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Abstract—We propose two scheduling algorithms that seek to
optimize the quality of scalably coded videos that have been
stored at a video server before transmission. The first scheduling
algorithm is derived from a Markov decision process (MDP)
formulation developed here. We model the dynamics of the
channel as a Markov chain and reduce the problem of dynamic
video scheduling to a tractable Markov decision problem over a
finite-state space. Based on the MDP formulation, a near-optimal
scheduling policy is computed that minimizes the mean square
error. Using insights taken from the development of the optimal
MDP-based scheduling policy, the second proposed scheduling
algorithm is an online scheduling method that only requires
easily measurable knowledge of the channel dynamics, and is thus
viable in practice. Simulation results show that the performance
of both scheduling algorithms is close to a performance upper
bound also derived in this paper.

Index Terms—Scheduling algorithm, videos transport, wireless
communication.

Nomenclature

F intra Number of frames in a intraperiod.

FGOP Number of frames in a GOP.

L Number of MGS layers.

zt The amount of received data for the frame played out

at t.

ωk
ℓ The amount of data in the ℓth layer of a type-k frame.

dℓ The distortion when the ℓth layer is correctly received.

dk(zt) The rate-distortion model for type-k frames.

d̂k(zt) The concave envelopes of dk(zt).

Xt The transmission bit rate at t.

Yt The packet error rate at t.

Rt The channel throughput at t.

ravg The average channel throughput.

Ct The channel state at t.

Vt The buffer state at t

St The system state at t.
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I. Introduction

T
HE VARIATION of wireless channel capacity and tight

delay constraints make the delivery of video difficult.

Although adaptive transmission strategies, such as adaptive

video data scheduling, can be employed, deriving the optimal

adaptive transmission policy is difficult because the transmis-

sion strategies taken at different time are coupled with each

other via receiver buffer state. Furthermore, due to the nature

of predictive video coding algorithms, a video frame can be

decoded only when its predictors have been received. Hence,

the prediction structure of the video codec enforces a partial

order on the transmissions of the video packets, which limits

the flexibility of adaptive video transmission.

Scalable video coding (SVC) is one approach to enable flex-

ible video transmission over channels with varying throughput

[1], [2]. An SVC video encoder produces a layered video

stream that contains a base layer and several enhancement

layers. If the throughput is low, the transmitter can choose

to transmit the base layer only, which provides a moderate,

but acceptable, degree of visual quality at the receiver. If the

channel conditions improve, the transmitter can transmit one,

or more, enhancement layers to further improve the visual

quality. Conceptually, SVC provides a means to adapt the data

rate for wireless video transmission. The wireless transmitter

can adapt the data rate by selectively scheduling video data

associated with various layers for transmission rather than

transcoding the video sequence into a different rate.

Designing scalable video scheduling algorithms for wireless

channels is a complex task. The scheduling policy depends

not only on the channel conditions, but also on the receiver

buffer state. For example, if the receiver has successfully

buffered base layer data over many frames, the scheduler could

choose to transmit some enhancement layer data to improve

the video quality even if the throughput is low. At any time,

the scheduling decision will determine the receiver buffer state

which, in turn, affects the future scheduling decisions. There-

fore, adaptive video data scheduling is a sequential decision

problem. The most natural way to address such problems is to

model the dynamics of the channel as a finite-state Markov

chain (FSMC) and to employ a Markov decision process

(MDP)-based formulation to study scheduling methods. For

stored video transmission, however, directly determining an

optimal scheduling policy using an MDP formulation is not

possible, because the system state space is infinitely large

(Section III-A). Moreover, in a practical wireless network, a
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model for the dynamics of the channel states is not typically

available, which limits the applicability of this approach.

A. Contributions

The objective of this paper is to leverage the MDP frame-

work to develop practical scheduling algorithms and optimize

the receiver video quality for stored scalable video transmis-

sion over wireless channels. First, we propose a tractable MDP

formulation based on a reasonable approximation of the state

space. Near-optimal scheduling policies can be derived from

this MDP formulation. Second, we propose a scheduling algo-

rithm that substantially simplifies the MDP-based scheduling

policy as it requires only limited information regarding the

channel state dynamics. Third, we prove an upper bound

on the achievable video quality of all possible scheduling

algorithms. Finally, we provide simulation results that show,

under different channel conditions, the performance of the

proposed scheduling algorithms is indeed very close to the

upper bound.

Our contributions are summarized in the following.

1) An MDP formulation is proposed to facilitate the de-

sign of adaptive scheduling policies for stored video

transmission. In this paper, we focus on stored video

transport, where video sequences have been encoded and

stored on a video server before transmission. This is

quite different from real-time video transmission where

video frames are generated in real time. The video

scheduler can select any data from the video sequence

and send the data to the receiver buffer. Thus, the number

of possible receiver buffer states can be effectively

regarded as infinite. Because the performance of the

scheduling policy depends on the receiver buffer state,

the policy needs to be optimized over an infinitely large

state space and the scheduling problem is intractable.

In this paper, by applying reasonable restrictions on

the set of scheduling policies considered in our MDP

formulation, we prove that optimizing the transmission

policy is equivalent to solving a semi-Markov decision

problem on a finite-state set (Section III). Based on this

result, near-optimal scheduling policies can be derived

using the proposed MDP formulation.

2) A near-optimal and online scheduling algorithm is pro-

posed. In most cases, models for channel dynamics are

not available. By simplifying the channel model and

the scheduling decision of the MDP formulation, we

devise an online scheduling algorithm which, unlike

the MDP-based policy, only requires limited measurable

knowledge of the channel dynamics. Simulation results

show that the proposed online algorithm performs nearly

as well as the MDP-based scheduling policy.

3) Performance optimality is justified. To assess the per-

formance of the proposed scheduling algorithms, an

upper bound on the achievable video quality for adaptive

scheduling is proved. Simulation results show that both

the MDP-based scheduling policy and the proposed

online scheduling policy perform close to the upper

bound.

B. Related Work

Adaptive video data scheduling is an important topic of

research [3]–[12]. In [3], adaptive video transmission over a

packet erasure channel was studied by modeling the buffer

state as a controlled Markov chain. In [4], an average-rate-

constrained MDP formulation was proposed to optimize the

quality of error-concealed videos at the receiver. For time-

varying wireless channels, the amount of data that can be

scheduled during a time slot is limited by the channel ca-

pacity at the slot. Only considering the constraint of the

average transmission rate is insufficient. In [5], an MDP-based

scheduling algorithm was proposed for video transmission

over packet loss networks. This paper was further extended for

wireless video streaming in [6], where the wireless channel

was modeled as a binary symmetric channel. This channel

model can only be justified for fast-fading channels, where the

coherence time is much less than the delay constraint. In that

case, interleaving can be applied without violating the delay

constraint, and the channel will appear as an i.i.d. channel.

For slow-fading channels, such as those considered here, the

bit error rate cannot be modeled as a constant. In [7], adaptive

scheduling of scalable videos was studied using an MDP

model. The reward of each frame slot was defined as a utility

function of the buffer state and the transmission rate. A fore-

sighted scheduling policy was derived to maximize the long-

term reward over all frame slots. Comparing with a scheduling

method that myopically maximizes the reward of each individ-

ual frame slot, the proposed scheduling algorithm improved

the video quality significantly. In [8]–[11], reinforcement

learning frameworks were proposed for wireless video trans-

mission. Their proposed algorithms were based on MDP using

a discounted-reward maximization formulation. The transmit-

ter learns the characteristics of the channel and the video

sequence during the transmission process. The scheduling pol-

icy is updated according to the learned characteristics. In our

previous work [12], an infinite-horizon average-reward maxi-

mization MDP formulation was proposed. The channel char-

acteristics, unlike in this paper, were assumed to be known.

The most closely related prior work is [6]–[11], which focus

on scalable video transmission over wireless channels. Our

paper contrasts with these as follows.

1) An infinite-state space problem for stored video stream-

ing: For real-time video transmission, the number of

video frames that are ready for transmission is finite

because later frames have not yet been generated at the

video source. Therefore, the scheduler only needs to

select data from a finite set of frames [6]–[10]. In this

paper, we focus on stored video streaming, where all the

video frames have been encoded before transmission. In

this case, the scheduler is allowed to select data from

any video frame and the number of possible receiver

buffer states is therefore infinitely large. In this paper,

we construct a finite-state MDP model and show that

the optimal policy derived from this MDP model is also

optimal for the original infinite-state problem.

2) Channel model: We focus on slow-fading wireless chan-

nels experienced by pedestrian users. In the channel
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model of [6], the bit error probability of the channel

was assumed constant. This assumption can only be

justified for fast-fading channels, where the channel

coherence time is much less than the delay constraint

in video applications. In that case, interleaving can be

applied without violating the delay constraint, and the

channel will appear to have i.i.d. bit errors. For slow-

fading channels, where the coherence time is much

longer, it is impossible to apply interleaving over many

coherence periods due to the delay constraint. In this

case, i.i.d. models are no longer suitable because they do

not capture information regarding channel variations. In

contrast, the algorithm proposed in this paper explicitly

considers channel state variation in scheduling.

3) Optimization objective: Most of the existing MDP-based

scheduling algorithms are based on a utility function as

the optimization objective [7]–[10]. The utility function

is usually written as a weighted sum of the transmission

bit rate and the amount of buffered data. The weights

assigned to each component of the summation, to some

extent, reflect their importance, but are heuristically

chosen. The resulting utility function cannot accurately

indicate the quality of played out frames. Here, instead

of optimizing a utility function, we directly optimize the

quality of the video frame played out in each frame slot.

4) Nonavailability of channel state dynamics: In a practical

wireless video transmission application, models for the

dynamics of the channel state are typically unavail-

able. To address this problem, a reinforcement learning

algorithm can be employed to learn a good policy

from making wrong scheduling actions [8]–[10]. Video

quality, however, will be degraded during the learning

period, which can be as long as tens of seconds. We

propose an adaptive alternative to such reinforcement

learning methods that only uses the channel coherence

time and current channel throughput which are easy to

measure in practice. The performance of the proposed

algorithm is very close to a derived performance upper

bound.

C. Organization of This Paper

This paper is organized as follows. The system model is

introduced in Section II. The assumptions we make about

the video codec and the rate-distortion model are described

in Section II. In Section III, the MDP formulation and the

performance upper bound are proposed. A near-optimal online

scheduling algorithm is introduced and validated by simula-

tions in Section IV. Section V concludes the paper.

II. System Model

In this section, we describe the wireless video system to be

considered. Then, we present our video codec configuration

and introduce the rate-distortion model.

We briefly introduce some notation used in the paper. A

and a are examples of a matrix and a vector, respectively.

A is a set. |A| is the cardinality of set A. ⌈·⌉ is the

ceiling function. P(·) is the probability measure and E[·] is

Fig. 1. Dynamic scheduling system for wireless video transmission.

the expectation. N = {0, 1, 2, · · · } is the set of nonnegative

integers. Other frequently used notations are summarized in

the Nomenclature.

A. System Overview

We consider a time-slotted system that transmits scalable

videos over a slow-fading wireless channel. The video se-

quence is encoded with a quality-scalable video encoder and

is stored in a video server. The video server transmits video

data to a mobile user via a wireless transmitter. The duration

of each frame �T is called a frame slot. In each frame

slot, the server sends some video data upon request of a

scheduler at the wireless transmitter. This data are packetized

at the wireless transmitter for physical layer transmission. The

channel and receiver buffer state is sent to the scheduler via a

feedback channel with negligible delay. The scheduler operates

according to a policy that maps the channel and receiver buffer

state to the scheduling action (Fig. 1).

In wireless communication systems such as 3GPP, using

the technique of limited feedback, channel state information

measured at the receiver can be fed back to the transmitter via

a control channel [13]–[15]. The delay of the feedback channel

is typically much smaller than a frame slot. For example, the

feedback delay in 3GPP is 6 ms [15], which is much shorter

than the 33 ms frame slot of 30 frames/s videos. Similarly, the

video packets received in each slot can also be acknowledged

via a control channel with negligible delay. Therefore, similar

to most of existing MDP formulations such as [7]–[10], we

assume the feedback is instantaneous. For the case where

feedback delay is longer than a frame slot [16].

We assume that the link between the video server and the

wireless transmitter is not the bottleneck for transmission to

the mobile. Thus, from the perspective of the wireless transmit-

ter, the whole video sequence is available for transmission. We

also assume that the physical layer channel state information is

available at the transmitter and that the modulation and coding

scheme is determined by a given physical layer link-adaptation

policy.

B. Video Codec Configuration

We assume that the video sequence is encoded by an

H.264/SVC video encoder. The video frames are uniformly

partitioned into intraperiods. Every intraperiod has F intra

frames and is further partitioned uniformly into group of

pictures (GOPs). Each GOP has FGOP frames. They are

encoded using the “Hierarchical B" prediction structure [1],

in which video frames are hierarchically organized into T

temporal layers as shown in Fig. 2. The last frame in each

GOP is called a key picture. These key pictures form the 0th



1084 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 6, JUNE 2013

Fig. 2. Encoder prediction structure considered in this paper. The prediction
order is indicated by arrows. The length of intraperiod is F intra = 8 and the
GOP length is FGOP = 4. The CGS enhancement layer is partitioned into
three MGS layers.

temporal layer. There are two types of key pictures: I frames

and P frames. The first picture in an intraperiod is called an I

frame, which is encoded without referring other frames. The

other key pictures are P frames. Each P frame is encoded

using a preceding key pictures as reference. All the frames in

higher temporal layers are B frames. A B frame in the τth

temporal layer is encoded using the preceding frame and the

succeeding frame in the lower temporal layers as reference. In

the following, we call a frame in the τth temporal layer a Bτ

frame, where τ ≥ 1 (Fig. 2).

Every frame is encoded into a base layer and a coarse

grain scalability (CGS) layer. The base layer of an I frame

is encoded independently. The base layer of a P frame is

predictively encoded using the base layer of the preceding

key picture. The CGS layer of all key pictures is predictively

encoded using their respective base layers. For a B frame, its

base layer is encoded using the CGS layers of its reference

frames. Its CGS layer is encoded using both its base layer and

the CGS layers of its reference frames (see Fig. 2).

The CGS layer of each frame is further partitioned into L

MGS layers. Each MGS layer contains a portion of the CGS

layer data. Thus, the more MGS layers are received, the higher

decoding quality can be achieved. In the following, we call

the base layer and the MGS layers quality layers. We focus

on adaptive scheduling of the quality layers in a video stream.

The temporal scalability is not exploited.

In this paper, we only consider one CGS enhancement layer.

In H.264/SVC, multiple CGS layer is supported and each CGS

layer can be partitioned into several MGS layers. The switch

between CGS layers, however, is only possible at instanta-

neous decoder refresh (IDR) frames, which are separated from

each other by several intraperiods. Therefore, CGS cannot

support frame-by-frame rate adaptation. Since the coherence

time of wireless channels is much shorter than a intraperiod,

flexible rate adaptation can only be achieved by MGS, which

allows us to vary the number of quality layer for each frame.

Here, we consider frame-by-frame adaptive scheduling of the

MGS layers within a single CGS enhancement layer. For the

video streams that contain multiple CGS enhancement layers,

our scheduling algorithm can be applied to conduct adaptation

in one of the CGS enhancement layers while treating all lower

layers as the base layer. In the following, we call the MGS

layers enhancement layers.

Each frame has a playout deadline at the receiver. In the

following, frames whose deadlines have expired are called

Fig. 3. Indices of data units when three quality layers are considered. At the
beginning of each time slot, the frame with index f = 0 is played out. All
the data units in the figure shift left.

Fig. 4. Rate-distortion function df (zf ) for the f th frame. The rate-distortion
function df (zf ) is piecewise constant and right-continuous (solid). Its convex

envelope d̂f (zf ) is also shown (dashed).

expired frames; otherwise, they are said to be active frames.

The first active frame is called the “current frame.” The GOP

that contains the current frame is called the “current GOP.”

The intraperiod that contains the current frame is called the

“current intraperiod” (see Fig. 3). The frames in the current

GOP are decoded together when the first frame of the GOP

is displayed. At any point in time, frames are indexed relative

to the current frame as shown in Fig. 3. Each data unit is also

tagged with a layer index ℓ. The index for base layer is ℓ = 0

and the enhancement layers are index from 1 to L. The video

data in the ℓth layer of the f th frame are called the (f, ℓ)th

video data unit.

C. Rate-Distortion Model

Let zf be the amount of received data for the f th frame.

The rate-distortion function df (zf ) captures the quality of the

frame when it is decoded, given all its predictors have been

received. Let ω(f,ℓ) be the amount of data in the (f, ℓ)th data

unit and d(f,ℓ) be the distortion measured in mean square error

(MSE) if the 0th ∼ ℓth layers have been correctly received.

As shown in Fig. 4, since a data unit can be decoded only

when all its associated data has been received, df (zf ) is a

piecewise constant and right-continuous function with jumps

at zf =
∑m

ℓ=0 ω(f,ℓ), m = 0, 1, . . . , L. Thus, d(f,ℓ) and ω(f,ℓ)

characterize df (zf ).

In a real video sequence, for a given layer ℓ, the rate-

distortion characteristics ω(f,ℓ) and d(f,ℓ) vary across frames.

Let K = {I, P, B1, . . . , BT } be the set of frame types. We

model ω(f,ℓ) of type k frames as i.i.d. realizations of a random

variable �k
ℓ, where k ∈ K. Then, we use ωk

ℓ = E[�k
ℓ] as an
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estimate of ω(f,ℓ). Similarly, for a given layer ℓ, we model

d(f,ℓ) as i.i.d. realizations of a random variable Dℓ. We use

dℓ = E[Dℓ] as an approximation of d(f,ℓ). Here, we choose not

to distinguish the frame types when modeling d(f,ℓ). In a typical

H.264/SVC video stream, the quantization parameters (QPs)

of the encoder are usually configured to minimize visually

annoying quality fluctuations across different types of frames.

Hence, for simplicity, we use a single random variable Dℓ to

model d(f,ℓ) for all types of frames.

Our rate-quality models dk(zf ) for type-k frames are con-

structed as piecewise constant functions with jumps at zf =∑m
ℓ=0 ωk

ℓ , m = 0, 1, . . . , L. For stored video transmission,

which is the focus of this paper, since the transmitted video

has already been encoded, the size of each data unit is thus

available. The parameters {ωk
ℓ, k ∈ K} can thus be estimated

by averaging across frames. If the distortion characteristic d(f,ℓ)

is calculated when the video is encoded, the parameter dℓ can

also be estimated by averaging d(f,ℓ) across frames. If d(f,ℓ) is

not available, dℓ needs to be estimated online. For example,

the quality of frames that have been decoded at the receiver

can be fed back to the transmitter for estimation.

D. Streaming Setup

We focus on scheduling for a slow-fading channel. By slow

fading, we mean that the coherence time of the channel is less

than the duration of an intraperiod and larger than a frame slot.

Assuming the mobile users are moving in a 1.5 m/s walking

speed and the carrier frequency is 2 GHz, the Doppler spread is

about 10 Hz. The coherence time is about 100 ms. A typical

intraperiod duration is about 1 s and a frame slot is about

30 ms. Hence, for pedestrian video users, wireless channels

are slow fading.

As the channel state is stable during each frame slot, the

scheduling decision is made on a frame-by-frame basis. At the

beginning of each frame slot, a frame is played out, and video

data units are scheduled for transmission. The scheduling

action is defined as a set of ordered video data units

U =
{

(f1, ℓ1), (f2, ℓ2), . . . , (f|U |, ℓ|U |)
}

. (1)

When scheduling action U is taken, the associated data units

are transmitted sequentially. Each scheduled data unit is pack-

etized into physical layer packets and each packet is repeatedly

transmitted, i.e., if packet error occurs, until acknowledged.

In this paper, we consider data unit level scheduling. If a

packet-level rate-quality model such as [10] is available, our

MDP formulation can also be used to optimize the packet-level

scheduling policy.

III. MDP-Based Model

In this section, we propose an MDP-based model to de-

termine the near-optimal scheduling policy. To that end, we

describe the scheduler’s state space and the policies to be

considered. We then show how to reduce the scheduling

problem to a finite-state Markov decision problem using

reasonable approximations. With the MDP-based model, the

optimal scheduling policy is computed offline via value it-

eration. The computed policy can then be used for online

adaptive scheduling. To validate the optimality of the MDP-

based scheduling policies, we develop a performance upper

bound at the end of this section.

A. Scheduling Policy and State Space

Considering all possible scheduling actions makes defining

the scheduling policy and representing the buffer state unman-

ageably complex. On one hand, to capture the buffer state, the

frame index and the layer index of each received data unit need

to be recorded. If we assume an infinite playback buffer, the

number of received data units is not bounded. So we cannot

represent all possible buffer states using a finite-dimensional

space. On the other hand, not all possible scheduling policies

need to be considered. For example, a quality layer of a frame

should not be transmitted before the lower quality layers of the

frame because an SVC decoder cannot decode a quality layer

without the lower layers [1]. Thus, we need only consider

those scheduling strategies that are not dominated and have

potential to achieve good performance.

Specifically, we consider scheduling policies under the

following assumptions.

Assumption 1: The scheduler always schedules the base

layer data unit of a frame for transmission after the base

layer data unit(s) of the reference frame(s). The scheduler

always schedules the enhancement layer data unit of a frame

for transmission after the data units of the lower layers.

Assumption 2: The scheduler always schedules enough

amount of data such that the transmitter is kept transmitting

during the whole slot.

Assumption 3: We define three sets of data units: Wpre, W ,

and Wpost. When the current frame is a B frame, the set Wpre

contains the data units with frame index f ∈ [f key, −1], where

f key is the frame index of the last expired key picture [see

Fig. 5(a)]. When the current frame is a key picture, we define

Wpre = ∅. Note that Wpre contains all the expired data units

that are used to predict the frames in the current GOP. The set

W contains the data units in all quality layers of the first W

frames, where W is larger than FGOP. The set Wpost contains

the remaining active data units. We assume the scheduler first

sends the data units in W . Then, if all the data in W and

the predictors in Wpre have been received, the policy greedily

schedules all 1 + L quality layers of the frames in Wpost,

i.e., starts transmitting the next frame in Wpost only when

all the layers of the preceding frame have been received [see

Fig. 5(b)].

Assumption 4: In each slot, the scheduler only schedules

data for the frames that have not been decoded. Assumption 1

ensures that the transmission order is compatible with the

prediction order given in Section II-B. Assumption 2 ensures

that the transmitter will not be idle during a slot and the

capacity of the channel is fully exploited. Assumption 3 stems

from the fact that, when many frames are buffered at the

receiver, the scheduler can transmit more enhancement layers

because there is sufficient time before the frames are played

out. In other words, if all quality layers of W frames have been

received, there is no need to worry about the channel capacity

variation in the future. As will be discussed in Section III-C,

this assumption helps to simplify the policy optimization
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Fig. 5. (a) Receiver buffer state when F intra = 8, FGOP = 4, L = 2, and W = 5. vI = 2, vpre = (2, 1), vW = (2, 2, 3, 1, 1), vpost = (0, 0, 0). Note that because
some data units in W have not been received, the data units in Wpost are not sent. (b) Transmission order when the data in W and the associated predictors
in Wpre have been received.

problem. It should be noted that policies under Assumption

3 are different from the sliding window policies defined in

[5]. Indeed, our scheduling policy allows the transmitter to

transmit data units outside the window. Assumption 4 ensures

that the transmitter does not waste resources on the frames

that have been decoded.

Remark 1: The window size W provides a tradeoff between

complexity and optimality. The larger the window, the less

constrained the control policy but the higher complexity.1

We note that although the frames in the current GOP are

played out sequentially, they are decoded together. According

to Assumption 4, if W ≥ FGOP, the frames in W have all been

decoded and the scheduler cannot schedule any data from W .

Therefore, we set W ≥ FGOP.

We define the overall buffer state space V via four sets

V I, Vpre, VW, and Vpost, where V = V I × Vpre × VW ×

Vpost. The set V I records the types and playout deadlines

of the frames in the buffer. The sets Vpre, VW, and Vpost

describe the states of the frames in Wpre, W , and Wpost,

respectively.

V I: We define vI as the frame index of the active I

frame with the earliest playout deadline. Since the

prediction structure is assumed to be the same for

all intraperiods, vI determines the types and playout

deadlines of all the frames in the receiver buffer.

1In our simulations, we find that setting W = 9 is sufficient.

Vpre: If the current frame is a B frame, the state space Vpre

is defined as a vector vpre = (b
pre

f key , . . . , b
pre
−1), where

b
pre
f is the number of the received quality layers in

the f th frame and f key is the frame index of the

last expired key picture. If the current frame is a key

picture, Wpre = ∅ and we define vpre = −1.

VW: Similar to Vpre, we define the buffer state space for

W as a vector vW = (bW
0 , . . . , bW

W−1), where bW
f is

the number of the received quality layers in the f th

frame.

Vpost: The set Wpost contains infinite number of frames.

Therefore, recording the number of data units

received for each frame is impossible. We note that,

when Assumption 3 is enforced, the number of data

units received in Wpost must be nonincreasing in

the frame index. Hence, we only need to record the

total number of received data units for each layer.

We define the buffer state space of Wpost as a 1 + L-

dimensional vector vpost = (b
post
0 , b

post
1 , . . . , b

post
L ),

where b
post
ℓ is the number of the received data units

in the ℓth layer of Wpost. Because the receiver

buffer size is assumed to be large, i.e., essentially

infinite, b
post
ℓ is unbounded. Thus, Vpost = N

1+L,

where N = {0, 1, . . . , ∞}.

With the aforementioned definition, buffer state v =

(vI, vpre, vW, vpost) contains all the information that is relevant

to the quality of frames in the receiver buffer.
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In [17] and [18], it is shown that a first-order FSMC can

be used to describe the first-order channel state transition

probabilities for Rayleigh fading channels. First-order FSMC

models have also been validated in [19] and [20] by wireless

channel measurements in urban areas. In our MDP-based

model, we employ a first-order FSMC to describe the dynam-

ics of the channel state.

We denote by x the transmission rate of the transmitter, i.e.,

the number of bits transmitted in a time slot �T . We denote by

y the packet error rate of the channel. We define the channel

state as c = (x, y). The channel state space is C =
{

c1, ..., c|C|
}

,

where ci = (xi, yi) is the ith channel state. The state transition

matrix Pc is a |C|× |C| matrix with entry Pc
i,j = P(cj|ci) being

the transition probability from state ci to cj .

The system state space S is defined as the product of the

buffer state space V and the channel state space C. For each

state s ∈ S, we define a feasible control set Us that contains all

the scheduling actions [see (1)] complying with all the three

assumptions. The state s contains all the information about the

receiver buffer and the channel. The transmitter must decide

which action in Us to take in order to minimize the distortion.

We define the scheduling policy µ(·) as the mapping from

the system state s to an action in Us. Under given scheduling

policy µ, the system state transit as a controlled Markov

chain. The state transition probability Pµ(·|·) is determined by

the scheduling policy µ (see Appendix A for detail). In the

following sections, we show how to optimize the scheduling

policy µ(·).

B. Optimization Objective

Since the channel condition is modeled as a random process,

we denote by (Ct, Vt, St)t∈N the random processes modeling

channel, buffer, and system state, respectively. Accordingly,

we denote S = limt→+∞ St . We define a function d(s) of state

s as the estimated distortion of the frame that is played out

at state s.2 Our aim is to find an optimal policy µ∗(·) that

minimizes the expectation of distortion, i.e.,

Jµ = Eµ [d(S)] (2)

where Eµ[·] is the expectation over the stationary distribution

of the controlled Markov chain under policy µ.

We now introduce the definition of d(s). If the displayed

frame is a key picture (I frame or P frame), we estimate its

distortion using the rate-distortion model in Section II-C as

d(s) =

{
dI (z(s)) : for I frames

dP (z(s)) : for P frames
(3)

where z(s) denotes the amount of received data for the

displayed frame at state s. If the displayed frame is a B frame,

which is encoded using all the 1 + L layers of its reference

frames as predictor, the distortion cannot be directly estimated

using the rate-distortion model in Section II-C because the

loss in the enhancement layers of its reference frames causes

encoder–decoder predictor mismatch, which is also known as

drift in SVC [1]. We employ the model proposed in [21] to take

2Since in each slot, a frame is played out before the scheduling actions are
taken. Therefore, d(s) is not a function of the actions taken at the state s.

into account the distortion due to drift. Let
{

v̂ref
i , i ∈ 1, 2

}

denote the predictor for the B frame at the encoder, i.e., the

pixel value of the ith reference frame with all the 1+L layers.

Let
{

ṽref
i , i ∈ 1, 2

}
be the the predictor for the B frame at the

decoder, i.e., the pixel value of the ith reference frame with

all the received quality layers. The drift of the reference frame

is thus ǫdft
i = ṽref

i − v̂ref
i . In [21], it is shown that the MSE of

a type-Bτ frame can be estimated as

d̃(s) = dBτ

(z(s))+
1

4
E
[
(ǫdft

1 )2
]

+
1

4
E
[
(ǫdft

2 )2
]

+
1

2
E
[
ǫdft

1 ǫdft
2

]
(4)

where dBτ

(z(s)) is the rate-distortion function defined in

Section II-C and the other terms on the right-hand side

are the distortions due to drift. Since E[(ǫdft
1 − ǫdft

2 )2] =

E[(ǫdft
1 )2] + E[(ǫdft

1 )2] − 2E[ǫdft
1 ǫdft

2 ] ≥ 0, we have E[ǫdft
1 ǫdft

2 ] ≤
1
2
E[(ǫdft

1 )2] + 1
2
E[(ǫdft

2 )2]. Thus, d̃(s) is upper bounded by

dBτ

(z(s)) + 1
2
E[(ǫdft

1 )2] + 1
2
E[(ǫdft

2 )2]. We use this upper bound

as a proxy of the B frame’s distortion in our MDP model. The

function d(s) is defined as

d(s) = dBτ

(z(s)) +
1

2
E
[
(ǫdft

1 )2
]

+
1

2
E
[
(ǫdft

2 )2
]
. (5)

The term E[(ǫdft
1 )i] is the estimate from the distortion of the

reference frame as follows. Let vref
i be the original pixel value

of the reference frame before encoding. The decoding error of

the reference frame is thus ǫref
i = ṽref

i − vref
i = (ṽref

i − v̂ref
i ) +

(v̂ref
i − vref

i ), where ṽref
i − v̂ref

i = ǫdft
i is the distortion due to

drift and v̂ref −vref
i is the distortion due to encoding. Assuming

ṽref
i − v̂ref

i and v̂ref
i −vref

i are uncorrelated,3 we have E[(ǫref
i )2] =

E[(ǫdft
i )2] + E[(v̂ref

i − vref
i )2]. Since the B frame is predicted by

the Lth enhancement layer of the reference frame, we have

E[(v̂ref
i − vref

i )2] = dL. Denoting by dref
i (s) = E[(ǫref

i )2] the

distortion of the reference frame, we have

E[(ǫdft
i )2] = dref

i (s) − dL. (6)

Substituting (6) into (5), we have

d(s) = dBτ

(z(s)) +
1

2

[
dref

1 (s) + dref
2 (s)
]
− dL. (7)

The distortion of the reference frame dref
i (s) can be recursively

estimated using (3) and (7). Because the prediction structure

is acyclic, the recursion terminates when the reference frame

is a key picture and (3) applies.

It should be noted that, in (7), the distortion is overestimated

using an upper bound of (4), as will be shown by the

simulation results in Section III-F. This overestimation does

not sacrifice the quality of the decoded videos.

C. Finite-State Problem Formulation

Since the state space Vpost is infinite, the state space S is also

infinite. Optimizing the scheduling policy over this infinite-

state space is intractable. We define a set Wbuf as the data units

in window W and their associated predictors in Wpre. With

3This assumption is empirically true. We calculated the correlation coeffi-

cient of ˜vref
i −

̂
vref
i and ̂vref

i − vref
i using the frames of test sequence Foreman,

Paris, and Bus. The average correlation coefficient is 0.05.



1088 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 6, JUNE 2013

Fig. 6. Dynamics of the system �µ and the corresponding simplified system

�̃µ. (a) �µ. (b) �̃µ.

Assumption 3, the scheduling policy is actually fixed when all

the data in Wbuf are received. We only need to determine the

optimal scheduling policy for states where some of the video

data in Wbuf has not been received, which is a finite-state

set. The system state, however, still evolves in the infinite-

state space S. In the following, we show how to simplify this

infinite-state space problem to a finite-state problem.

We define the set of states where some of the video data in

Wbuf has not been received as follows:

SW =
{

s|s ∈ S, Wbuf �⊂ O(s)
}

(8)

where O(s) is the set of buffered video data units when the

state is s. We define another subset of S as the complement

of SW:

SW =
{

s|s ∈ S,Wbuf ⊆ O(s)
}

. (9)

For all the states in SW, all the video data units in Wbuf has

been received.

Given a policy µ(·), the system state evolves as a controlled

Markov chain in set SW ∪ SW. Because the transmission rate

is finite, the number of states in SW that can be reached from

SW in one step is also finite. We formally define this set of

states as follows:

S� = {s′|s′ ∈ SW; ∃ s ∈ SW, s.t., Pµ(s′|s) > 0} (10)

where Pµ(s′|s) is the state transition probability under policy

µ (for the expression for Pµ(s′|s), see Appendix A). Thus, to

move from SW into the set SW, the system state first hits a

state in S� and then stays in SW for some time. During this

period, the decoded video distortion is always dL, because all

the layers in Wbuf are available. The evolution of the system

when it moves into set SW affects the performance of the

system. In general, the longer it stays in SW, the better the

performance is. Although the scheduling policy in SW is fixed

as described in Assumption 3, the policy in SW determines

how frequently the system state will hit SW and thus critically

impacts the system performance.

In the following, we denote the system under a given policy

µ as system �µ. Let tµ(s) be the expected time spent by �µ

in SW after it enters SW at state s ∈ S�. Let P̃µ(s′|s) denote

the probability that �µ jumps back to SW at state s′ ∈ SW

after it enters SW at state s. To find the optimal policy, we

define a finite-state system �̃µ as follows.

Definition 1: A system �̃µ is called the simplified system

of the original system �µ if it has the following dynamics.

1) The system is a controlled semi-Markov process over

state space S̃ = SW ∪ S�. In any state s ∈ S̃, the

distortion is d(s) as in (3) and (7). In any state in SW, the

system evolves according to the policy µ. The system

state transition probability is Pµ(·|·).

2) When the system jumps to a state s ∈ S�, it spends tµ(s)

slots in s with distortion dL for each slot. The system

then transitions to a state s′ ∈ SW with probability

P̃µ(s′|s) (see Fig. 6).

It should be noted that �̃µ is not coupled with the original

system �µ. It just shares some properties with the original

system. The following theorem relates the distortion under �̃µ

and that of �µ.

Theorem 1: If the jump chain of the original system �µ

is positive recurrent, then the time-average video distortion of

�µ is the same as the simplified system �̃µ.

Proof Sketch: If the jump chain is positive recurrent,

the jump from SW to S� can partition the Markov process

into i.i.d. segments. We only need to optimize the policy µ

to minimize the average distortion in each segment. Every

segment consists of two consecutive subsegments. During the

first subsegment, s ∈ SW. In the other subsegment, s ∈ SW.

Because every state in SW has the same distortion dL, we can

abstract the first subsegment as a single state with transition

probability P̃µ(·|·). This simplified system provides the same

average distortion as the original system. For a detailed proof,

see the technical report [22].

Remark 2: The positive recurrent condition for the jump

chain means that the average throughput of the channel is

neither too large nor too small relative to the average data

rate of the video. If the average throughput of the channel is

very large, the receiver buffer can always buffer enough frames

and dynamic scheduling is unnecessary. If the average channel

throughput is too small, the channel cannot support the video

stream and dynamic scheduling cannot help either.

As indicated by Theorem 1, given any policy µ, the video

distortion of �µ is the same as �̃µ. Thus, we can optimize

our policy with respect to �̃µ, which has a finite-state space,

and a standard policy optimization algorithm can by applied.

Before we can apply an MDP algorithm to optimize the

policy, we need to compute tµ(s) and P̃µ(s′|s) for every state

s ∈ S� and s′ ∈ SW. Both tµ(s) and P̃µ(s′|s) only involve

dynamics of the system in SW. Details on how to compute

tµ(s) and P̃µ(s′|s) are found in [22].

D. Determining Optimal Policy via Value Iteration

Given tµ(·) and P̃µ(·|·), the optimal policy for an MDP can

be determined for the simplified system �̃µ, which is also the

optimal policy of �µ. Let sini be any state in S̃ = SW ∪ S�.

The hitting time to state sini can partition the process into i.i.d.

cycles. Optimizing the policy µ(·) in the cycles minimizes the

time-average video distortion of the system. Similar to the

derivation in [23, p. 441], this is equivalent to an average-cost

minimization problem with stage-cost (d(s) − λ) η(s), where λ

is the expected average-cost of each cycle, i.e., the average
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distortion. The function η(s) is defined as

η(s) =

{
1 : s ∈ SW

tµ(s) : s ∈ S�.

Note that d(s) is the cost of spending one slot on state s and

λ is the expected cost per slot. Therefore, d(s) −λ is the extra

cost of spending one slot on state s. Since η(s) is the average

time spent on state s, (d(s) − λ)η(s) is the total extra cost of

visiting state s. Let us denote by h(s) the average cost to go

in each cycle when the system starts at state s. Then, we have

the following Bellman’s equation array:

h(s) = (d(s) − λ) η(s) +
∑

s′∈SW∪S�

Pµ(s′|s)h(s′) (11)

where h(sini) = 0. To find the optimal policy, the standard value

iteration algorithm can be applied [23, p. 430].

On the one hand, the assumptions on scheduling policy

result in the finite-state MDP-based formulation. On the other

hand, the assumptions may render the derived scheduling

policy suboptimal. To verify that the performance of the

scheduling policy derived from the MDP formulation is ac-

tually close to optimal, we prove a performance upper bound

in the next section.

E. Performance Upper Bound

As discussed in Section II-C,
{

dk(zt), k ∈ K
}

are the rate

quality models of type-k frames when all the predictors have

also been received. Since dk(zt) does not incorporate the

distortion due to drift, the time-average distortion of the

transmitted video is at least 1
n

∑n
t=1

∑
k∈K dk(zt)1tk , where n

is the number of frames in the video sequence and 1
k
t is the

indicator that the tth frame is a type-k frame. Let rt be the

amount of data that is received in the tth slot; a distortion

lower bound of any scheduler is given by the following offline

optimization problem

minimize
z1:n

1

n

∑

k∈K

n∑

t=1

dk(zt)1
k
t

s.t.
1

t

t∑

i=1

zi ≤
1

t

t∑

i=1

ri, ∀t ∈ {1, 2, . . . , n}

(12)

where the constraint 1
t

∑t
i=1 zi ≤ 1

t

∑t
i=1 ri guarantees that

the received data for the frames displayed before time t does

not exceed the cumulative throughput prior to time t. We can

further relax the constraints in (12) by only keeping the last

one, i.e., when t = n. The relaxed optimization problem is then

given by

minimize
z1:n

1

n

∑

k∈K

n∑

t=1

dk(zt)1
k
t

s.t.
1

n

n∑

t=1

zt ≤
1

n

n∑

t=1

rt. (13)

Let d̂k(zt) be the convex envelope of dk(zt) (see Fig. 4).

Since dk(zt) are lower bounded by d̂k(zt), we can bound

problem (13) by

minimize
z1:n

1

n

∑

k∈K

n∑

t=1

d̂k(zt)1
k
t

s.t.
1

n

n∑

t=1

zt ≤
1

n

n∑

t=1

rt. (14)

Let nk =
∑n

t=1 1
k
t denotes the number of type-k frames.

Since the functions d̂k(zt) are convex, by Jensen’s inequality,

we have

1

nk

n∑

t=1

d̂k(zt)1
k
t ≥ d̂k

(
1

nk

n∑

t=1

zt1
k
t

)
.

Problem (14) can then be bounded by

minimize
z1:n

∑

k∈K

nk

n
d̂k

(
1

nk

n∑

t=1

zt1
k
t

)

s.t.
∑

k∈K

nk

n

(
1

nk

n∑

t=1

zt1
k
t

)
≤

1

n

n∑

t=1

rt. (15)

If the video is reasonably long, e.g., several minutes, the

frame number n will be very large. If we let n → ∞ and

assume the channel throughput rt is ergodic, 1
n

∑n
t=1 rt will

converge to the ergodic capacity ravg = limn→∞
1
n

∑n
t=1 rt .

Furthermore, let F k denote the number of type-k frames in

an intraperiod. We have nk

n
→ F k

F intra . Similarly, for stationary

policies,4 the limits zk = limn→∞
1
nk

∑n
t=1 zt1

k
t exist. We have

limn→∞

[
nk

n

(
1
nk

∑n
t=1 zt1

k

t

)]
= F k

F intra z
k. Thus, we have shown

the following theorem.

Theorem 2: For ergodic wireless throughput and stationary

adaptive scheduling policies, the following optimization gives

an upper bound on performance (lower bound of distortion):

minimize
zk, k∈K

∑

k∈K

F k

F intra
d̂k(zk)

s.t.
∑

k∈K

F k

F intra
zk ≤ ravg. (16)

Since the rate-distortion function d̂k(·) is assumed to be

convex, the above optimization problem is convex and easily

solved. In Section III-F, this performance bound will be

employed as a benchmark to evaluate the performance of our

MDP-based scheduling policy.

F. Performance Evaluation of the MDP-Based Scheduling

Policy

In this section, we evaluate the performance of the policy

obtained from our MDP-based formulation. The algorithm was

evaluated on test sequences Foreman, Bus, Flower, Mobile,

and Paris [24]. These video sequences were encoded using

H.264/SVC reference software JSVM [25] with a base layer

and a CGS enhancement layers. The intraperiod and IDR

period were set to F intra = 16. The GOP length was fixed

at FGOP = 4. The QP of the base layer, denoted by QPbase,

4A policy is called stationary if it is a function of state s and the function
is invariant with respect to time t.
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TABLE I

Encoding Parameters and Rate-Distortion Model Parameters of the Tested Sequences

Sequences Layer 0 (base layer) Layer 1 Layer 2

QP ωI
0, ω

P
0 , ωB1

0 , ωB2

0 /Byte d0/MSE ωI
1, ω

P
1 , ωB1

1 , ωB2

1 /Byte d1/MSE ωI
2, ω

P
2 , ωB1

2 , ωB2

2 /Byte d2/MSE

Foreman 30 6712, 2499, 928, 520 16.27 8302, 8293, 3373, 2775 5.491 5844, 5773, 2177, 1893 4.124

Bus 38 5920, 2417, 889, 568 100.8 7837, 8003, 3390, 2925 41.35 4636, 4412, 1577, 1339 21.65

Flower 40 8261, 2076, 548, 324 172.1 6786, 6900, 1951, 1611 96.66 6633, 6610, 2008, 1545 30.85

Mobile 40 9648, 1556, 510, 262 186.0 9090, 9193, 2541, 2171 89.90 7627, 6894, 1973, 1701 37.35

Paris 32 12353, 2640, 865, 463 32.33 9850, 9457, 2103, 1571 18.59 8091, 7987, 2024, 1555 5.420

was chosen such that the data rate of the base layer is lower

than the average channel throughput. The QP of the CGS

enhancement layer is set as QPbase − 10. We employ this

configuration to make sure that the channel is at least good

enough to support the base layer. Otherwise, any scheduling

policy cannot provide acceptable video quality. The CGS is

split into two MGS layers. The first MGS layer contains six

of the 16 transform coefficients of the CGS layer. The other

ten coefficient belongs to the second MGS layer. The QPs

and rate-distortion model parameters of the encoded video

sequences are shown in Table I. Parallel to [9] and [10], we

employ the FSMC channel model proposed in [17] to model

the dynamics of Rayleigh fading channels. The SNR at the

receiver is partitioned into four regions using the algorithm

proposed in [17]. In our simulations, we set the average SNR

to �avg = 10dB. For each sequence, 200 transmissions were

sent over the simulated channel. A startup delay constraint

was fixed to 200 ms, i.e., video playback began six frames

after the transmission began. After each transmission, a trace

file that recorded the packet loss in each time slot was

generated. We used the bitstream extractor of JSVM to remove

those dropped packets. The extracted bitstreams were decoded

using the JSVM decoder with frame copy error conceal-

ment. For more details about the FSMC channel model, see

Appendix B.

The performance of the MDP-based scheduling algorithm

was tested over the simulated Markov channel models with

different Doppler frequencies (f d = 5 and 3Hz, respectively).

The simulation results are summarized in Tables II and III. The

visual quality is measured via the MS-SSIM index that cor-

relates well with human objective judgments [26]. The time-

averaged MS-SSIM value is further converted to difference

mean opinion score (DMOS) using the following mapping

qdmos = 13.3442 log(1 − qssim) + 3.6226(1 − qssim) + 77.0117

(17)

where qssim denotes the time-averaged quality measured in

MS-SSIM and qdmos is the corresponding DMOS value. Equa-

tion (17) is obtained by logistic regression using the MS-SSIM

indices and MOS values of the images in the LIVE database

[27]. DMOS ranges from 0 to 100. Value 0 means perfect

visual quality and value 100 means bad visual quality. Roughly

speaking, value 50 means fair quality. It can be seen from

Tables II and III that the DMOS value of the MDP-based

scheduling policy is worse than the performance bound by at

most 2, which is visually insignificant. Given that the bound

given by Theorem 2 is an upper bound (i.e., a lower bound

of DMOS value), the MDP-based scheduling policy is indeed

near-optimal.

IV. Near-Optimal Heuristic Online Scheduling

Algorithm

Although the MDP-based formulation makes it possible to

compute a good scheduling policy using value iteration algo-

rithm, offline computation of such policies requires a priori

knowledge of the channel dynamics. This motivates us to

design a simple online scheduling policy that delivers similar

performance as the MDP-based policy that only requires little

a priori knowledge about the channel dynamics.

A good online video scheduling algorithm should explicitly

take advantage of the channel dynamics and schedule data

from different quality layers as a function of the receiver buffer

state. There are three fundamental questions in designing such

a scheduler: 1) How should one incorporate limited knowl-

edge of channel dynamics in adaptive scheduling? 2) How

should one determine the number of enhancement layers to

schedule? 3) How should one allocate appropriate transmission

rate among current and future intraperiods. In the follow-

ing, we will show how to address these fundamental prob-

lems by reasonably simplifying the MDP-based scheduling

algorithm.

A. Channel Model Simplification

In a practical wireless communication environment, accurate

channel dynamics models such as the state transition probabil-

ity Pc are not generally available. Some basic characteristics

for the channel dynamics can, however, be easily used. At any

slot t, the instantaneous channel throughput rt can be estimated

using receiver channel state information as

r̂t = xt(1 − yt),

where (xt, yt) is the channel state at t (see Section III-A).

The ergodic channel throughput ravg can be estimated by

averaging r̂t over time. If we model rt as the realization

of a random process {Rt, t ∈ N}, the temporal correlation

coefficient ρ = cov(Rt ,Rt+1)
σ(Rt )σ(Rt+1)

can also be estimated from r̂t .

Further, it is reasonable to assume the channel throughput Rt

will typically regress to the mean ravg. This inspires us to use

a simple autoregressive model to capture the dynamics of the

channel. A first order autoregressive model [AR(1)] for Rt is

given as

Rt − φRt−1 = c + Nt (18)
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TABLE II

Performance of the Near-Optimal Policy in SSIM-Predicted

DMOS, f d = 5

Paris Mobile Flower Bus Foreman

MDP Policy 26.9020 38.9033 34.5826 41.8721 32.2426

Upper bound 25.6017 38.0842 34.0626 41.4600 31.6807

TABLE III

Performance of the Near-Optimal Policy in SSIM-Predicted

DMOS, f d = 3

Paris Mobile Flower Bus Foreman

MDP Policy 27.1376 39.0452 35.7828 42.0808 32.4431

Upper bound 25.2314 37.9431 33.7052 41.2611 31.4852

where Nt is an i.i.d. random variable with zero-mean value.

From (18), parameter c and φ can be estimated as φ = ρ and

c = ravg(1 − ρ) [28, p. 115] . Thus, we have

Rt − ρRt−1 = ravg(1 − ρ) + Nt. (19)

Using this autoregressive model, the amount of data that

will be delivered in the next ζ slots by the channel can be

estimated as

g(r̂t) = E

[
ζ−1∑

a=0

Rt+a|Rt = r̂t

]
=

ζ−1∑

a=0

[
r̂tρ

a + ravg(1 − ρa)
]
.

(20)

To obtain an accurate estimate in the near future, we set the

length of the window ζ into the future that will be considered

to be the relaxation time5 of the channel, i.e., ζ = ⌈−(ln ρ)−1⌉.

In the following, we use this to determine which quality layers

to schedule.

B. Layer Selection

Given the current channel state, receiver buffer state, and

estimated available capacity for a window ζ into the future, the

goal is to determine which layers to schedule. We will focus on

determining the number of enhancement layers which should

be scheduled. We denote by Lsch(st) the number of layers to

be scheduled if the state is st . Once Lsch(st) is determined, the

online scheduling algorithm only schedules data units from

the first Lsch(st) layers.

The layer selection scheme for our proposed online algo-

rithm is motivated by that of the MDP-based policy. Using

g(r̂t) defined in (20), we can estimate the amount of data that

can be delivered in the next ζ slots. Let Ŵ(ℓ, st) be the amount

of data that is not currently available at the playback buffer at

time t, and belongs to the first ℓ layers of the next ζ frames

that have not been decoded. The quantities g(r̂t) and Ŵ(ℓ, st)

summarize the channel and buffer states for the next ζ slots.

Note that Ŵ(ℓ − 1, st) ≤ g(r̂t) < Ŵ(ℓ, st) means that we can

probably transmit all the data up to the ℓth layer in the next

ζ slots. Intuitively, we can simply choose Lsch(st) = ℓ − 1

when Ŵ(ℓ − 1, st) ≤ g(r̂t) < Ŵ(ℓ, st). As discussed next, this

5The relaxation time is defined as the temporal distance at which the
temporal correlation coefficient is reduced to 1

e

Fig. 7. Given different relationship between g(s) and Ŵ(ℓ, s), the proportions
of states corresponding to different Lsch(s) are shown in different colors.
Results are obtained under Rayleigh fading channels with different Doppler
shifts and are calculated on five different video sequences (Bus, Foreman,
Flower, Mobile, and Paris). (a) f d = 5 Hz. (b) f d = 3 Hz.

layer selection scheme can be motivated by the near-optimal

scheduling policies computed for the MDP-based model.

Note that r̂t = xt(1−yt) is determined by state st; thus, g(r̂t)

can also be written as a function of st , i.e., g(st). Suppose

we partition the state space into subsets Pℓ = {s ∈ S :

Ŵ(ℓ − 1, s) ≤ g(s) < Ŵ(ℓ, s)}, ℓ ∈ {1, . . . , L + 2} and calculate

the fraction of states in Pℓ where the MDP-based policy

only schedules the first ℓ − 1 layers.6 As shown in Fig. 7,

for 71% of the states of P1 and P2, the MDP-based policy

only schedules the first layer. For about 65% of the states

of P3, the MDP-based policy only schedules the first two

layers. Finally, the MDP-based policy will schedule all the

layers on 81% of the states in P4. These observations justify

our intuition regarding layer selection. In our proposed online

scheduling algorithm, we will simply choose Lsch(st) = ℓ − 1

if Ŵ(ℓ − 1, st) ≤ g(r̂t) < Ŵ(ℓ, st). In other words, our

heuristic algorithm determines Lsch(st) by roughly estimating

the number of layers that can be transmitted.

C. Resource Allocation Between Current and Future

Intraperiods

In each transmission slot, about r̂t bits of video data are

delivered to the receiver. In the following, we refer to r̂t as

6We define Ŵ(L + 2, st) = +∞.
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Algorithm 1 Online Adaptive Scheduling Algorithm

Input: st , ravg, xt , yt , and ρ

1: ζ = ⌈−(ln ρ)−1⌉; r̂t = xt(1 − yt)

2: loop t

3: g(r̂t) ←
∑ζ−1

a=0 [r̂tρ
a + ravg(1 − ρa)]

4: for ℓ = 1 → L + 1 do

5: Compute Ŵ(ℓ, st)

6: if g(r̂t) < Ŵ(ℓ, st)

7: break

8: end if

9: end for

10: if ℓ = 1 then

11: Lsch(st) ← 1

12: else

13: Lsch(st) ← ℓ − 1

14: end if

15: Compute �cur(Lsch, st) and �I(Lsch, st)

16: �t ← �I(Lsch,st )
�cur(Lsch,st )+�I(Lsch,st )

17: Schedule min(�t × r̂t, �
I(Lsch, st)) bits from I.

18: Schedule r̂t − min(�t × r̂t, �
I(Lsch, st)) bits from other

active frames.

19: end loop

the budget for slot t. Once Lsch(st) is determined, we still

need to determine how to allocate this budget among current

and future intraperiods. Sometimes it is necessary to transmit

data associated with next I frame before the data units in the

current intraperiod. For example, when the next I frame is

approaching its display deadline and its base layer has not yet

been received, if we focus on transmitting the frames in the

current intraperiod sequentially, this increases the risk that the

next I frame cannot be decoded before its deadline. This in

turn would cause severe decoding failures throughout the next

intraperiod.

Let I be the data units in the undecoded I frame that has the

earliest display deadline. We denote by �cur(ℓ, st) the amount

of unreceived data in the first ℓth layer of current intraperiod

at state st . We denote by �I(ℓ, st) the amount of unreceived

data in the first ℓth layer of I at state st . We propose the fol-

lowing heuristic for allocating the bit budget between current

intraperiod and I. In each transmission slot, the scheduling

algorithm allocates up to �t = �I(Lsch(st ),st )
�cur(Lsch(st ),st )+�I(Lsch(st ),st )

of the

transmission bit budget to I. In other words, the number of

bits allocated to I is min(�t × r̂t, �
I(Lsch(st), st)).

Here, �t gives the relative importance of the next I frame

and current intraperiod. If �I(Lsch(st), st) = 0, then �t = 0%.

It is not necessary to transmit any data for the next I frame.

If �pre(Lsch(st), st) = 0, then �t = 100%. We only focus on

transmitting the future intraperiods.

The online scheduling algorithm is summarized in

Algorithm 1.

D. Performance Evaluation of the Online Scheduling

Algorithm

The performance of the online scheduling algorithm was

tested over the simulated Markov channel models with differ-

Fig. 8. Performance comparison of different scheduling algorithms. Video
quality is measured in DMOS which is predicted by MS-SSIM using (17).
(a)f d = 5 Hz. (b) f d = 3 Hz.

ent Doppler frequencies (f d = 5 and 3 Hz, respectively). This

setting is the same as the simulation setting in Section III-F.

The results are summarized in Fig. 8. As can be seen, the

performance of the proposed online scheduling algorithm

is almost as good as the MDP-based scheduling algorithm.

Moreover, the online scheduling algorithm’s performance is

close to the bound given by Theorem 2. We conclude it is a

near-optimal scheduling algorithm.

We have also tested the performance of the online algorithm

without bit budget allocation between current and future

intraperiods. As can be seen, the performance is worse than

the MDP-based scheduling policy and the performance bound.

This motivates the necessity of allocating bit between current

and future intraperiods.

V. Conclusion

We developed adaptive scheduling algorithms for stored

scalable video transmission in wireless channels. By modeling

the wireless channel as a Markov chain, an MDP model

was proposed in which policies that minimize the distortion

of decoded videos can be computed. By simplifying the

scheduling algorithm obtained from the MDP formulation,

we proposed an online scheduling algorithm that only re-

quires limited knowledge of channel dynamics. Simulation

results demonstrated the near-optimality of the proposed online

scheduling policy versus a proposed bound on performance.
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Appendix A

Transition Probability

Notations: Let 1 be the unit vector of all-ones and 0 be

the zero vector. max{a, b} is the componentwise maximum of

vector a and b. 1(·) is the indicator function.

Let st = (ct, vt) and Ust
be the system state and the

corresponding feasible control set at slot t, where ct =

(xt, yt) and vt = (vI
t, v

pre
t , vW

t , v
post
t ). At the beginning of

each slot, one frame is decoded and played out. Let v+
t =

(vI+
t , v

pre+
t , vW+

t , v
post+
t ) denote the buffer state right after the

first frame is displayed. For vI+
t , we have

vI+
t =

{
F intra − 1 if vI

t = 0

vI
t − 1 if vI

t �= 0.
(21)

The first frame in W is moved into Wpre; thus, we have

v
pre+
t =

(
b

pre

f key , . . . , b
pre
−1, b

W
0

)
. (22)

The first frame in Wpost moves into W . Thus, we have

vW+
t =

(
bW

1 , . . . , bW
W−1,

∑L

ℓ=0
1(b

post
ℓ ≥ 1)

)
. (23)

For the set Wpost, once the current frame is played out, we

have

vpost+ = max
{

vpost − 1, 0
}

. (24)

After the first frame is displayed, the transmitter begins to

sequentially transmit the collection of video data units indi-

cated by the action Ut = µ(st) = {(f1, ℓ1), . . . , (f|Ut |, ℓ|Ut |)}.

Let �Ut = {(f1, ℓ1), . . . , (fnt
, ℓnt

)} denote the completely

received data units by the end of the slot, where nt is the

number of received data units. Among the data units in �Ut ,

let �v
pre
t and �vW

t be the number of newly received data

units for each frame in set Wpre+ and WW+, respectively. At

the beginning of the (t + 1)th slot, we have the following state

transition relationship:

v
pre
t+1 = v

pre+
t + �v

pre
t (25)

vW
t+1 = vW+

t + �vW
t . (26)

Similarly, we denote by �v
post
t =

(
�b

post
0 , . . . , �b

post
L

)
the

number of newly received data units for each layer in frame

set Wpost+. The state transition relationship of Wpost is

v
post
t+1 = v

post+
t + �v

post
t . (27)

The amount of video data in �Ut , denoted by �(vt, �Ut), can

be estimated according to buffer state vI
t and the rate-quality

model introduced in Section II-C. Specifically, for each data

unit in �Ut , we first determine the frame type according to vI
t

and then estimate the amount of data by the rate-quality model.

The set �Ut records the completely transmitted data units

up to (fnt
, ℓnt

)th data unit. However, data unit (fnt+1, ℓnt+1)

is only partially received. Denoting the amount of data in

unit (fnt+1, ℓnt+1) by �̃(vI
t , �Ut), the amount of received data

is at least �(vI
t , �Ut) and at most �(vI

t , �Ut) + �̃(vI
t , �Ut).

Assuming the physical layer packet length is LPHY, there

is N = ⌈ xt

LPHY ⌉ packet transmissions during a time slot.

The number of successfully transmitted packets is at least

Nl = ⌈
�(vI

t ,�Ut )

LPHY ⌉ and is less than Nh = ⌈
�(vI

t ,�Ut )+�̃(vI
t ,�Ut )

LPHY ⌉.

As assumed in Section II-D, the channel state is constant over

each slot. Thus, the packet losses are independent within each

slot. The number of successful packet transmissions in a slot is

distributed binomially. Hence, the state transition probability

from st = (ct, vt) to st+1 = (ct+1, vt+1) is

Pµ(st+1|st) =

[
Nh−1∑

nt=Nl

(
N

nt

)
yN−nt

t (1 − yt)
nt

]
P(ct+1|ct) (28)

where the first multiplicative term is the transition probability

of the receiver buffer state from vt to vt+1 and the second term

is the transition probability of the channel state from ct to ct+1.

Appendix B

Simulation Settings

We employ the FSMC channel model proposed in [17] to

model the dynamics of Rayleigh fading channels. The SNR at

the receiver is partitioned into |C| regions using the algorithm

proposed in [17]. Let �i be the partition thresholds, where

�0 = −∞ and �|C| = ∞. Let �̃k be the representative SNR

in the kth region. For Rayleigh fading channels, we have

�̃k =

∫ �k

�k−1
λp(λ)dλ

∫ �k

�k−1
p(λ)dλ

(29)

where p(λ) = 1
�avg exp(− λ

�avg ) is the probability distribution

function of the received instantaneous SNR of Rayleigh fading

channels with average SNR �avg. According to [17], the state

transition probability Pc is computed as

Pc
i,j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

K(�j)�T

πi
, if j = i + 1

K(�i)�T

πi
, if j = i − 1

1 −
K(�j)�T

πi
− K(�i)�T

πi
, if j = i

0, otherwise

(30)

where πi =
∫ �i

�i−1
p(λ)dλ. K(�i) =

√
2π�i

�avg f d exp(− �i

�avg ) is the

level crossing rate of threshold �i where f d is the Doppler fre-

quency. The coherence time is estimated via tcor = 0.423/f d.

In our simulations, we set |C| = 4 and �avg = 10dB.

We assume that BPSK, QPSK, and 8PSK are used for

modulation. The symbol error rate ps
k in the kth SNR region is

ps
k = 2Q(

√
2�̃k sin π

2M ), where M = 1, 2, 3 for BPSK, QPSK,

and 8PSK, respectively. Each packet contains 2048 symbols.

Thus, the packet length LPHY = 2048×M, where M = 1, 2, and

3 for BPSK, QPSK, and 8PSK, respectively. The transmission

time for each packet is �t = 1.5 ms. The transmission data

rate is given by xk = �T
�t

LPHY. The packet error rate is given

by yk = 1 − (1 − ps
k)2048. The modulation scheme for kth

channel states is chosen such that the throughput xk(1 −yk) is

maximized.
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