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Abstract

This paper addresses the problem of fully automated

mining of public space video data. A novel Markov Clus-

tering Topic Model (MCTM) is introduced which builds on

existing Dynamic Bayesian Network models (e.g. HMMs)

and Bayesian topic models (e.g. Latent Dirichlet Alloca-

tion), and overcomes their drawbacks on accuracy, robust-

ness and computational efficiency. Specifically, our model

profiles complex dynamic scenes by robustly clustering vi-

sual events into activities and these activities into global

behaviours, and correlates behaviours over time. A col-

lapsed Gibbs sampler is derived for offline learning with

unlabeled training data, and significantly, a new approxi-

mation to online Bayesian inference is formulated to enable

dynamic scene understanding and behaviour mining in new

video data online in real-time. The strength of this model

is demonstrated by unsupervised learning of dynamic scene

models, mining behaviours and detecting salient events in

three complex and crowded public scenes.

1. Introduction

The proliferation of cameras in modern society is pro-

ducing an ever increasing volume of video data which is

thus far only weakly and inefficiently exploited. Video

data is frequently stored passively for record purposes. If

the video data is to be actively analyzed, expert knowledge

about the scene and laborious manual analysis and labeling

of the dataset is required. There has been some effort on

developing methods for automatically learning visual be-

haviour models without human expertise or labour, and us-

ing such models to cluster and classify video data, or to

screen for interesting events automatically [7, 16, 10, 15].

This is a challenging problem for various reasons. Classes

of ‘subjectively interesting behaviour’ to a user can be de-

fined task-specifically by various factors: the activity of a

single object over time (e.g. its track), the correlated spatial

state of multiple objects (e.g. a piece of abandoned luggage

is defined by separation from its owner) or both spatial and

temporal considerations (e.g. traffic flow at an intersection

might have a particular order dictated by the lights). The

spatial or temporal range over which correlations might be

important may be short or long. Typical public scenes are

crowded, creating difficulties for segmentation or tracking.

In this paper we introduce a new model to address the prob-

lem of unsupervised mining of multi-object spatio-temporal

behaviours in crowded and complex public scenes by dis-

covering underlying spatio-temporal regularities in video so

as to detect irregular patterns that can be consistently inter-

preted as ‘salient behaviours’ by human users. A system

based on our model can answer queries such as: “Give me

a summary of the typical activities and scene behaviour in

this scene” and “Show me the (ranked) most interesting (ir-

regular) events happened in the past 24 hours”.

1.1. Related Work

Recent research on dynamic scene understanding has

broadly fallen into object-centric tracking based and non-

object-centric statistical approaches. Tracking based ap-

proaches [8, 14] clearly represent the spatial state of vi-

sual objects over time. This allows them to easily model

behaviours like typical flows of traffic, and detect unusual

events such as u-turns. Such models only work well if

complete tracks can be reliably obtained in training and

test data. For improving robustness to track failures, non-

parametric representations of track statistics have been ex-

ploited [1, 12]. However, a major limitation of tracking

based approaches is the difficulty in modeling behaviours

characterized by coordinated activity of multiple objects.

To improve robustness and enable multi-object spatio-

temporal correlation modeling, statistical methods have

been devised to process directly on quantized pixel data

[16, 13] or other low level ‘event’ features in video [15, 9].

These methods typically employ a Dynamic Bayesian Net-

work (DBN) such as a Hidden Markov Model (HMM)

[4, 15], or a probabilistic topic model (PTM) [9, 13] such as

Latent Dirichlet Allocation (LDA) [3] or extensions. DBNs

are natural for modeling dynamics of behaviour, and with

hierarchical structure also have the potential to perform

clustering of both activities and behaviours simultaneously.
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Nevertheless, modeling the temporal order of visual events

explicitly is risky, because noise in the event representation

can easily propagate through the model, and be falsely de-

tected as salient [9, 13]. To overcome this problem, PTMs

were borrowed from text document analysis [9, 13]. These

“bag of words” models represent feature co-occurrence,

completely ignoring temporal order information. Therefore

robustness to noise is at the cost of discarding vital dynamic

information about behaviour. PTMs also suffer from ambi-

guity in determining the temporal window extent for col-

lecting the bag of words. Large windows risk overwhelm-

ing behaviours of shorter duration, and small windows risk

breaking up behaviours arbitrarily. This is especially dam-

aging since correlation between bags is not modeled.

1.2. Our Approach

In this paper, a novel Markov Clustering Topic Model

(MCTM) is introduced which builds on the strength of ex-

isting DBNs and PTMs, but crucially is able to overcome

their drawbacks on accuracy, robustness and computational

efficiency. In particular, the model makes two important

novel contributions to LDA: (1) Hierarchical modeling, al-

lowing simple actions to be combined into complex global

behaviours; and (2) temporal modeling, enabling the cor-

relation of different behaviours over time to be modeled.

By introducing a Markov chain to model behaviour dynam-

ics, this model defines a DBN generalization of LDA. This

gains strength in representing temporal information, while

being robust to noise due to its bag of words modeling of vi-

sual features. Learning from unlabeled training data is per-

formed offline with Gibbs sampling; and a novel Bayesian

inference algorithm enables dynamic scene understanding

and behaviour mining in new video data online and in real-

time where existing approaches fail [13, 9].

2. Spatio-Temporal Video Mining

2.1. Video Representation

We wish to construct a generative model capable of au-

tomatic mining and screening irregular spatio-temporal pat-

terns as ‘salient behaviours’ in video data captured from

single fixed cameras monitoring public spaces with people

and vehicles at both far and near-field views (see Sec. 4.1).

These camera views contain multiple groups of heteroge-

neous objects, occlusions, and shadows. Local motions are

used as low level features. Specifically, a camera view is

divided into C × C pixel-cells, and optical flow computed

in each cell. When the magnitude of the flow is greater

than a threshold Tho, the flow is deemed reliable and quan-

tized into one of four cardinal directions. A discrete visual

event is defined based on the position of the cell and the

motion direction. For a 320 × 240 video frame and with

cell size of 10 × 10, a total of 3072 different discrete visual

events may occur in combination. For visual scenes where

objects may remain static for sustained period of time (e.g.

people waiting for trains at a underground station), we also

use background subtraction to generate a fifth – stationary

foreground pixel – state for each cell, giving a visual event

codebook size of 3840. This illustrates the flexibility of of

our approach: it can easily incorporate other kinds of ‘meta-

data’ features that may be relevant in a given scene. The

input video is uniformly segmented into one-second clips,

and the input to our model at second t is the bag of all visual

events occurring in video clip t, denoted as xt.

2.2. Markov Clustering Topic Model (MCTM)

Standard LDA [3] (see Fig. 1(a)) is an unsupervised

learning model of text documents xm, m = 1..M . A docu-

ment m is represented as a bag of i = 1..Nm unordered

words xi,m, each of which is distributed according to a

multinomial distribution p(xi,m|φyi,m
) indexed by the cur-

rent topic of discussion yi,m. Topics are chosen from a per-

document multinomial distribution θm. Inference of latent

topics y and parameters θ and φ given data xm effectively

clusters co-occurring words into topics. This statistical

topic based representation of text documents can facilitate,

e.g., comparison and searching. For mining behaviours in

video, we consider that visual events correspond to words,

simple actions (co-occurring events) to topics, and complex

behaviours (co-occurring actions) to document categories.

We model the occurrence of a sequence of

clips/documents X = {xt} where t = 1..T as having a

three layer latent structure: events, actions and behaviours,

as illustrated by the graphical model in Fig. 1(b). The gener-

ative model is defined as follows: Suppose the data contains

T clips, each of which exhibits a particular category of

behaviour, represented by zt. The behaviour category zt
is assumed to vary systematically over time from clip to

clip according to some unknown multinomial distribution,

p(zt|zt−1, ψ) (denoted Multi(·)). Within each clip t, Nt
simple actions {yi,t}

Nt

i=1
are chosen independently based

on the clip category, yi,t ∼ p(yi,t|zt, θ). Finally, each

observed visual event xi,t is chosen based on the associated

action yi,t, xi,t ∼ p(xi,t|yi,t, φ). All the multinomial pa-

rameters {φ, ψ, θ} are treated as unknowns with Dirichlet

priors (denoted Dir(·)). The complete generative model is

specified by:

p(ψz|γ) = Dir(ψz; γ),

p(θz|α) = Dir(θz;α),

p(φy|β) = Dir(φy;β),

p(zt+1|zt, ψ) = Multi(zt;ψzt
),

p(yi,t|zt, θ) = Multi(yi,t; θzt
),

p(xi,t|yi,t, φ) = Multi(xi,t;φyi,t
).

The full joint distribution of variables {xt,yt, zt}
T
1 and pa-
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Figure 1. Graphical models representing: (a) Standard LDA

model [3], (b) Our MCTM model.

rameters θ, φ, ψ given the hyper-parameters α, β, γ is:

p({xt,yt, zt}
T
1 , φ, ψ, θ|α, β, γ) = p(φ|β)p(ψ|γ)p(θ|α)

·
∏

t

(

∏

i

p(xi,t|yi,t)p(yi,t|zt)

)

p(zt|zt−1). (1)

2.3. Model Learning

As for LDA, exact inference in our model is intractable,

but it is possible to derive a collapsed Gibbs sampler [5] for

approximate MCMC learning and inference. The Dirichlet-

Multinomial conjugate structure of the model allows the pa-

rameters {φ, θ, ψ} to be integrated out automatically in the

Gibbs sampling procedure. The Gibbs sampling update for

the action yi,t is derived by integrating out the parameters φ

and θ in its conditional probability given the other variables:

p(yi,t|y\i,t, z,x) ∝
n−
x,y + β

∑

x n
−
x,y +Nxβ

n−
y,z + α

∑

y n
−
y,z +Nyα

.

(2)

Here y\i,t denotes all the y variables excluding yi,t; n
−
x,y

denotes the counts of feature x being associated to action y;

n−
y,z denotes the counts of action y being associated to be-

haviour z. Superscript “−” denotes counts over the remain-

ing dataset excluding item (i, t). Nx is the size of the visual

event codebook, and Ny the number of simple actions.

The Gibbs sampling update for cluster zt is derived

by integrating out parameters ψ and θ in the conditional

p(zt|y, z\t,x), and must account for the possible transitions

between zt−1 and zt+1 along the Markov chain of clusters:

p(zt|y, z\t,x) ∝

∏

y Γ(α+ ny,zt
)Γ(Nyα+ n−

·,zt
)

∏

y Γ(α+ n−
y,zt

)Γ(Nyα+ n·,zt
)

n−z′,z + γ

n−
z′,z +Nzγ

nzt+1,zt
+ I(zt−1 = zt)I(zt = zt+1) + γ

n·,zt
+ I(zt−1 = zt) +Nzγ

. (3)

Here nz′,z are the counts of behaviour z′ following be-

haviour z, n·,z ,
∑

z′ nz′,z , and Nz is the number of clus-

ters. I is the identity function that returns 1 if its argument

is true, and Γ is the gamma function. Note that we do not

obtain the simplification of gamma functions as in standard

LDA and Eq. (2), because the inclusive and exclusive counts

may differ by more than 1, but this is not prohibitively

costly, as Eq. (3) is computed only once per clip. Iterations

of Eqs.(2) and (3) entail inference by eventually drawing

samples from the posterior p({yt, zt}
T
1 |{x}

T
1 , α, β, γ). Pa-

rameters {φ, ψ, θ} may be estimated from the expectation

of their distribution given any full set of samples [11], e.g.

φ̂y =
nx,y + β

n·,y +Nxβ
. (4)

3. Online Inference and Saliency Detection

A limitation of the (standard) model learning and infer-

ence method described above, also adopted by [9, 13], is

that they are offline, batch procedures. For on-the-fly be-

haviour mining in video, we formulate a new real-time fil-

tered (or smoothed) inference algorithm for our MCTM af-

ter an offline batch learning phase.

Given a training dataset of Ttr clips, we have

generated Ns samples {{yt, zt}
Ttr

1 , φ̂, ψ̂, θ̂}Ns

s=1 from

the posterior distribution of latents in our model

p({yt, zt}
Ttr

t=1|{x}
Ttr

1 , α, β, γ). We assume that no fur-

ther adaptation of the parameters is necessary, i.e. the

training dataset is representative, so p(φ, ψ, θ|xt′>Ttr
) =

p(φ, ψ, θ|x1:Ttr
). We then perform Bayesian filtering in

the Markov chain of clusters to infer the current clip’s

behaviour p(zt|x1:t) by approximating the required inte-

gral over the parameters with sums over their Gibbs sam-

ples [11]. Conditioned on each set of (sampled) parameters,

the other action yi,t and behaviour zt variables decorrelate,

so efficient recursions can be derived to compute the be-

haviour category for each clip online:

p(zt+1|x1:t+1) =
∫

φ,θ,ψ,zt

p(xt+1, zt+1|zt, φ, θ, ψ,x1:t) p(zt, φ, θ, ψ|x1:t)

p(xt+1|x1:t)
,

≈
1

Ns

∑

s

p(xt+1|zt+1, φ
s, θs) p(zt+1|z

s
t , ψ

s)

p(xt+1|x1:t)
. (5)
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Bayesian surprise (saliency, or irregularity), is optimally

measured by the marginal likelihood of the new observation

given all the others, p(xt+1|x1:t). This can be determined

from the normalization constant of Eq. (5), or explicitly as:

p(xt+1|x1:t)=

∫

φ,θ,ψ,zt

p(xt+1|ψ, θ, φ,x1:t) p(zt, φ, ψ, θ|x1:t),

≈
1

Ns

∑

s,zt+1

p(xt+1, zt+1|ψ
s, θs, φs, zst ). (6)

Without the iterative sweeps of the Gibbs sampler, even

summing over samples s, behaviour inference (or clip cate-

gorization) and saliency detection can be performed online

and in real-time by Eq. (5) and Eq. (6). Note that in prac-

tice Eq. (5) may suffer from label switching [5], so a sin-

gle sample should be used for interpretable results. Eq. (6)

is independent of label switches and should be used with

all samples. This online approach has no direct analogy in

vanilla LDA [3] (Fig. 1(a)), as the per document parame-

ter θ requires iterative computation to infer. We compare

the computational cost of our MCTM, LDA [3], Dual-HDP

[13] and HMMs in Sec. 4.4.

The Bayesian measure of saliency p(xt+1|x1:t) of test

point xt+1 given training data x1:Ttr
and other previous test

data xt>Ttr
is used to detect irregularity. p(xt+1|x1:t) re-

flects the following salient aspects of the data:

Intrinsic: xt rarely occurred in training data x1:Ttr
.

Actions: xi,ts rarely occurred together in the same topic in

x1:Ttr
.

Behaviours: xt occurred together in topics, but such topics

did not occur together in clusters in x1:Ttr
.

Dynamics: xt occurred together in a cluster zt, but zt did

not occur following the same cluster zt−1 in x1:Ttr
.

Such detections are made possible because the hierarchical

structure of our model represents behaviour at different lev-

els (events, actions, behaviours, behaviour dynamics).

4. Experiments

4.1. Datasets and Settings

Experiments were carried out using video data from

three complex and crowded public scenes. Street Inter-

section Dataset: This contained 45 minutes of 25 fps video

of a busy street intersection where three traffic flows in dif-

ferent directions are regulated by the traffic lights, in a cer-

tain temporal order (see Fig. 3(a)-(e)). The frame size is

360 × 288. Pedestrian Crossing Dataset: This also con-

sists of 45 minutes of 360×288 pixel 25 fps video, and cap-

tures a busy street intersection with particularly busy pedes-

trian activity (see Fig. 3(f)-(i)). Typical behaviours here are

pedestrian crossings alternating with two main traffic flows.

Subway Platform Dataset: A total of 18 minutes of videos

from the UK Home Office i-LIDS dataset is selected for the

third experiment. Though equally busy, the visual scene

in this dataset differs significantly from the other two in

that it is indoor and features mainly people and trains (see

Fig. 3(j)-(n)). In addition, the camera was mounted much

closer to the objects and lower, causing more severe occlu-

sions. Typical behaviours in this scene include people wait-

ing for the train on the platform, and getting on or off the

train. The video frame size is 640× 480 captured at 25 fps.

We used 5 minutes from each dataset for training, and

tested (Eqs. (5) and (6)) on the remaining data. The cell size

for both of the two street datasets was 8×8, and 16×16 for

the subway dataset. Optical flow computed in each cell is

quantized into 4 directions for the two street datasets and 5

for the subway dataset, with the fifth corresponding to sta-

tionery foreground objects common in the subway scene.

We run the Gibbs sampler (Eqs. (2) and (3)) for a total of

1500 complete sweeps, discarding the first 1000 as burn-in,

and then taking 5 samples at a lag of 100 as independent

samples of the posterior p({yt, zt}
Ttr

1 |x1:Ttr
, α, β, γ). In

each case we selected the number of actions as Ny =8 and

the number of behaviour clusters as Nz = 4; except for the

pedestrian crossing dataset, where we usedNz = 3 because

there are clearly three traffic flows. We fixed these numbers

for ease of illustration. Larger Ny and Nz result in a more

fine-grained decomposition of scene behaviour. Dirichlet

hyper-parameters were fixed at {α = 8, β = 0.05, γ = 1}
for all experiments to encourage composition of specific

actions into general topics, but these could be empirically

estimated during sampling [6].

4.2. Unsupervised Scene Interpretation

Clustering Visual Events into Actions: The learned top-

ics of our MCTM correspond to actions consisting of co-

occurring visual events. These actions are typically asso-

ciated with patterns of moving objects. Fig. 2 shows some

example actions/topics y discovered by way of plotting the

visual events x in the top 50% of the mass of the distribution

p(x|y, φ̂sy) (Eq. 4). Note that each action has a clear seman-

tic meaning. In the street intersection dataset, Figs. 2(a) and

(b) represent vertical left lane and horizontal leftwards traf-

fic respectively, while Fig. 2(c) represents the vertical traffic

vehicles turning right at the filter. In the pedestrian crossing

dataset, Figs. 2(d) and (e) illustrate two independent vertical

traffic flows, and Fig. 2(f) represents diagonal traffic flow

and pedestrians crossing at the lights while the flows of (d)

and (e) have stopped. For the subway dataset, Fig. 2(g) in-

cludes people leaving (yellow arrows) from a stopped train

(cyan dots on the train). Fig. 2(h) includes people walking

up the platform and Fig. 2(i) shows people sitting on the

bench waiting.
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Figure 2. Example topics/actions learned in each of the three sce-

narios illustrated by the most likely visual events for each φ̂s

y . Ar-

row directions and colors represent flow direction of the event.

Discovering Behaviours and their Dynamics: Co-

occurring topics are automatically clustered into behaviours

z via matrix θz (Sec. 2.3), each of which corresponds to

a complex behaviour pattern involving multiple interact-

ing objects. Complex behaviour clusters discovered for the

three dynamic scenes in the 5 minutes of training data, are

depicted in Fig. 3. Specifically, Figs. 3(a) and (b) repre-

sent horizontal left and right traffic flows respectively in-

cluding right turn traffic (compare horizontal only traffic in

Fig. 2(b)). Figs. 3(c) and (d) represent vertical traffic flow

with and without interleaved turning traffic. The temporal

duration and order of each traffic flow is also discovered ac-

curately. For example, the long duration and exclusiveness

of the horizontal traffic flows (a) and (b) – and the interleav-

ing of the vertical traffic (c) and vertical turn traffic (d) – are

clear from the learned transition distribution ψ̂s (Fig. 3(e)).

For the pedestrian crossing dataset, three behaviour clus-

ters are learned. Fig. 3(f), diagonal flow of far traffic and

downwards vertical traffic flow at the right, excluding the

crossing zone where there is pedestrian flow (horizontal yel-

low arrows). Figs. 3(g) and (h) show outer diagonal and

vertical traffic, and inner vertical traffic respectively with no

pedestrians crossing. The activity of the pedestrian crossing

light is evident by the switching between (f) and (g) in the

learned transition distribution (Fig. 3(i), top left).

The four behaviour categories discovered in the subway

scene were: People walking towards (red & green arrows)

an arriving train (green arrows on train) (Fig 3(j)); People

boarding a stopped train (cyan dots on the track) or leaving

the station (Fig 3(k)); People leaving the station while the

trains wait (Fig 3(l)) (in this dataset, the train usually waited

for longer than it took everyone to board; hence this clus-

ter); People waiting for the next train by sitting on the bench

(Fig 3(m)). Our model is also able to discover the cycle of
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Figure 4. An example of online processing.

behaviour on the platform triggered by arrival and depar-

ture of trains (Fig. 3(n)). For example, the long duration of

waiting periods (m) between trains, broken primarily by the

train arriving state (j), (see Fig. 3(n), fourth column).

4.3. Online Video Screening

The model was learned for each scenario before new

video data was screened online. The overall behaviours

were identified using Eq. (5), and visual saliency (irregu-

larity) measured using Eq. (6). Fig. 4 shows an example of

online processing on test data from the street intersection

dataset. The MAP estimated behaviour ẑt at each time is il-

lustrated by the colored bar, and reports the traffic phase:

turning, vertical flow, left flow and right flow. The top

graph shows the likelihood p(xt|x1:t−1) of each clip as it

is processed online. Three examples are shown including

two typical clips (turning vertical traffic and flowing verti-

cal traffic categories) and one irregular clip where a vehicle

drives in the wrong lane. Each is highlighted with the flow

vectors (blue arrows) on which computation is based.

We manually examined the top 1% most surprising clips

screened by the model in the test data. Here we discuss

some examples of flagged surprises. In Fig. 5(a) and (b),

another vehicle drives in the wrong lane. This is surpris-

ing, because that region of the scene typically only includes

down and leftward flows. This clip is intrinsically, (Sec. 3)

unlikely, as these events were rare in the training data under

any circumstances. In Fig. 5(c) and (d), a police car breaks

a red light and turns right through opposing traffic. Here

the right flow of the other traffic is a typical action, as is

the left flow of the police car. However, their conjunction

(forbidden by the lights) is not. Moreover some clips in this

multi-second series alternately suggest left and right flows,

but such dynamics are unlikely under the learned temporal

model (Fig. 3(e)). Therefore this whole series of clips is be-

haviorally and dynamically (Sec. 3) unlikely given global

and temporal constraints entailed by p(xt|x1:t−1).
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Figure 3. Behaviour and dynamics in each of the three scenarios, illustrated by the most likely visual words/events for each behaviour θ̂s

z

and the transitions between behaviours ψ̂s

z .

(a) (c) (e) (g) (i)

(b) (d) (f) (h) (k)

Figure 5. Sample salient clips discovered. Arrows/dots indicate input events and red boxes highlight regions discussed in the text.

Another behavioral (action concurrence) surprise to the

model is the jay-walker in Fig. 5(e-f). Here a person runs

across the intersection to the left, narrowly avoiding the

right traffic flow. Both left and right flows are typical, but

again their concurrence in a single document, or rapid al-

teration in time is not. Fig. 5(g) shows the detection of a

jaywalker triggered by intrinsically unlikely horizontal mo-

tion across the street. In contrast, Fig. 5(h) illustrates two

plausible pedestrian actions of crossing left and right at the

crosswalk, but doing so at the same time as the vertical

traffic flow. This is multi-object situation is behaviorally,

(Sec. 3) irregular. In Fig. 5(i) a train arrives, and three peo-

ple typically (Fig. 3(j)) walk towards the train for boarding.

However, unusually, other people walk away from the train

down the platform, a behaviorally unlikely concurrence. In

Fig. 5(k), the train is now stationary. While most people per-

form the typical paired action of boarding (Fig. 3(k)), others

walk away from the train down the platform, a multi-object
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behaviour detected due to low likelihood p(xt|x1:t−1).

Figs. 5(c-f) illustrate an important feature of our model

that gives a significant advantage over non-temporal LDA

based models [9, 13]: Our model is intrinsically less con-

strained by bag-of-words size, i.e. determining a suitable

temporal window (clip) size. With standard LDA, larger

bag sizes would increase the chance that vertical and hori-

zontal flows here were captured concurrently and therefore

flagged as surprising. However, larger bag sizes also cap-

ture much more data, risking loosing interesting events in

a mass of normal ones. Our model facilitates the use of

a small one second bag size, by providing temporal infor-

mation so as to penalize unlikely behaviour switches. As a

result, our model can discover not only quick events such

as Fig. 5(a) and (b) that might be lost in larger bags, but

also longer time-scale events such as Fig. 5(c-f) that could

be lost in many independently distributed smaller bags.

To demonstrate the breadth of irregular behavioural pat-

terns our model is capable of consistently identifying, some

of which are visually subtle and difficult to detect even

by human observation, we provide a human interpreted

summary of the categories of screened salient clips in Ta-

ble 1. We compare the results with two alternatives, LDA

[3] with Ny topics, and a HMM with Nz states. Clips

with no clear salient behaviour were labeled “uninterest-

ing”. These were variously due to camera glitches, exposure

compensation, birds, very large trucks, and limited training

data to accurately profile typical activities. There is no al-

gorithmic way to determine “why” (i.e. action, behaviour,

dynamics) events were surprising to the model, so we do

not attempt to quantify this. Our MCTM outperforms the

other two models especially in the more complex behaviour

categories of red-light-breaking, u-turns and jaywalking. In

these cases, the saliency of the behaviour is defined by

an atypical concurrence of actions and/or sequence of be-

haviours over time, i.e. a surprise is defined by complex

spatio-temporal correlations of actions rather than simple

individual actions. In contrast, conventional LDA can infer

actions, but cannot reason about their concurrence or tem-

poral sequence simultaneously. HMMs can reason about

sequences of behaviours, but with point (EM) learning, and

lacking the intermediate action representation, HMMs suf-

fer from severe over-fitting. All the models do fairly well

at detecting intrinsically unlikely words which are visually

well-defined independently, e.g. wrong way driving.

For the pedestrian crossing dataset, the result is shown

in Table 2. Atypical pedestrian behaviours were jaywalking

far from the crosswalk (intrinsically unlikely visual events),

and crossing at the crosswalk through traffic (unlikely ac-

tion concurrence; Fig. 3(f) vs (g),(h)). Our MCTM was

more adept than both LDA and HMM at detecting the more

subtle behaviours. This is due to the same reasons of si-

multaneous hierarchical and temporal modeling of actions

Street Intersection MCTM LDA HMM

Break Red Light 3 0 1

Illegal U-Turn 5 2 1

Jaywalking 1 0 0

Drive Wrong Way 12 14 12

Unusual Turns 5 2 4

Uninteresting 29 37 37
Table 1. Summary of human meaningful clip types discovered by

different models for the street intersection dataset.

Pedestrian Cross MCTM LDA HMM

Jaywalking 18 15 15

Through Traffic 11 6 5

Uninteresting 33 41 42

Subway Platform MCTM LDA HMM

Contraflow 2 0 0

Uninteresting 3 5 5
Table 2. Summary of human meaningful clip types discovered by

different models for crossing and subway platform datasets.

and improved robustness due to Bayesian parameter learn-

ing compared to HMMs especially. Finally, for the subway

dataset (Table 2) the only interesting behaviours observed

were people moving away from the train during clips where

typical behaviour was approaching trains and boarding pas-

sengers, this was detected by our model and not the others.

4.4. Computational Cost

The computational cost of MCMC learning in any model

is hard to quantify, because assessing convergence is it-

self an open question [5], as also highlighted by [13]. In

training, our model is dominated by the O(NTNy) cost of

resampling the total number NT of input features in the

dataset per Gibbs sweep, which is the same as [13]. In

testing, our model requires O(N2
z ) + O(NTNyNz) time

per parameter sample. In practice using Matlab code on

a 3GHz CPU, this meant that training on 5 minutes of our

data required about 4 hours. Using our model to process one

hour of test data online took only 4 seconds in Matlab. Pro-

cessing the same data with (Variational) LDA in C [3] took

about 20 and 8 seconds respectively, while (EM) HMM in

Matlab took 64 seconds and 26 seconds. Wang et al.[13]

reported that Gibbs sampling in their HDP model required

8 hours to process each hour of data from their quieter (and

therefore fewer words, so quicker) dataset; and they do not

propose an online testing solution. These numbers should

not be compared literally given the differences in imple-

mentations and datasets; however the important thing to

note is that while our model is competitive in training speed

to sophisticated contemporary models [13], it is much faster

for online testing. Moreover, it is faster than the simple

models which it outperforms in saliency detection.
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5. Discussion

We introduced a novel Bayesian topic model for simulta-

neous hierarchical and temporal clustering of visual events

into actions and global behaviours. The model addresses

two critical tasks for unsupervised video mining: mod-

eling scene behavioral characteristics under-pinned at dif-

ferent spatial and temporal levels, and online behaviour

screening and saliency detection. Our Gibbs learning pro-

cedure has proven effective at learning actions, behaviours

and temporal correlations in three diverse and challenging

datasets. We showed how to use the Gibbs samples for rapid

Bayesian inference of clip category and saliency. Evalu-

ating the salient clips returned from our diverse datasets,

our MCTM outperforms LDA and HMMs for unsupervised

mining and screening of salient behaviours, especially for

visually subtle, and temporally extended activity. This was

because we model simultaneously temporal evolution of be-

haviour (unlike LDA), the hierarchical composition of ac-

tion into behaviours (unlike LDA and HMM) and Bayesian

parameter learning (unlike HMM). Compared to object-

centric approaches such as [1, 12], our simple and reliable

visual features improve robustness to clutter and occlusion.

We have not addressed the issue of determining the op-

timal number of behaviours and actions in a given dataset,

as was done in [13]. For our model, Bayesian model selec-

tion can readily be done offline once per scene in a prin-

cipled if computationally intensive way: maximizing the

marginal likelihood p(x|Nz, Ny) based on the Gibbs out-

put, or Eq. (6). This approach retains the option of subse-

quent online real-time processing, in contrast to [13] which

does not propose an online solution, and whose batch solu-

tion is in the order of ten times slower than real time [13].

To put our theoretical modeling contribution in con-

text, it contrasts other hierarchical work which clusters ac-

tions, but not over time [13], and other non-hierarchical

work which temporally correlates words within (rather

than across) documents[6] or provides continuous variation

(rather than discrete clustering) of parameters over time[2].

In summary, we have presented a unified model for

completely unsupervised learning of scene characteristics,

dynamically screening and identifying irregular spatio-

temporal patterns as salient behaviour clips that may be of

interest to a human user. An important feature of our ap-

proach is the breadth of different kinds of behaviours that

may be modeled and flagged as salient due to our simul-

taneous hierarchical topic modeling and temporal correla-

tion globally optimized in a unified model. For example,

temporally extended events typically only flagged by ob-

ject/tracking centric models [12, 1] such as u-turns as well

as multi-object events typically only flagged by statistical

event models such as jaywalking [13]. Finally, the specific

formulation of our model also permits Bayesian saliency

discovery of these type of events online in real-time.
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