Secondary radioactive species, such as 10Be, originate from the
spallations of the CR protons (and He) with the ISM. We model
the source term to be a thin gaseous disc, except in a circu-
lar region of radius rh at the origin. In the δ(z) approximation
(see Fig. 1) and in cylindrical coordinates,

Q(r, z) ∝ Θ(r − rh)δ(z), (8)

where Θ is the Heaviside function. The flux of a radioactive
species is thus given by (we rewrite the propagator in cylindrical
coordinates)

N(r = z = 0) ∝
∫ ∞

0

∫ +∞

−∞
G(
√

r′2 + z′2) Q(r′, z′) r′dr′dz′. (9)

The ratio of the flux calculated for a cavity/hole rh to that of the
flux without hole (rh = 0) is

Nrh

Nrh=0
= exp

(

−rh√
Kγτ0

)

= exp

(

−rh

lrad

)

· (10)

The quantity lrad =
√

Kγτ0 is the typical distance on which
a radioactive nucleus diffuses before decaying. Using K ≈
1028 cm2 s−1 and τ ≈ 1 Myr, the diffusion length is lrad ≈ 200 pc.
Hence, in principal, any underdensity on a scale rh ∼ 100 pc
about the Sun leads to an exponential attenuation of the flux
of radioactive nuclei. This attenuation is both energy-dependent
and species-dependent. It is energy-dependent because it de-
creases with the energy as the time-of-flight of a radioactive nu-
cleus is boosted by both its Lorentz factor and the increase in
the diffusion coefficient. It is species-dependent because nuclei
half-lives for the standard Z < 30 cosmic-ray clocks range from
0.307 Myr for 36Cl to 1.51 Myr for 10Be.

In this paper, we model the local bubble to be this simple
hole in the gaseous disc, as shown in Fig. 1. The exponential de-
crease in the flux of this modified DM, as given by Eq. (10), is di-
rectly plugged into the solutions for the standard DM (rh = 0).
In principle, i) the hole has also an impact on stable species as
it decreases the amount of matter available for spallations; and
ii) in the 2D geometry, a hole at R⊙ = 8 kpc breaks down the
cylindrical geometry. However, in practice, Donato et al. (2002)
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found that the first effect is minor, and that the hole can always be
taken to be the origin of the Galaxy (the impact of the R bound-
ary being negligible for radioactive species).

Other subleties exist, which were not considered in Donato
et al. (2002). Indeed, the damping in the solar neighbour-
hood – combined with the production of the radioactive species
matching the data at low energy – means that at intermediate
GeV/n energies, the flux of this radioactive species is higher in
the modified model (with rh � 0) than in the standard one (with
rh = 0). It also means that everywhere else in the Galactic disc,
at all energies, the radioactive fluxes are higher in the modified
model (with damping). There are two consequences: i) all spalla-
tive products from these radioactive nuclei originate in an effec-
tive diffusion region in the disc (Taillet & Maurin 2003), the size
of which may be much larger than the size of the underdense
bubble. In this case, these products ought to be calculated from
the undamped fluxes; ii) the decay products of these radioac-
tive nuclei (e.g., 10B, which originates from the β-decay of 10Be)
are stable species that originate in an effective diffusion sphere
(decay can occur not only in the disc, but in the halo). Both
these effects must be considered because their contributions po-
tentially affect the calculation, e.g., of the B/C and Be/B ratios
(by means of the B flux), which are used to fit the models. We
confirm that taking spallative products from the damped or un-
damped radioactive fluxes left these ratios unchanged. On the
other hand, for the decay products, the effect is of the order of
1−10%, which is in general enough to change the values of the
best-fit parameters. However, the average flux (over the effective
diffusion zone) from which the decay products originate lies be-
tween the damped and undamped values: the lower the effective
diffusive sphere, the closer the flux is to the damped one. In par-
ticular, at low energy, when convection is allowed, the diffusion
zone can be small (Taillet & Maurin 2003).

To keep the approach simple, we use here the damped flux of
radioactive species for all spallative and decay products (as was
implicitly assumed in Donato et al. 2002). This approach is ex-
pected to provide the maximal possible size for rh (if a non-null
value is preferred by the fit).

2.4. Input ingredients and free parameters of the study

2.4.1. Gas density

The gas density scale height strongly varies with r depending on
the form considered – neutral, molecular, or ionised (see, e.g.,
Ferrière 2001). We use the surface density measured in the so-
lar neighbourhood as a good estimate of the average gas in the
Galactic disc. We set nISM = 1 cm−3, which corresponds to a sur-
face density ΣISM = 2 hnISM ∼ 6 × 1020 cm−2 (Ferrière 2001).
The number fraction of H and He is taken to be 90% and 10%, re-
spectively. The ionised-hydrogen space-averaged density may be
identified with the free-electron space-averaged density, which
is the sum of the contributions of HII regions and the diffuse
component (Gómez et al. 2001; Ferrière 2001). The intensity
of the latter is well measured 0.018 ± 0.002 cm−3 (Berkhuijsen
et al. 2006; Berkhuijsen & Müller 2008), whereas the former
depends strongly on the Galactocentric radius r (Anderson &
Bania 2009). For the total electron density, we choose to set
〈ne−〉 = 0.033 and Te ∼ 104 K (Nordgren et al. 1992).

The disc half-height is set to be h = 100 pc. It is not a phys-
ical parameter per se in the δ(z) approximation, although it is
related to the phenomena occurring in the thin disc. Physical
parameters are related to the surface density, which is easily
rescaled from that calculated setting h = 100 pc (should we use

a different h value). In the 2D geometry, the boundary is set to
be R = 20 kpc and the sun is located at R⊙ = 8.0 kpc.

2.4.2. Fragmentation cross-sections

In Paper I, the sets of fragmentation cross-sections were taken
from the semi-empirical formulation of Webber et al. (1990) up-
dated in Webber et al. (1998) (see also Maurin et al. 2001, and
references therein). In this paper, they are replaced by the 2003
version, as given in Webber et al. (2003). Spallations on He are
calculated with the parameterisation of Ferrando et al. (1988).

2.4.3. Source spectrum

We assume that a universal source spectrum for all nuclei exists,
and that it has a simple power-law description. As in Paper I, we
assume that Q(E) ∝ βηR−α. The parameter α is the spectral in-
dex of the sources and η encodes the behaviour of the spectrum
at low energy. The normalisations of the spectra are given by the
source abundances q j, which are renormalised during the propa-
gation step to match the data at a specified kinetic energy per nu-
cleon (usually ∼10 GeV/n). The correlations between the source
and the transport parameters and their impact on the transport
parameter determination were discussed in Paper I. In this study,
we set η = −1 and γ = α+δ = 2.65 (Ave et al. 2008). Constraints
on the source spectra from the study of the measured primary
fluxes are left to a subsequent paper (Donato et al., in prep.).

2.4.4. Free parameters

We have two geometrical free parameters

– L, the halo size of the Galaxy (kpc);
– rh, the size of the local bubble (kpc), which is most of the

time set to be 0 (to compare with models in the literature
that do not consider any local underdensity);

and four transport ones

– K0, the normalisation of the diffusion coefficient (in unit
of kpc2 Myr−1);

– δ, the slope of the diffusion coefficient;
– Vc, the constant convective wind perpendicular to the disc

(km s−1);
– Va, the Alfvénic speed (km s−1) regulating the reacceleration

strength (see Eq. (5)).

The diffusion coefficient is taken to be

K(E) = βK0Rδ. (11)

3. MCMC

The MCMC method, based on the Bayesian statistics, is used
here to estimate the full distribution – the so-called conditional
probability-density function (PDF) – given some experimental
data (and some prior density for these parameters). We sum-
marise below the salient features of the MCMC technique. A de-
tailed description of the method can be found in Paper I. The is-
sue of the efficiency, which was not raised in Paper I, is discussed
in Appendix C.

The Bayesian approach aims to assess the extent to which an
experimental dataset improves our knowledge of a given theo-
retical model. Considering a model depending on m parameters

θ ≡ {θ(1), θ(2), . . . , θ(m)}, (12)

Page 4 of 19



A. Putze et al.: An MCMC technique to sample transport and source parameters of Galactic cosmic rays. II.

we wish to determine the PDF of the parameters given the
data, P(θ|data). This so-called posterior probability quantifies
the change in the degree of belief one can have in the m pa-
rameters of the model in the light of the data. Applied to the
parameter inference, Bayes theorem reads

P(θ|data) =
P(data|θ) · P(θ)

P(data)
, (13)

where P(data) is the data probability (the latter does not depend
on the parameters and hence, can be treated as a normalisation
factor). This theorem links the posterior probability to the likeli-
hood of the data L(θ) ≡ P(data|θ) and the so-called prior prob-
ability, P(θ), which indicates the degree of belief one has before
observing the data. The technically difficult point of Bayesian
parameter estimates lies in the determination of the individual
posterior PDF, which requires an (high-dimensional) integra-
tion of the overall posterior density. Thus an efficient sampling
method for the posterior PDF is mandatory.

In general, MCMC methods attempt to studying any target
distribution of a vector of parameters, here P(θ|data), by gener-
ating a sequence of n points/steps (hereafter a chain)

{θi}i=1,...,n ≡ {θ1, θ2, . . . , θn}. (14)

Each θi is a vector of m components, e.g., as defined in Eq. (12).
In addition, the chain is Markovian in the sense that the distribu-
tion of θn+1 is influenced entirely by the value of θn. MCMC al-
gorithms are developed to ensure that the time spent by the
Markov chain in a region of the parameter space is proportional
to the target PDF value in this region. Here, the prescription
used to generate the Markov chains is the so-called Metropolis-
Hastings algorithm, which ensures that the stationary distribu-
tion of the chain asymptotically tends to the target PDF.

The chain analysis is based on the selection of a subset of
points from the chains (to obtain a reliable estimate of the PDF).
Some steps at the beginning of the chain are discarded (burn-
in length). By construction, each step of the chain is correlated
with the previous steps: sets of independent samples are obtained
by thinning the chain (over the correlation length). The fraction
of independent samples measuring the efficiency of the MCMC
is defined to be the fraction of steps remaining after discarding
the burn-in steps and thinning the chain. The final results of the
MCMC analysis are the target PDF and all marginalised PDFs.
They are obtained by merely counting the number of samples
within the related region of parameter space.

4. Results for stable species (fixed halo size L)

For stable species, the degeneracy between the normalisation of
the diffusion coefficient K0 and the halo size of the Galaxy L pre-
vents us from being able to constrain both parameters at the same
time. We choose to set L = 4 kpc (we also set rh = 0, i.e., stan-
dard DM). The free transport parameters are {K0, δ, Vc, Va}. The
classes of models considered are summarised in Table 1. The
reference B/C dataset (denoted dataset F) used for the analysis
is described in Appendix D.1.

4.1. PDF for the transport parameters

We begin with the PDFs of the parameters based on the B/C
constraint (dataset F) for the various classes of models (I−III).
The PDFs are shown in Fig. 2.

The first important feature is that the marginal distributions
of the transport parameters (diagonals) are mostly Gaussian.

Table 1. Classes of models tested in the paper.

Model Transport parameters Description
I {K0, δ, Vc} Diffusion + convection
II {K0, δ, Va} Diffusion + reacceleration
III {K0, δ, Vc, Va} Diff. + conv. + reac.

From the off-diagonal distributions, we remark that K0 and δ are
negatively correlated. This originates in the low-energy relation
K(E) ∝ K0Rδ, which should remain approximately constant to
reproduce the bulk of the data at GeV/n energy. The diffusion
slope δ is negatively correlated with Va, which is related to a
smaller δ being obtained if more reacceleration is included. On
the other hand, the positive correlation between δ and Vc indi-
cates that larger δ are expected for larger wind velocities.

We show in Table 2 the most probable values of the trans-
port parameters, as well as their uncertainties, corresponding to
68% confidence levels (CL) of the marginalised PDFs. The pre-
cision to which the parameters are obtained is excellent, ranging
from a few % to 10% at most (for the slope of the diffusion coef-
ficient δ in III). This corresponds to statistical uncertainties only.
These uncertainties are of the order of, or smaller than system-
atics generated from uncertainties in the input ingredients (see
details in Maurin et al. 2010).

As found in previous studies (e.g., Lionetto et al. 2005), for
pure diffusion/reacceleration models (II), the value of the dif-
fusion slope δ found is low (≈0.23 here). When convection is
included (I and III), δ is large (≈0.8−0.9). This scatter in δ was
already observed in Jones et al. (2001), who also studied dif-
ferent classes of models. The origin of this scatter is consistent
with the aforementioned correlations in the parameters (see also
Maurin et al. 2010).

The best-fit model parameters (which are not always the
most probable ones) are given in Table 3, along with the min-
imal χ2 value per degree of freedom, χ2

min/d.o.f. (last column).
As found in previous analyses (Maurin et al. 2001, 2002),
the DM with both reacceleration and convection reproduces the
B/C data more accurately than without: χ2/d.o.f. = 1.47 for III,
4.90 for II, and 11.6 for I. The B/C ratio associated with these
optimal χ2 values are displayed with the data in Fig. 3. We note
that the poor fit for II (compared to III) is explained by the de-
parture of the model prediction from high-energy HEAO-3 data.

4.2. Sensitivity to the choice of the B/C dataset

For comparison purposes, we now focus on several datasets for
the B/C data. Low-energy data points include ACE data, taken
during the solar minimum period 1997−1998 (de Nolfo et al.
2006). Close to submission of this paper, another ACE analysis
was published (George et al. 2009). The 1997−1998 data points
were reanalysed and complemented with data taken during the
solar maximum period 2001−2003. The AMS-01 also provided
B/C data covering almost the same range as the HEAO-3 data
(Tomassetti & AMS-01 Collaboration 2009). Hence, for this
section only, we attempt to analyse other B/C datasets that in-
clude these components:

– A: HEAO-3 [0.8 − 40 GeV/n], 14 data points;
– C: HEAO-3 + low energy [0.3−0.5 GeV/n], 22 data points;
– F: HEAO-3 + low + high energy [0.2−2 TeV/n], 31 data

points;
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Fig. 2. From top to bottom: posterior PDFs of models I−III using
the B/C constraint (dataset F). The diagonals show the 1D marginalised
PDFs of the indicated parameters. Off-diagonal plots show the 2D
marginalised posterior PDFs for the parameters in the same column and
same line respectively. The colour code corresponds to the regions of in-
creasing probability (from paler to darker shade), and the two contours
(smoothed) delimit regions containing, respectively, 68% and 95% (in-
ner and outer contour) of the PDF.

– G1: as F, but with new ACE 1997−1998 data, 31 data points;
– G2: as F, but with new ACE 2001−2003 data only, 31 data

points;

Table 2. Most probable values for B/C data only (L = 4 kpc).

Model K0 × 102 δ Vc Va

Data (kpc2 Myr−1) (km s−1) (km s−1)

I-F 0.42+0.03
−0.04 0.93+0.02

−0.03 13.5+0.3
−0.3 · · ·

II-F 9.7+0.3
−0.2 0.234+0.006

−0.005 · · · 73+2
−2

III-F 0.46+0.08
−0.06 0.86+0.04

−0.04 18.9+0.3
−0.4 38+2

−2

Table 3. Best-fit model parameters for B/C data only (L = 4 kpc).

Model Kbest
0 × 102 δbest Vbest

c Vbest
a χ2/d.o.f.

Data (kpc2 Myr−1) (km s−1) (km s−1)
I-F 0.42 0.93 13.5 . . . 11.2
II-F 9.74 0.23 . . . 73.1 4.68
III-F 0.48 0.86 18.8 38.0 1.47

Fig. 3. Best-fit ratio for model I (blue-dotted line), II (red-dashed line),
and model III (black-solid line) using dataset F: IMP7-8, Voyager1&2,
ACE-CRIS, HEAO-3, Spacelab, and CREAM. The curves are modu-
lated with Φ = 250 GV (and Φ = 225 GV at low energy). The corre-
sponding best-fit parameters are gathered in Table 3.

– G1/2: using both 1997−1998 and 2001−2003 ACE data,
37 data points;

– H: as F, but HEAO-3 replaced by AMS-01 data, 27 data
points.

The data are shown in Fig. 4. Thanks to the high level of modula-
tion for the 2001−2003 ACE data, the IS (demodulated) B/C ra-
tio covers nicely the gap between HEAO-3 and lower energy
data. HEAO-3 and AMS-01 data also show consistency across
their whole energy range.

The best-fit model parameters for these data are shown in
Table 4. The low-energy data play an important part in the fit-
ting procedure: δ decreases by 0.1 when going from III-A to
III-C, and the diffusion normalisation is decreased. When the
CREAM data at higher energy are taken into account (III-F), the
best-fit diffusion slope δ again becomes slightly lower (from 0.89
to 0.86), but CREAM data uncertainty is still too important to
be conclusive. The impact of the low-energy ACE reanalysed
data points is seen when comparing III-F with III-G1: the scat-
ter between the derived best-fit parameters is already of the or-
der of the statistical uncertainty (see Table 2). The data taken
either during the solar minimum period (G1) or the solar max-
imum period (G2) cover a different energy range (see Fig. 4).
The χ2

min for G2 is greater, which is not surprising, given the ab-
normal trend followed by these data (empty circles in Fig. 4).
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Fig. 4. B/C data used in this section. Shown are the IS data (rescaled
from TOA data using EIS

k
= ETOA

k
+ Φ, see Paper I). For several exper-

iments, in addition to the error bars in the ratio, we display the energy
interval from which the central energy point is obtained.

Table 4. Best-fit model parameters based on different B/C datasets.

Model Kbest
0 × 102 δbest Vbest

c Vbest
a χ2/d.o.f.

Data (kpc2 Myr−1) (km s−1) (km s−1)
III-A 2.51 1.00 21.7 35.4 2.11
III-C 0.43 0.89 18.9 36.7 1.72
III-F 0.48 0.86 18.8 38.0 1.47
III-G1 0.53 0.84 18.0 37.4 1.80
III-G2 0.46 0.85 20.0 39.6 2.73
III-G1/2 0.53 0.83 19.0 39.1 2.94
III-H 1.85 0.51 18.1 54.1 0.25

Nevertheless, it is reassuring to see that they lead to consistent
values of the transport parameters.

If we now replace the HEAO-3 data with the AMS-01 data,
the impact on the fit is striking: the best-fit diffusion slope δ
goes from 0.86 to 0.51. As discussed in Maurin et al. (2010),
HEAO-3 data strongly constrain the slope towards δ ≈ 0.8, even
if there is a systematic energy bias in the HEAO-3 data them-
selves. From the AMS-01 data, we see that there could be a
way of reconciling the presence of a Galactic wind and rea-
sonable values of δ. However, the large error bars in AMS-01
data, reflected by the low χ2/d.o.f. value, does not allow to draw
firm conclusions. Data in the same energy range from PAMELA
would be helpful in that respect. Moreover, high energy data
from subsequent CREAM flights or from the TRACER exper-
iments will be a crucial test of the diffusion slope: at TeV ener-
gies, diffusion alone is expected to shape the observed spectra,
so that the ambiguity with the effect of convection or reacceler-
ation is lifted (Castellina & Donato 2005).

4.3. Comparison of trends for the DM and for the LBM

For completeness, we briefly comment on the similarities and
differences between the results found here and in Paper I. To fol-
low the organisation of the previous sections, the comparison
with the LBM is discussed for different classes of models (I−III),
and then for different datasets (A−C). We note that the best-fit
values presented below differ slightly for those given in Paper I,
as an updated set of production cross-section is used.

We recall that in the LBM (see Paper I), the free param-
eters are the normalisation of the escape length λ0, δ, a cut-
off rigidity R0, and a pseudo-Alfvénic speed Va. The latter is

Table 5. Best-fit parameters on B/C data for the LBM.

Model Kbest
0 × 102 δbest R0 Vbest

a χ2/d.o.f.
Data (kpc2 Myr−1) (GV) (km s−1)
I-F 2.36 0.56 5.70 . . . 5.52
II-F 5.26 0.38 . . . 65.1 1.78
III-F 4.19 0.43 2.94 53.9 1.56
III-A 2.32 0.57 4.40 11.3 2.71
III-C 4.13 0.44 3.10 53.6 2.26
III-F 4.19 0.43 2.94 53.9 1.56

linked to a true speed by means of Va = Va × (hL)1/2, i.e.,
Va = 0.41/2 Va for h = 0.1 kpc and L = 4 kpc. The diffu-
sion coefficient at 1 GV is related to the escape length by means
of K0 ≈ 0.5 c × µ̄L/λ0, where we use µ = 2hnm̄ = 1.34 ×
10−3 g cm−2, leading to K0 (kpc2 Myr−1) ≈ 0.82/λ0 (g cm−2).
The LBM parameters gathered in Table 5 are obtained from the
above conversions, to ease the comparison with the DM results.

For the different classes of models (I−III), a comparison of
Table 3 with the first three rows of Table 5 indicates that the
same trend is found. For instance, model I (without reaccel-
eration) has a larger δ than those with, and model II (without
convection/rigidity-cutoff) has a smaller δ than those with. The
slope for model III (with both convection and reacceleration)
is in-between. This effect is more marked for the DM than for
the LBM. We note that model II (with reacceleration but with-
out convection) is almost consistent with a Kolmogorov spec-
trum of turbulence, but is inconsistent with the data. Concerning
the different datasets (A, C, and F), again, the same trend as for
the LBM is found (compare Table 4 and the last three rows of
Table 5).

The most striking difference between the two models (LBM
and DM) concerns their δ values. This difference can be ex-
plained in terms of non-equivalent parameterisation of the low-
energy transport coefficient (see Maurin et al. 2010, for more de-
tails). Apart from this, both the value of the Alfvénic speed and
the normalisation of the diffusion coefficient K0 in the two cases
are fairly consistent when similar values of δ are considered.

4.4. Dependence of the parameters with L

All the previous conclusions were derived for L = 4 kpc, but
hold for any other halo size. The evolution of the transport pa-
rameters with L is shown in Fig. 5 (the best-fit values are consis-
tent with those found in Maurin et al. 2002). In the three upper
figures, we have superimposed the observed dependence a para-
metric formula.

For K0 (top panel), the formula can be understood if we
consider the grammage of the DM. In the purely diffusive
regime, we have λesc ∝ L/K. This means that when we
vary L, to keep the same grammage in the equivalent LBM,
we need to vary K0 accordingly. We find that K0 = 1.08 ×
10−3(L/1 kpc)1.06 kpc2 Myr−1 instead of K0 ∝ L. The origin of
the residual L1.06 dependence is unclear. It may come from the
energy loss and gain terms.

For the reacceleration, the interpretation is also simple. From
Eq. (5), Va should scale as

√
K0, so that Va ∝

√
L. We find

Va = 18.21(L/1 kpc)0.53 km s−1. This is exactly Va ∝
√

K0,
with the dependence

√
L0.06 as above. The quantities Vc and δ

are roughly constant with L. The χ2
min surface is rather flat, al-

though a minimum is observed around L ∼ 15 kpc (the presence
of a minimum may be related to the presence of the decayed 10Be
into 10B in the B/C ratio). This flatness is a consequence of the
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Fig. 5. Best-fit parameters (III-F) as a function of the halo size of the
Galaxy (blue circles). From top to bottom: K0, Va, Vc, δ, and the associ-
ated χ2

min. In the first three figures, a parametric function matching the
observed dependence is shown (dashed-red line).

degeneracy of K0/L when only stable species are considered.
Consequently, an MCMC with L as an additional free parameter
does not converge to the stationary distribution. A sampling of
the Galactic halo size is possible if radioactive nuclei are consid-
ered to lift the above degeneracy (see Sect. 5).

4.5. Summary of stable species and generalisation
to the 2D geometry

The transport parameters for both LBM (Paper I) and 1D DM,
when fitted to existing B/C data, are consistent with both con-
vection and reacceleration. The correlations between the various
transport parameters, as calculated from the MCMC technique,
are consistent with what is expected from the relationships be-
tween DMs and the LBM (e.g., Maurin et al. 2006). From
the B/C analysis point of view, it implies that even if we are

Table 6. Best-fit model parameters on B/C data: 1D versus 2D DM
(L = 4 kpc).

Model Kbest
0 × 102 δbest Vbest

c Vbest
a χ2/d.o.f.

Data (kpc2 Myr−1) (km s−1) (km s−1)
1D II-F 9.74 0.23 . . . 73.1 4.68
2D II-F 8.56 0.24 . . . 68.6 4.67
1D III-F 0.48 0.86 18.9 38.0 1.47
2D III-F 0.42 0.86 18.7 35.5 1.46

unable to reach conclusions about the value of δ (see Maurin
et al. 2010), once this value is known, all other transport param-
eters are well constrained.

The conclusions obtained for the 1D DM naturally hold for
the 2D DM. We recall that the main difference between the 1D
and 2D geometry is that i) the spatial distribution of sources,
which was constant in 1D, is now q(r); and ii) the Galaxy has a
side-boundary at a radius taken to be R = 20 kpc. As a check,
we first used the 2D solution (presented in Appendix A.2) with
R = 20 kpc, but set q(r) to be constant. The best-fit parameters
were in agreement with those obtained from the 1D solution. We
present in Table 6 the best-fit parameters for models II and III for
L = 4 kpc in the 2D solution where q(r) follows the SN remnant
distribution of Case & Bhattacharya (1998). The values for the
1D solution are also reported for the sake of comparison. The
main difference is in the value of K0, which varies by ∼10% and
also affects Va (by means of the ratio Va/

√
K0, which is left un-

affected). This is consistent with the variations found by Maurin
et al. (2002).

5. Results for radioactive species (free halo size L)

We now attempt to lift the degeneracy between the halo size
and the normalisation of the diffusion coefficient, using radioac-
tive nuclei. The questions that we wish to address are the fol-
lowing: i) with existing data, how large are the uncertainties
in L for a given model? ii) Do radioactive nuclei provide dif-
ferent answers for models with different δ? iii) Is the mean value
(and uncertainty) for L obtained from a given isotopic/elemental
ratio consistent with or stronger constrained than that obtained
from another measured isotopic/elemental ratio? iv) How does
the presence of a local underdense bubble (modelled as a hole of
radius rh, see Sect. 2.3) affect the conclusions?

Until now, almost all studies have focused on the isotopic
ratios of 10Be/9Be, 26Al/27Al, 36Cl/Cl, and 54Mn/Mn. An alter-
native, discussed in Webber & Soutoul (1998), is to consider the
Be/B, Al/Mg, Cl/Ar, and Mn/Fe ratios. The advantage of con-
sidering these elemental ratios is that they are easier to measure
than isotopic ratios, and thus provide a wider energy range to
which we can fit the data. Taking ratios such as Be/B maximises
the effect of radioactive decay, since the numerator represents
the decaying nucleus and the denominator the decayed nucleus.
However, the radioactive contribution is only a fraction of the
elemental flux, and HEAO-3 data were found to be less con-
straining that the isotopic ratios in Webber & Soutoul (1998).

Below, we consider and compare the constraints from both
the isotopic ratios and the elemental ratios. The data used are
described in Appendix D.2. We discard 54Mn because it suffers
more uncertainties than the others in the calculation (and also
experimentally) due to the electron capture decay channel. The
free parameters for which we seek the PDF are the four trans-
port parameters {K0, δ, Vc, Va}, plus one {L} or two geometrical
parameters {L, rh}, depending on the configuration considered.
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Fig. 6. Model II (diffu-
sion/reacceleration): margina-
lised posterior PDF of the
diffusive halo size L (right
panels of the first and second
row) and the local bubble ra-
dius rh (right panel of the last
row) for the standard (rh = 0,
first row) and the modified
DM (rh � 0, second and last
row), as constrained by using
B/C and 10Be/9Be data. The
correlations between the geo-
metrical parameters L and rh

and the transport parame-
ters δ, K0, and Va, are shown in
the 2D histograms. The colour
code corresponds to the regions
of increasing probability (from
paler to darker shades), and
the two contours (smoothed)
delimit regions containing
respectively 68% and 95%
(inner and outer contour) of
the PDF.

Fig. 7. Model III (di-
ffusion/convection/reac-
celeration): same as
in Fig. 6. The trans-
port parameters are
now δ, K0, Va, and Vc,
with the geometrical
parameters L and rh.

The main results of this section are thus in identifying the PDF
of L for the standard DM, and the PDFs of both L and rh for the
modified DM.

5.1. PDFs of L and rh using isotopic measurements

We start with a simultaneous fit to B/C and 10Be/9Be, for both
model III (diffusion/convection/reacceleration), and model II
(diffusion/reacceleration), the latter being frequently used in
the literature.

5.1.1. Simultaneous fit to B/C and 10Be/9Be

The marginalised posterior PDFs of L and rh and the correlations
between these new free parameters and the propagation param-
eters of models II and III are given in the Figs. 6 and 7, respec-
tively. The most probable values of the parameters are gathered
in Table 7.

Table 7. Most probable values for models II and III for the free pa-
rameters of the local bubble radius rh and/or the Galactic halo size L
(constrained by B/C and 10Be/9Be data).

K0 × 102 δ Vc Va L rh

(kpc2 Myr−1) (km s−1) (km s−1) (kpc) (pc)

II 8.6+0.2
−0.2 0.239+0.005

−0.007 · · · 69+2
−2 [4] · · ·

II 13+2
−2 0.234+0.006

−0.005 · · · 84+5
−6 5.2+0.7

−0.6 · · ·
II 11+2

−3 0.235+0.008
−0.004 · · · 77+8

−11 4+1
−1 3+70

−3

III 0.41+0.04
−0.07 0.86+0.04

−0.03 18.7+0.4
−0.3 35+2

−2 [4] · · ·
III 6.1+0.8

−0.8 0.86+0.03
−0.05 19.4+0.4

−0.3 135+11
−10 46+9

−8 · · ·
III 0.8+1

−0.7 0.86+0.03
−0.04 18.7+0.5

−0.4 55+31
−21 8+8

−7 120+20
−20

For all configurations, the diffusion slope δ and the Galactic
wind Vc are unaffected by the addition of the free parameters L

and rh. The B/C fit is degenerate in K0/L and Va/
√

K, so that
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the values of K0 and Va vary as L varies. For model III, their
evolution follows the relations given in Fig. 5. This implies that
there is a positive correlation between K0 and Va, and K0 and L,
as seen from Figs. 6 and 7. The uncertainty in the diffusive halo
size L is smaller for II than for III. This is a consequence of the
inclusion of the constant wind, which decreases the resolution
on K0 from 2% (Model II) to 10% (Model III) – see e.g., Tables 2
or 7 – hence broadening the distribution of L.

Below, the results for the standard DM – for which rh is set
to be 0 – and those for the modified DM – for which rh is left
as an additional free parameter – are discussed separately. This
allows us to emphasise the impact of rh on the other parameters,
which is different for models II and III.

Standard DM (rh = 0): the parameter L is constrained to be be-
tween 4.6 and 5.9 kpc for model II, having a most probable value
at 5.2 kpc – a result compatible with other studies (Moskalenko
et al. 2001) – the posterior PDF of L extends from 25 to 85 kpc
for model III (most probable value at 46 kpc). In terms of statis-
tics, the best-fit model is stil model III, for which the χ2/d.o.f.
is 1.41.

Modified DM (rh � 0): the presence of a local bubble results
in an exponential attenuation of the local radioactive flux, see
Sect. 2.3 and Eq. (10). We thus expect to have a different best-fit
parameter for L in that case. The resulting posterior PDFs of L
and rh and the correlations to the propagation parameters for this
modified DM are given in Figs. 6 and 7 for models II and III
respectively. The most probable values are gathered in Table 7
(third and last lines).

As expected, the local bubble radius rh is negatively corre-
lated with the Galactic halo size L. The effect is more striking
for model III, where the favoured range for L extends from 1
to 50 kpc. The most probable value is 8+8

−7 kpc for a local bubble
radius rh = 120+20

−20 pc. The χ2/d.o.f. of this configuration is 1.28,
instead of 1.41 for the standard DM. The improvement to the fit
is statistically significant according to the Fisher criterion.

The situation for model II is different. The halo size L is
already small for the standard configuration rh = 0. Adding
the local bubble radius rh to the fit decreases the most proba-
ble value of L only slightly to 4+1

−1 kpc and the measured value
of rh is compatible with 0 pc. In addition, the χ2/d.o.f. is 3.69 and
hence poorer than for the configuration without the local bubble
feature. In this model (diffusion/reacceleration, no convection),
a local underdensity is not supported.

5.1.2. Results and comparison with fits to 26Al/27Al
and 36Cl/Cl

We repeat the analysis for the remaining isotopic ratios. The re-
sulting marginalised posterior PDFs of the Galactic halo size L
and the local underdensity rh are given in Figs. 8 and 9 for mod-
els II and III, respectively. The correlation plots with the trans-
port parameters are similar to those of Figs. 6 and 7 and are not
repeated.

Standard DM (rh = 0): as for the 10Be/9Be ratio (red-dotted
line), L is well constrained in model II at small values for
the 26Al/27Al (green-long dashed-dotted line), and 36Cl/Cl (blue
dashed-dotted line) ratios, covering slightly different but con-
sistent ranges from 4 to 14 kpc. The width of the estimated
PDFs increases when moving from the 10Be/9Be ratio to the

Fig. 8. Model II: marginalised posterior PDFs of the Galactic geom-
etry parameters for the standard DM (rh = 0, top panel) and for the
modified DM (rh � 0, bottom panels). The four curves result from the
combined analysis of B/C plus isotopic ratios of radioactive species:
B/C+10Be/9Be (red dotted line), B/C+26Al/27Al (green long dashed-
dotted line), and B/C+36Cl/Cl (blue dashed-dotted line). The black solid
curve represents the extracted PDF resulting from a simultaneous fit
of B/C plus all three isotopic ratios. All PDFs are smoothed.

Fig. 9. Same as in Fig. 8, but for model III.

36Cl/Cl ratio, due to the decreasing accuracy of the data. In the
same way, the adjustment to the data becomes poorer, as ex-
pressed by the increase in χ2/d.o.f. from 3.59 to 4.09. Used
alone, the radioactive ratio 10Be/9Be constrains the most pre-
cisely the halo size L, but the constraints obtained with the
other radioactive ratios are completely compatible within the
2σ range. The most likely value of L is ascertained when
the three radioactive ratios are fitted simultaneously (black solid
line).
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The best-fit model is model III, where the overall covered
halo size range extends from 20 to 140 kpc. The most proba-
ble value found for L with 68% confidence level (CL) errors is
62+7
−10 kpc.

Modified DM (rh � 0): the resulting marginalised posterior
PDFs of L are shown in Figs. 8 and 9 (lower left) for mod-
els II and III, respectively. Again, the extracted PDFs for all
radioactive ratios are completely compatible for both models.
As described above, the decrease in L is more pronounced for
model III than for model II. This decrease can be observed for
all radioactive ratios, independently of the model chosen.

The resulting marginalised posterior PDFs of rh are given in
Figs. 8 and 9 (lower right) for models II and III, respectively. The
addition of an underdensity in the local interstellar medium is
preferred by the data in the best-fit model III, but it is disfavoured
in model II. The most probable values for rh range from 90 pc
for the 36Cl/Cl ratio to 140 pc for the the 26Al/27Al ratio, and the
overall fit points to a most probable radius of 130+10

−20 pc.
These results confirm and extend the slightly different analy-

sis of Donato et al. (2002), who found that for model III, the best-
fit values for rh was ∼80 pc (see also Appendix B).

5.1.3. Envelopes of 68% CL

Confidence contours (for any combination of the CR fluxes) cor-
responding to given confidence levels (CL) in the χ2 distribu-
tion can be drawn, as detailed in Appendix A and Sect. 5.1.4
of Paper I. From the MCMC calculation based on the B/C +
10Be/9Be + 26Al/27Al + 36Cl/Cl constraint, we select all sets of
parameters for which the χ2 meets the 68% confidence level cri-
terion. For each set of these parameters, we calculate the B/C and
the three isotopic ratios. We store for each energy the minimum
and maximum value of the ratio. The corresponding contours
(along with the best-fit ratio) for models II (standard DM, red)
and III (standard and modified DM, blue) are drawn in Fig. 10.
To ease the comparison with the data, all results correspond to
IS quantities (the approximation made in the demodulation pro-
cedure, see Paper I, is negligible with respect to the experimental
error bars).

We see that the present data already constrain very well the
various ratios for the standard DM. The difference between the
results of models II and III are more pronounced at high en-
ergy (effect of δ), as seen from the B/C ratio beyond 10 GeV/n.
All contours are pinched around 10 GeV/n, which is a conse-
quence of the energy chosen to renormalise the flux to the data
in the propagation code. In principle, the source abundance of
each species may be set as an additional free parameter in the
fit (Paper I), but at the cost of the computing time. The three
isotopic ratios (10Be/9Be26, Al/27Al, and 36Cl/Cl) provide a fair
match to the data for all models, considering the large scat-
ter and possible inconsistencies between the results quoted by
various experiments. In particular, for 10Be/9Be, new data are
necessary to confirm the high value of the ratio measured at
∼GeV/n energy.

The envelope for the modified DM is quite large at high en-
ergy, because the uncertainty in rh is responsible for a larger scat-
ter in the other parameters. The two standard DM contain non-
overlapping envelopes beyond GeV/n energies. This means that
to disentangle the models, having measurements of the above
isotopic ratios in the 1−10 GeV/n may be more important than
just having more and higher quality data at low energy.

5.1.4. General dependence of L with δ (for rh = 0)

To investigate the difference in the results obtained from mod-
els II and III, we fit B/C and the three isotopic ratios for different
values of δ (a similar trend with L is obtained if just one isotopic
ratio is selected). The analysis relies on the Minuit minimisa-
tion routine to quickly find the best-fit values, as described in
Maurin et al. (2010). The evolution of the parameters with δ is
shown on the left side of Fig. 11. The bottom panel shows the
evolution of χ2

min/d.o.f., where we recover that the best-fit δ for
model II (dashed-blue line) lies around δ ≈ 0.2, whereas that
for model III (solid-black line) lies around δ ≈ 0.8. As already
underlined, the contribution to the χ2 value is dominated by the
B/C contribution because as discussed in Appendix C, the values
of transport parameters that reproduce the B/C ratio are expected
to remain within a narrow range. This explains what is observed
in the various panels showing these combinations. For model II,
we emphasise that for δ >∼ 0.5, the best-fit value for Va is zero
(Model II becomes a pure diffusion model).

The most important result, given in the top panel, is for L as
a function of δ, where any uncertainty in the determination of δ
translates into an uncertainty in the determination of L. When a
Galactic wind is considered (Model III, black-solid line), the cor-
relation between L and δ is stronger than for model II (no wind).
There is no straightforward explanation of this dependence. The
flux of the radioactive isotope can be shown to be Nrad(0) ≈
hq/
√

Kγτ0 (e.g., Maurin et al. 2006). Since secondary fluxes
should match the data regardless of the value for δ, this implies
that the ratio 10Be/9Be depends only on

√
Kγτ0. At the same

time, to ensure that the secondary-to-primary ratio is constant,
we must maintain a constant L/K. The difficulty is that the for-
mer quantity is a constant at low rigidity where the isotopic ratio
is measured, whereas the latter quantity should remain as close a
possible to the B/C data over the whole energy range. Hence, all
we can say is that the variation in L with δ is related to the vari-
ation in K0/L with δ, as shown in the second figure (left panel)
of Fig. 11.

We note that all the calculations in the paper are based on
the W03 (Webber et al. 2003) fragmentation cross-sections. The
impact of using the W03 set or the GAL09 set (provided in
the widely used GALPROP package2) on the determination of
the halo size L is shown as thin-dotted lines (left panel, same
figure)3. Any difference existing between these two sets of pro-
duction cross-sections has no impact on the best-fit value for L:
thin-dashed curves (obtained with GAL09 cross-sections) al-
most match the thick-solid curves (obtained with W03 cross-
sections). For other ratios, the effect of the GAL09 cross-sections
is always the same, so it is not discussed further.

5.1.5. General dependence of L with δ (for rh � 0)

We repeat the analysis with the underdensity rh as an additional
free parameter. The dependence of L and rh on the diffusion
slope δ is shown in the right panel of Fig. 11. A comparison
between the left and the right panel shows that the combinations
of parameters K0/L, Va/

√
K0, and Vc are almost unaffected by

the presence of a local bubble; the χ2/d.o.f. is also only slightly
affected.

2 http://galprop.stanford.edu/web_galprop/galprop_

home.html
3 The impact on the transport parameters is detailed in Sect. 7 of
Maurin et al. (2010): the region of the best-fit values is slightly dis-
placed, as seen in the figure.
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Fig. 10. Shown are the envelopes of 68% CL (shaded areas) and best-fit (thick lines) ratios for the standard DM II (rh = 0, red) and for model III
(standard and modified DM, blue) in the 1D geometry (based on the B/C + 10Be/9Be + 26Al/27Al + 36Cl/Cl constraint). All quantities are IS. The
data are demodulated using the approximate procedure EIS

k
= ETOA

k
+ Φ.

For δ <∼ 0.2, rh is consistent with 0 for both model II
(diffusion/reacceleration) and model III (diffusion/convec-
tion/reacceleration). For model II, the size of rh suddenly jumps
to ∼100 pc. But for δ >∼ 0.3, it returns to the pure diffu-
sion regime, rh decreasing abruptly (to a non-vanishing value)
and L becoming vanishingly small. In this regime, the thin-
disc approximation is no longer valid and nothing can be said
about it. For model III, the plateau rh ∼ 100 pc is stable for all
δ >∼ 0.2. The underdense bubble also stabilises the value of the
halo size L. The way of understanding this trend is as for the
standard DM, but now the flux of the radioactive species reads
Nrad

rh
(0) ∝ exp(−rh/

√
Kγτ0)/

√
Kγτ0. The weaker dependence

of L with δ must be represented by this formula. We underline
that for all best-fit configurations leading to rh � 0, the improve-
ment is statistically meaningful compared to the case rh = 0.

5.2. Isotopic versus elemental measurements

A similar analysis can be carried out using elemental ratios in-
stead of isotopic ones. As before, the best-fit values of well-
chosen combinations of the transport parameters {K0, δ, Vc, Va}
are left unchanged when radioactive species are added to the fit
(same values as in Fig. 11).

5.2.1. General dependence of L with δ

For the standard DM (rh = 0), the dependence of the diffusive
halo size L on the diffusion slope δ is shown in Fig. 12, for the
three combinations B/C + Be/B, B/C + Al/Mg, and B/C + Cl/Ar.
The trend is similar to that for isotopic ratios: L increases with

increasing δ. The main difference is that the increase is sharper
for both models II and III. For the former, only a small region
around δ ≈ 0.2 corresponds to small halo sizes. For the latter,
the halo size increases sharply above δ >∼ 0.6.

For completeness, similar fits were carried out for the modi-
fied DM (rh � 0). However, adding an additional degree of free-
dom only worsens the situation, and the models converge to ar-
bitrarily small or high values of L and rh. Finally, if we fit the
combined B/C data, the three isotopic ratios and the three ele-
mental ratios, we do not obtain more constraints than when fit-
ting B/C and the three isotopic ratios. This may indicate that the
models have difficulties in fitting all these data together: either
the model is incomplete or the data themselves may show some
inconsistencies. This is more clearly seen from the comparison
of the model calculation and the data for these elemental ratios
(see below).

5.2.2. Envelopes of 68% CL

From the same set of constraint as in Sect. 5.1.3 (i.e., B/C and
the isotopic ratios of radioactive species only), we draw the CL
for the elemental ratios in Fig. 13.

Given their large error bars, the elemental ratios are in overall
agreement with the data, except at low energy and especially for
the Be/B ratio. The main difference between the Be/B ratio and
the two other ratios is that Be and B are pure secondary species,
whereas all other elements may contain some primary contribu-
tion which can be adjusted to more closely match the data. This
also explains why the Be/B ratio reaches an asymptotical value at
high energy (related to the respective production cross-sections
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Fig. 11. Left panel: standard DM model (rh = 0) – thin-dotted lines are derived using the GAL09 instead of the W03 fragmentation cross-sections.
Right panel: modified DM model (rh � 0). For both panels, shown are the best-fit parameters on B/C + 10Be/9Be + 26Al/27Al + 36Cl/Cl data,
as a function of the diffusion slope δ. The latter is varied between 0.1 and 1.0 for model II (blue lines, open and filled squares) and model III
(black lines, open and filled circles). From top to bottom, L, K0/L, Va/

√
K0, and Vc as a function of δ are shown. The bottom panel shows the best

χ2/d.o.f. for each δ.

of Be and B), whereas the two others exhibit more complicated
patterns. The low-energy Be/B ratio is related to either the model
or the energy biases in the production cross-sections for these
elements (which is still possible, e.g. Webber et al. 2003), or to
systematics in the data. To solve this issue, better data over the
whole energy range are required.

5.3. Summary and generalisation to the 2D geometry

Using radioactive nuclei in the 1D geometry, we found that in
model II (diffusion/reacceleration), L ∼ 4 kpc and rh ∼ 0, and
for the best-fit model III (diffusion/convection/reacceleration),
L ∼ 8 kpc and rh ∼ 120 pc. The halo size is an increasing func-
tion of the diffusion slope δ, but in model III the best-fit value for
rh remains∼100 pc for any δ >∼ 0.3. This value agrees with direct

observation of the LISM (see Appendix B). Measurement of el-
emental ratios of radioactive species are not yet precise enough
to provide valuable constraints.

For now, there are too large uncertainties and too many in-
consistencies between the data themselves to enable us to point
unambiguously toward a given model. Moreover, one has to keep
in mind that any best-fit model is relative to a given set of data
chosen for the fit (see Sect. 4.2). We note that there may be ways
out of reconciling the low-energy calculation of the Be/B ratio
with present data, e.g., by changing the low-energy form of the
diffusion coefficient (Maurin et al. 2010), but this goes beyond
the goal of this paper.

All these trends are found for the models with 2D geometry.
We calculate in Table 8 the best-fit parameters for the standard
model II (rh = 0) and the modified model III (rh � 0). The values
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Fig. 12. Best-fit value of the halo size L as a function of δ in stan-
dard DM, based on a fit on B/C plus a ratio where a radioactive
species is present: B/C+Be/B (black small symbols), B/C+Al/Mg (blue
medium-size symbols), and B/C+Cl/Ar (pink large symbols). The
dashed lines (square symbols) refer to model II, and the solid lines (cir-
cles) refer to model III.

Table 8. Best-fit parameters on B/C + 10Be/9Be26 + Al/27Al + 36Cl/Cl:
1D vs. 2D DM.

Config. K0 × 102 δ Vc Va L rh χ2/d.o.f.
(kpc2 Myr−1) (km s−1) (kpc)

1D-II-L 15.4 0.23 · · · 92.5 6.2 · · · 3.09
2D-II-L 14.9 0.24 · · · 90.8 8.8 · · · 3.04
1D-III-Lrh 1.90 0.83 18.9 73.5 13.6 0.13 1.43
2D-III-Lrh 5.24 0.85 18.3 123. 4.3 0.16 1.48

for the 1D geometry are also reported for the sake of compari-
son. Apart from a few tens of percent difference in some param-
eters, as emphasised in Sect. 4.5, some differences are expected
if the size of the diffusive halo L is larger than the distance to
the side boundary R, which is dR = 12 kpc in the 2D geome-
try. It is a well-known result that the closest boundary limits the
effective diffusion region from where CR can originate (Taillet
& Maurin 2003). For model II, L is smaller than dR. We obtain
a smaller than 10% difference for K0, and a ∼30% difference
for L. For the modified model III, the halo size has a larger scat-
ter (see previous sections), with Lbest

1D = 13.6 > dR. The geome-
try is thus expected to affect the determination of L. We find that
Lbest

2D = 4.3 and that the value of K0 is thus Lbest
1D /L

best
2D ∼ 3 times

larger, and Va is ∼
√

3 times larger than in 1D.

6. Conclusions

We have used a Markov Chain Monte Carlo technique to ex-
tract the posterior distribution functions of the free parameters
of a propagation model. Taking advantage of its sound statistical
properties, we have derived the confidence intervals (as well as
confidence contours) of the models for fluxes and other quanti-
ties derived from the propagation parameters.

In the first paper of this series (Paper I), we focused on the
phenomenologically well-understood LBM to ease the imple-
mentation of the MCMC. In contrast, here we have analysed a
more realistic DM. In agreement with previous studies, when
B/C only is considered, we have confirmed that a model with
diffusion/convection/reacceleration is more likely than the diffu-
sion/reacceleration case. The former would imply that δ ∼ 0.8,
whereas the latter would imply that δ ∼ 0.2. This result does not
depend on the halo size: we provided simple parameterisations

Fig. 13. Same as in Fig. 10 but for the ratios Be/B, Al/Mg, and Cl/Ar.

to obtain the value of the transport parameters for any halo
size L. If mere eye inspection of the published AMS-01 data
shows consistency with the HEAO-3 data (covering the same
energy region), a B/C analysis based on AMS-01 data (instead
of HEAO-3) also indicates that convection and reacceleration is
required, but now providing a diffusion slope δ ∼ 0.5, closer
to theoretical expectations. Data from PAMELA or high-energy
data from CREAM and TRACER are required to help solving
the long-standing uncertainty in the value for δ.

A second important topic of this paper has been the halo
size L of the Galaxy and the impact of the underdense medium in
the solar neighbourhood. The determination of L is for instance
crucial to predictions of antimatter fluxes from dark matter anni-
hilations. The size of the local underdense medium is as impor-
tant, as it can bias the determination of L. We provided a step-
by-step study of the various radioactive clocks at our disposal.
Our detailed approach can serve as a guideline as how to take
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advantage of future high-precision measurements that will soon
become available (e.g., from AMS). The main conclusions about
the constraints provided by the radioactive species are, in diffu-
sion/reacceleration models, L ∼ 4 kpc and no underdense local
bubble is necessary to match the data. For the best-fit model,
which requires diffusion/convection/reacceleration, L ∼ 8 kpc
with rh ∼ 120 pc. For both models, the halo size found is an
increasing function of the diffusion slope δ. A striking feature is
that in models with convection, the best-fit value for rh remains
∼100 pc for any δ >∼ 0.3. For instance, the B/C AMS-01 data
(which implies that δ ∼ 0.5) and the radioactive ratios are con-
sistent with a wind and a local underdense bubble. This very
value of rh ∼ 100 pc is also supported by direct observation of
the LISM (see Appendix B).

As emphasised in this study, the determination of the value
of L and rh strongly depends on the value of δ. For all these pa-
rameters, high-energy data of secondary-to-primary ratios, data
in the ∼1 GeV/n−10 GeV/n range for isotopic ratios (of radioac-
tive species), and/or data for the radioactive elemental ratios in
the 1−100 GeV/n energy range are necessary. This is within
reach of several flying and forthcoming balloon-borne projects
and satellites (PAMELA, AMS).
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Appendix A: Solutions of the diffusion equation

We provide below the solutions for the diffusion equation with
a constant wind Vc and a single diffusion coefficient K(E) in the
whole Galaxy. In the 1D version of the model (e.g., Jones et al.
2001), the source distribution and the gas density do not depend
on r, so that the propagated fluxes depend only on z.

The derivation of these solutions is very similar and has
no additional difficulties to those experienced by Maurin et al.
(2001), to which we refer the reader for more details. As both
frameworks (1D and 2D) exhibit similar forms, formulae are
written for the 1D model only. Formulae for the 2D case are ob-
tained by replacing some 1D quantities by their 2D counterparts,
as specified below.

A.1. 1D-model

The starting point is the transport equation (Berezinskii et al.
1990). We assume that the diffusion coefficient K does not de-
pend on spatial coordinates. A constant wind Vc blows the par-
ticle away from the Galactic disc, along the z direction. In the
thin-disc approximation (e.g., Webber et al. 1992), the diffu-
sion/convection for the 1D-model (discarding energy redistribu-
tions) is
{

−K
d2

dz2
+ Vc

∂

∂z
+ Γrad + 2hΓtotδ(z)

}

N ≡ LN = Q(z). (A.1)

In this equation, N is the differential density of a given
CR species, Γrad = 1/(γτ) is its decay rate, and Γtot =
∑

ISM nISMvσISM is its destruction rate in the thin gaseous disc
(nISM = H, He). The right-hand side (r.h.s.) of the equation is
a generic source term, that contains one of the following three
contributions, i.e., Q(z) = P(z) + S(z) + R(z):

i) P(z) = 2hδ(z) × qs
0Q(E) is the standard primary source term

for sources located in the thin disc. The quantity qs
0 is the

source abundance of nucleus j whose source spectrum is
Q(E) ∝ βηR−α.

ii) S(z) = 2hδ(z) × Γp→s
tot Np(z = 0, E) is the standard secondary

source term (also in the disc), where Γp→s
tot = nvσp→s is the

production cross-section of nucleus p into s. This simple
form originates from the straight-ahead approximation used
when dealing with nuclei (see, e.g., Maurin et al. 2001, for
more details).

iii) R(z) = Γr→s′

decayNr(z, E) described a contribution from a ra-
dioactive nucleus r, decaying into s′ in both the disc and
the halo.

The equation is even in z so that it is enough to solve it in the
upper-half plane. The use of the standard boundary condition
N(z = L) = 0 and continuity of the density and the current at the
disc crossing completely characterises the solution.

A.1.1. Stable species

For a mixed species, primary and secondary standard sources
add up, so that, for a nucleus k with no radioactive contribution,
the source term is rewritten as

Qm
disc(E) = qm

0 Q(E) +
∑

k>m

Γk→m
tot Np(z = 0, E), (A.2)

and the corresponding equation to solve is then

LmNm = 2hδ(z) · Qm
disc(E).

We find the solution in the halo, apply the boundary condition
N(z = L) = 0, and then ensure continuity between the disc and
the halo, so that

Nm(z) = Nm(0) · exp(Vcz/2K) sinh(S m(L − z)/2)
sinh(S mL/2)

(A.3)

and

Nm(0) =
2hQm

disc(E)

Am
· (A.4)

The quantities S m and Am are defined as

S m ≡
√

V2
c

K2
+ 4
Γm

rad

K2
; (A.5)

Am ≡ Vc+2hΓm
tot+KS mcoth

(

S mL

2

)

· (A.6)

A.1.2. Adding a β-decay source term: general solution

It is emphasised in Maurin et al. (2001) that the 10Be → 10B
channel contributes up to 10% in the secondary boron flux at low
energy and cannot be neglected. Although the spatial distribution
of a radioactive nucleus decreases exponentially with z, we have
to consider that the source term is emitted from the halo, com-
plicating the solution. The equation to solve for the nucleus j,
which is β-fed by its radioactive parent r is

L jN j = Γ
r→ j

decayNr(z, E),

where Nr(z, E) is given by Eq. (A.3). The solution is found fol-
lowing the same steps as above, although it has a more compli-
cated form (due to a non-vanishing source term in the halo).
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If we take into account both the standard source term
Q

j

disc(E) and the radioactive contribution of the nucleus Nr,
we obtain:

N j(z) =

{

̟ · sinh(S j(L − z)/2)
sinh(S jL/2)

− νΘΛ · cosh(S jz/2)
cosh(S jL/2)

}

× exp(Vcz/2K j)

+Θ

{

λ sinh

(

S r

2
(L − z)

)

+ Λ cosh

(

S r

2
(L − z)

)}

× exp(Vcz/2Kr), (A.7)

where

Θ ≡ −
Γ

k→ j

rad

K j(λ2 − Λ2)
Nr(0)

sinh(S rL/2)
(A.8)

and

̟ ≡
2hQ

j

disc

A j
+
Θ

A j

×
{

νai

cosh(S jL/2)

[

Vc + 2hΓ j
]

− sinh(S rL/2)

[

a

(

Vc

(

2 − K j

Kr

)

+ 2hΓ j

)

+ aiK
jS r

]

− cosh(S rL/2)

[

ai

(

Vc

(

2 − K j

Kr

)

+ 2hΓ j

)

+ aK jS r

]}

, (A.9)

where

κ ≡ 1/Kr − 1/K j

ν ≡ eκVcL/2 Λ ≡ κS rVc

2
λ ≡ κV

2
c

2Kr
+
Γr

rad

Kr
−
Γ

j

rad

K j
·

The superscript on K indicates that the diffusion coefficient is to
be evaluated at a rigidity calculated for the nucleus m. The latter
can differ from one nucleus to another because, the calculation
is performed at the same kinetic energy per nucleon for all the
nuclei (hence at slightly different rigidities for different nuclei).
To compare with the data, the flux is calculated at z = 0

N j(0)=̟ + Θ

⎡

⎢

⎢

⎢

⎢

⎢

⎣

λ sinh

(

S rL

2

)

+Λ cosh

(

S rL

2

)

− νΛ

cosh S jL
2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (A.10)

A.1.3. Solution including energy redistributions

When energy redistributions are included, the solution Nh(z) in
the halo remains the same because our model assumes no energy
redistributions in that region. Only the last step of the calculation
changes (ensuring continuity during the disc crossing). The new
solution is denotedN(0).

For the case of a mixed species m without radioactive contri-
bution, the result is straightforward: the solution for the halo is
still given by Eq. (A.3), butNm(0) is now given by

Nm(0)=Nm(0) − 2h

Am

(

b(E)
dNm(0)

dE
+ c(E)

d2Nm(0)
dE2

)

,

which is solved numerically, Nm(0) being the solution when en-
ergy terms are discarded, i.e., Eq. (A.4). The terms a(E) and b(E)
describing energy losses and gains are discussed in Sect. 2.1.

When a radioactive contribution exists, the constant left to
determine is ̟ from Eq. (A.7), which we denote now̟∗

̟∗ = ̟ − 2h

A j

(

b(E)
dN j(0)

dE
+ c(E)

d2N j(0)
dE2

)

· (A.11)

As above, ̟ denotes the quantity evaluated without energy
redistribution, whereas N j(0) denotes the equilibrium flux at
z = 0. To ensure N j(0) also appears in the l.h.s. of the equa-
tion, we form the quantity

Ξ ≡ Θ
⎡

⎢

⎢

⎢

⎢

⎢

⎣

λ sinh(
S rL

2
)+Λ cosh

(

S rL

2

)

− νΛ

cosh S jL
2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

· (A.12)

Hence Nm(0) = ̟+Ξ, and we can add to both sides of Eq. (A.11)
the quantity Ξ, so that we recover the standard form

N j(0) = N j(0) − 2h

A j

(

b(E)
dN j(0)

dE
+ c(E)

d2N j(0)
dE2

)

,

which we solve numerically.
This is the solution in the disc (z = 0). The solution for any z

is obtained from Eq. (A.7), making the substitution

̟→ ̟∗ = N j(0) − Ξ. (A.13)

We note that for Θ = 0 (i.e., no radioactive contribution) the
result for standard sources in the disc is recovered.

A.2. 2D geometry

Cylindrical symmetry is now assumed, both the CR density N
and the source terms depending on r. Compared to Eq. (A.1),
the operator △r now acts on N(r, z).

An expansion along the first order Bessel function is
performed

N(r, z) =
∞
∑

i=1

Ni(z)J0

(

ζi
r

R

)

· (A.14)

The quantity ζi is the ith zero of J0, and this form automatically
ensures the boundary condition N(r = R, z) = 0. We have

−△r J0

(

ζi
r

R

)

=
ζi

R2
J0

(

ζi
r

R

)

,

so that each Bessel coefficient Ni(z) follows an equation very
similar to Eq. (A.1), where

Γrad ⇒ Γrad +
ζi

R2
,

and where each source term must also be expanded on the Bessel
basis. More details can be found in Maurin et al. (2001).

The full solutions for mixed species, with stable or radioac-
tive parents, is straightforwardly obtained from 1D ones, after
making the substitutions

N j(z)
2D model
=⇒ N

j

i
(z), (A.15)

S j 2D model
=⇒ S

j

i
≡

√

V2
c

K2
+4
ζ2

i

R2
+ 4
Γ

j

rad

K2
, (A.16)

A j 2D model
=⇒ A

j

i
≡ 2hΓ j + Vc + KS

j

i
coth

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S
j

i
L

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (A.17)
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and

Θ j(S r,Nr(0))=⇒Θ j

i
(S r

i ,N
r
i (0)), (A.18)

̟ j(S j, A j)=⇒̟ j

i
(S j

i
, A

j

i
), (A.19)

λr(S r)=⇒λr
i (S

r
i ). (A.20)

The above formulae, for the radioactive source, differ slightly
from those presented in Maurin et al. (2001). However, the only
difference is in the flux for z � 0, which was not considered in
this paper.

Appendix B: The local bubble

The underdensity in the local interstellar matter (LISM) is
coined the local bubble4. The LISM is a region of extremely hot
gas (∼105−106 K) and low density (n <∼ 0.005 cm−3) within an
asymmetric bubble of radius <∼65−250 pc surrounded by dense
neutral hydrogen walls (Sfeir et al. 1999; Linsky et al. 2000;
Redfield & Linsky 2000). This picture has been refined by sub-
sequent studies, e.g., Lallement et al. (2003). The Sun is located
inside a local interstellar cloud (LIC) of typical extension∼50 pc
whose density NHI ∼ 0.1 cm−3 (Gloeckler et al. 2004; Redfield &
Falcon 2008). Despite these successes, a complete mapping and
understanding of the position and properties of the gas/cloudlets
filling the LISM, as well as the issue of interfaces with other bub-
bles remains challenging (e.g., Redfield & Linsky 2008; Reis &
Corradi 2008). Based on existing data, numerical simulations of
the local bubble infer that it is the result of 14−19 SNe occur-
ring in a moving group, which passed through the present day
local HI cavity 13.5−14.5 Myr ago (Breitschwerdt & de Avillez
2006). The same study suggests that the local bubble expanded
into the Milky Way halo roughly 5 Myr ago.

A last important point, is that of the existence of turbulence
in the LISM to scatter off CRs. The impact of the underdense
local bubble on the production of radioactive nuclei as mod-
elled in Eq. (10) depends whether the transport of the radioac-
tive nuclei in this region is diffusive or not. In a study based on a
measurement of the radio scintillation of a pulsar located within
the local bubble, Spangler (2008) infers that values for the line
of sight component of the magnetic field are only slightly less,
or completely consistent with, lines of sight through the gen-
eral interstellar medium; the turbulence is unexpectedly high in
this region.

These pieces of observational evidences support the model
used in Sect. 2.3, leading to an enhanced decrease in the flux
of radioactive species at low energy. A detailed study should
take into account the exact morphology of the ISM (asymme-
try, cloudlets). However, there are so many uncertainties in this
distribution and the associated level of turbulence, that a crude
description is enough to capture a possible effect in the CR data.

Appendix C: MCMC optimisation

The efficiency of the MCMC increases when the PDFs of the pa-
rameters are close to resembling Gaussians. Large tails in PDFs
require more steps to be sampled correctly. A usual task in the
MCMC machinery is to find some combinations of parameters
that ensure that these tails disappear. This was not discussed in

4 For a state-of-the-art view on the subject, the reader is referred to
the proceedings of a conference held in 2008: The Local Bubble and
Beyond II – http://lbb.gsfc.nasa.gov/

the case of the LBM as the efficiency of the PDF calculation was
satisfactory. In 1D (or 2D) DMs, the computing time is longer
and the efficiency is found to be lower. To optimise and speed
up the calculation, we provide combinations of parameters that
correspond to a Gaussian distribution.

A typical PDF determination with four free parameters
{Vc, δ, K0, Va} (see next section) is shown in Fig. C.1. The diag-
onal of the left panel shows the PDF of these parameters (black
histogram), on which a Gaussian fit is superimposed (red line).
We see a sizeable tail for the K0 parameter, and a small asymme-
try for the Va parameter. The right panel shows the same PDFs,
but for the following combinations of the transport parameters:

K0 ←→ K0

L
× 50δ (C.1)

Va ←→ Va
√

K0 × 3δ(4 − δ2)(4 − δ)
· (C.2)

These forms are inspired by the known degeneracies between
parameters. For instance, in diffusion models, the secondary to
primary ratio is expected to remain unchanged as long as the ef-
fective grammage 〈x〉 of the model is left unchanged. For pure
diffusion, we obtain (Jones et al. 2001; Maurin et al. 2006) for
the grammage 〈x〉 = ΣvL/(2K) = ΣL/(2cK0(R/1GV)δ), where Σ
is the surface density. Apart from the K0 − L degeneracy, the
parameters K0 and δ are correlated. We find that the combi-
nation K0 × 50δ is appropriate for removing the K0 PDF’s tail
(see Fig. C.1). The origin of the value 50 is unclear. It may be
related to the energy range covered by B/C HEAO-3 data on
which the fits are based. The combination used for Va (Eq. (C.2))
comes directly from the form of the reacceleration term Eq. (5).
Reacceleration only plays a role at low energy, so we can take
Rδ ≈ 1 and end up with the combination presented in Eq. (C.2).
The independent acceptance find, defined in Paper I as the ratio
of the number of independent samples to the total step number,
increases from 1/3 to 1/2 by using the above described parameter
combinations for the four parameter model presented in Fig. C.1.

A last combination is for the local bubble parameter rh:

rh ←→ rh√
K0
· (C.3)

This comes from the form of Eq. (10), where the flux damping
for radioactive species (due to the local bubble) is effective only
at low energy (γ ≈ 1, R ≈ 1).

Appendix D: Datasets for CR measurements

D.1. B/C ratio

Unless specified otherwise, the reference B/C dataset used
throughout the paper is denoted dataset F: it consists of i) low-
energy data taken by the IMP7-8 (Garcia-Munoz et al. 1987),
the Voyager 1&2 (Lukasiak et al. 1999), and the ACE-CRIS
(de Nolfo et al. 2006) spacecrafts; ii) intermediate energies ac-
quired by HEA0-3 data (Engelmann et al. 1990); and iii) higher
energy data from Spacelab (Swordy et al. 1990) and the pub-
lished CREAM data (Ahn et al. 2008). Other existing data are
discarded either because of their too large error bars, or because
of their inconsistency with the above data (see Paper I).

D.2. Isotopic and elemental ratios of radioactive species

For 10Be/9Be, the data are taken from balloon flights (Hagen
et al. 1977; Buffington et al. 1978; Webber & Kish 1979), includ-
ing the ISOMAX balloon-borne instrument (Hams et al. 2004),
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Fig. C.1. Posterior PDFs of the model parameters (using the Binary Space Partitioning step – see Paper I, and the B/C constraint). The diagonals
show the 1D marginalised PDF of the indicated parameters, and the red line results from a Gaussian fit to the histogram. Off-diagonal plots show
the 2D marginalised posterior PDFs for the parameters in the same column and same line, respectively. The colour code corresponds to the regions
of increasing probability (from paler to darker shades), and the two contours (smoothed) delimit regions containing respectively 68% and 95%
(inner and outer contour) of the PDF. Left panel: PDFs for {Vc, δ, K0, Va}. Right panel: the same PDFs but shown for a different combination of
the parameters {Vc, δ, K0/L × 50δ, Va/

√

K0 × 3δ(4 − δ2)(4 − δ)}.

and from the IMP-7/8 (Garcia-Munoz et al. 1977), ISEE-3
(Wiedenbeck & Greiner 1980), Ulysses (Connell 1998), Voyager
(Lukasiak et al. 1999), and ACE spacecrafts (Yanasak et al.
2001). For 26Al/27Al, the data consist of a series of balloon
flights (Webber 1982), and the ISEE-3 (Wiedenbeck 1983),
Voyager (Lukasiak et al. 1994), Ulysses (Simpson & Connell
1998), and ACE spacecrafts (Yanasak et al. 2001). For 36Cl/Cl,
the data are from the CRISIS balloon (Young et al. 1981), and
from the Ulysses (Connell et al. 1998) and ACE (Yanasak et al.
2001) spacecrafts.

The data for the elemental ratios come from the HEAO-3
(Engelmann et al. 1990), Ulysses (Duvernois & Thayer 1996),
and the ACE spacecrafts de Nolfo et al. (2006). The published
ACE data on Al/Mg and Cl/Ar (George et al. 2009) were not
used as Be/B is not provided.
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