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A Markov Model for Blind Image Separation
by a Mean-Field EM Algorithm

Anna Tonazzini, Luigi Bedini, and Emanuele Salerno

Abstract—This paper deals with blind separation of images
from noisy linear mixtures with unknown coefficients, formulated
as a Bayesian estimation problem. This is a flexible framework,
where any kind of prior knowledge about the source images and
the mixing matrix can be accounted for. In particular, we describe
local correlation within the individual images through the use of
Markov random field (MRF) image models. These are naturally
suited to express the joint pdf of the sources in a factorized form,
so that the statistical independence requirements of most indepen-
dent component analysis approaches to blind source separation
are retained. Our model also includes edge variables to preserve
intensity discontinuities. MRF models have been proved to be very
efficient in many visual reconstruction problems, such as blind
image restoration, and allow separation and edge detection to
be performed simultaneously. We propose an expectation–maxi-
mization algorithm with the mean field approximation to derive a
procedure for estimating the mixing matrix, the sources, and their
edge maps. We tested this procedure on both synthetic and real
images, in the fully blind case (i.e., no prior information on mixing
is exploited) and found that a source model accounting for local
autocorrelation is able to increase robustness against noise, even
space variant. Furthermore, when the model closely fits the source
characteristics, independence is no longer a strict requirement,
and cross-correlated sources can be separated, as well.

Index Terms—Blind source separation (BSS), edge and feature
detection, Markov random fields (MRFs), parameter learning,
scene analysis.

I. INTRODUCTION

B
LIND SOURCE SEPARATION (BSS), which became

an active research topic in signal processing in the last

decade, consists of separating a set of unknown signals from a

set of linear mixtures of them, when no knowledge is available

about the mixing coefficients. The most well-known application

example of BSS is the so-called “cocktail party” problem in

audio processing. Other applications include the removal of

underlying artifact components of brain activity from EEG

records, and the search for hidden factors in parallel financial

data series. It has only been more recently that BSS has re-

ceived attention in image processing and computer vision, as

well [1]. To cite just a few of the many emerging applications

in these fields, we recall feature extraction or noise removal
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from natural images, separation of components in astrophysical

maps [14], and document analysis and restoration [30].

In order to solve BSS, which is a severely ill-posed in-

verse problem [2], many techniques have been proposed so

far. Among them, the independent component analysis (ICA)

methods are based on the assumption of mutual independence

of the sources. Most of these methods were developed in the

case of noiseless data, and differ from one another in the

way they enforce independence. The maximum likelihood

(ML) method [6] directly assumes a factorized form for the

joint source distribution; in the infomax method [7], entropy

is used as a measure of independence; other methods ensure

independence by minimizing contrast functions related to

statistics of order greater than two [8]. The strict relationships

among the various methods have been investigated as well [9],

and some fast and efficient algorithms have been proposed,

such as FastICA [10]. The independence requirement can be

fulfilled in some applications, but in many cases, there is a clear

evidence of correlation among the sources. Although some of

the proposed algorithms have been experimentally shown to

perform well even in the lack of independence, all of them

perform poorly when noise affects the data. Recently, some

work has been done to overcome this limitation. In particular,

the noisy FastICA algorithm [11], and an independent factor

analysis (IFA) method [12]–[14] have been developed, the

latter being also capable of estimating the noise covariance

matrix. Nevertheless, while providing satisfactory estimates of

the mixing matrices, these methods still produce noisy source

estimates. We believe that a way to obtain robust estimates for

both the mixing matrix and the sources is to incorporate into

the problem the available information about autocorrelation

properties of the single sources. Indeed, correlation is an im-

portant feature of most real-world signals, especially of images

and can be exploited to regularize many inverse problems.

In [15]–[17], Bayesian estimation has been proposed as a

suitable, unifying framework for BSS, within which the other

methods can be viewed as special cases. The Bayesian approach

is also the most natural and flexible way to account for prior

knowledge we may possess about a problem. In this paper, we

apply Bayesian estimation to regularize the blind separation of

noisy mixtures of images. We retain the independence constraint

of the ICA approach, and reformulate the BSS problem as the

joint maximum a posteriori (MAP) estimation of the mixing

matrix and the sources. The flexibility of the Bayesian formu-

lation is exploited to enforce constraints on the solution. In par-

ticular, Markov random field (MRF) models, under the form of

suitable stabilizing Gibbs priors, are used for both enforcing in-

dependence and describing the local smoothness of the source

1057-7149/$20.00 © 2006 IEEE
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images. Indeed, the autocorrelation property of images is usu-

ally only local, and is broken in correspondence of steep fronts,

such as object boundaries. These are associated with the discon-

tinuities of the intensity process that should be preserved and

recovered for a reliable reconstruction of the original images.

The interaction between the intensity field and the unknown dis-

continuity set is usually described by suitable cost functionals,

in the form of a weak membrane energy. Blake and Zisserman

[32] assumed a discrete image model and proposed a determin-

istic algorithm, namely the graduated nonconvexity (GNC) al-

gorithm, for the optimization of the weak membrane energy.

Mumford and Shah [33], in a continuous setting, proposed vari-

ational techniques to optimize a cost functional where a sin-

gular part represents the discontinuity set. Geman and Geman

[3] derived an MRF image model that incorporates a binary line

process associated to the discontinuities and proposed stochastic

relaxation for the optimization of the overall cost functional. A

review of the approaches above can be found in [34].

Followingthe idea in[3],weadoptanMRFsourcemodelwitha

binary line process for breaking the smoothness constraint where

the original sources are likely to present steep fronts. For the max-

imization of the posterior probability with respect to all the un-

knowns, we propose to use an expectation–maximization (EM)

algorithm. We derive the method considering, at the moment,

a known number of independent sources, which is equal to the

number of mixtures, and then propose specific approximations

to develop a computationally feasible algorithm. Following the

EM strategy, the source variables plus edges are viewed as hidden

data, and averaged out in the so-called E-step of the procedure,

and the mixing matrix elements are viewed as the parameters to

beestimated.Toreduce thecomputationalcomplexityof theorig-

inal formulation, i.e., to compute the expectations with respect to

the hidden data in the E-step, we propose using the mean field ap-

proximation. At convergence, alternating the E-step and the max-

imization of the resulting objective function (the M-step) yields

an estimate of the mixing parameters, the source images and the

related edge maps. We experimentally verified that using source

modelsaccountingfor localautocorrelationenablesusto increase

robustness against noise, both space invariant and space variant,

and also against cross correlation of the sources. We worked on

images of documents containing overlapped texts, with the aim

at separating them. A possible application of our method could

be bleed-through or show-through removal from digital scans of

degraded text documents. The estimated edge maps can also be

useful in applications such as image segmentation and classifi-

cation. In the particular application of digital document analysis,

this could also be a preliminary processing to optical character

recognition.

II. BSS THROUGH BAYESIAN ESTIMATION

According to the BSS formalism, the data model we consider

is

(1)

where is the vector of the measurements, is the column

vector of the unknown sources, and is the noise or measure-

ment error vector, at location , and is the unknown mixing

matrix, assumed location independent. We assume the same

number of measured and source signals, so that is an

matrix. For later use, we also define the vectors

Considering a white and Gaussian noise with zero mean, the

likelihood is given by

(2)

where and are

the matrices of data and source images, respectively, is the

noise covariance matrix, assumed, in general, to be location de-

pendent, and is the normalizing constant. The prime means

transposition. Note that the ML principle applied to (2) would

clearly give an underdetermined problem, unless more informa-

tion is exploited. In a fully Bayesian approach, both and are

assumed as independent unknowns, and are assigned with prior

distributions and , respectively. Then, and can

be simultaneously estimated by maximizing some joint distri-

bution, e.g., . Our problem, thus, becomes

(3)

Note that can be decomposed as

(4)

Since depends on neither nor on , is, thus,

proportional to the posterior distribution . Hence,

problem of (3) is equivalent to the following MAP estimation

problem

(5)

The posterior distribution, or equivalently distribution

, accounts for all information we have about the

problem, and can restrict the set of solutions associated to the

likelihood part of (5) by means of the priors and .

For instance, the prior can be used to introduce any known

dependence between different sources or time/space correlation

within individual sources. In the ICA approach, is assumed

to have a uniform prior and the sources are only assumed to be

mutually independent, that is

(6)

whatever the form of the marginals .

Note that, assuming a given order for the , for any per-

mutation matrix , we have, in general, .

Conversely, if is invariant to permutation of the , then

for any maximizer to (5), the couple is

still a maximizer to (5). Any solution to the problem can, thus,

be found up to an arbitrary permutation of the components of

and the corresponding columns of . In particular, when

the ICA position (6) holds true, the property of invariance to

permutation implies that all the s are equal. Note also that

most ICA models do not assume any noise in the data, and,
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thus, the problem reduces to obtain a vector and a matrix

, such that the divergence between and the factorized

density in (6) is minimized, subject to . This implies

that another basic indetermination in the ICA approach is in

scale, that is, for each , if is a diagonal scaling matrix

. These indeterminations,

however, are not so important in BSS, provided that

is informative enough to properly constrain the solution. A

more substantial indetermination is obtained with ICA models

when two or more marginals are Gaussian. For instance, if the

marginals are all identical Gaussian densities, for any solution

, we obtain another solution through

any rotation matrix . Together with the permutation and

scale ambiguities, this makes ICA unable to separate Gaussian

sources. The presence of the prior in (5) may restrict the

set of solutions to our problem. In particular, any prior which

is sensitive to column interchanges eliminates the permutation

ambiguity. If is able to constrain the values of the ele-

ments of , the scale ambiguity is also eliminated.

In this paper, we assume independent sources, thus letting (6)

hold true, but adopt MRF models to describe regularity proper-

ties, under the form of local spatial correlation (local smooth-

ness), for the individual sources. As already mentioned, this will

be shown to make the Bayesian approach advantageous over

ICA in terms of robustness against noise, and also against cross

correlation of the sources.

As usual in blind estimation, joint maximization of (5) is very

hard. An equivalent way to write it is the following:

(7)

where

(8)

If were available for each , for instance, through an an-

alytical formula, the problem would reduce to a maximization

with respect to the only variable . However, this is not usually

the case, so that the problem, either in the form of (5) or in the

form of (7) and (8), needs to be reduced somehow.

In the following, we propose to solve (5) via an EM algorithm,

whose derivation in this specific case takes advantage of the use

of the mean field approximation.

III. CHOICE OF THE GIBBS SOURCE PRIORS

MRF models have become very popular since the middle

1980s [3], [4], especially in connection to inverse problems

of image processing and computer vision, such as restoration,

denoising, segmentation, optical flow estimation, and so on.

Through MRF models, it is, indeed, possible to describe local

image features, such as edges, in order to enforce space-variant

smoothness constraints on the solutions. Furthermore, the local

nature of these models allows us to devise distributed and

parallel algorithms. In this paper, we propose to use MRF in

a BSS and ICA context, for modeling both the independence

among the sources and the local properties of spatial correlation

within each source. Let us consider, then, the distribution of the

Fig. 1. Local interactions in our MRF source image model. (a) Neighborhood
system. (b) Clique system.

th source in our problem. According to the MRF formalism,

it must have the following Gibbs form:

(9)

where is the normalizing constant and is the prior

energy in the form of a sum of potential functions over the

set of interacting locations (cliques). These potential functions

should describe some regularity in the th source, by penalizing

high gradient values. This regularity is physically plausible in

many real-world applications, and, as already said, it is an es-

sential constraint to prevent the reconstructions from being un-

stable when the data are noisy. Nevertheless, the source signals

can present steep fronts, which must be preserved as well. We,

thus, refer to edge-preserving priors (or stabilizers) [19], [20].

Among the many proposed, some priors have the property of

being convex [21], [23], so that gradient descent can be used to

optimize with respect to . More generally, specific priors were

also proposed that allow us to “correct” their nonconvexity by

providing a sequence of approximations, to be optimized in turn

according to the GNC strategy [22]. In a previous paper [28],

we experimented both convex and nonconvex edge-preserving

stabilizers for the separation of noisy mixtures of images, by

adopting an alternating maximization strategy for the joint MAP

estimation of the mixing matrix and the sources.

In this paper, we adopt a different prior, which contains an

extra binary process , marking “explicitly” the image edges,

ideally located between each pair of adjacent pixel locations [3].

The th source is represented by the couple , where is

also called “intensity process,” and is called “line process”

(see also [19]). In the two-dimensional grid of the image pixels,

for each location , we consider the first order neighborhood

shown in Fig. 1(a), and the clique system shown in Fig. 1(b).

We measure the local regularity of the image as the sum of the

squared differences between the values of the two elements in

all the image cliques, weighted by the proper edge elements, in

order to break the smoothness constraint where it is not plau-

sible. However, the line process is also unknown, and has to be

treated as an extra variable of the problem. Let us call the

set of the two neighbor locations adjacent to horizontally from

right and vertically from bottom. We then define as

(10)

where and are two positive weights related, respectively, to

the degree of smoothness and to the number of edges we foresee
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for the source . As is easily seen, indeed, a line element set to

1 (an active edge) breaks the smoothness constraint between lo-

cations and , and its presence is paid by a constant , which

penalizes the presence of too many active edges. Conversely, a

line element set to 0 lets the difference of intensity between lo-

cations and be strongly penalized. The most probable images

present steep fronts where the gradient is higher than a threshold

of value , and are smooth elsewhere.

The prior distribution of (9) is now augmented with the

line process, and becomes

(11)

and the MAP estimation problem of (5) becomes

(12)

Note that the likelihood does not depend on because

the data are conditionally independent of the line process, i.e.,

the line status does not affect the data.

IV. EM METHOD AND THE MEAN

FIELD APPROXIMATION

According to the EM formalism [5], BSS can be described as

an incomplete data problem, where part of the data [the sources

] is hidden, and has to be estimated along with the param-

eters, i.e., the elements of matrix . In this respect, the true

problem to be solved, in the incomplete data set of the obser-

vations , becomes

(13)

while the original problem in (12) is seen as a transposition of

the problem of (13) in the complete data set. The many-to-one

relationship among complete and incomplete data in this case is

the projection from to , and the two probability distri-

butions are related as follows:

(14)

The EM algorithm is an iterative procedure for solving

(13) by making use of the associated distribution

. In this specific case, each iteration

consists of the two following steps.

E-step: Compute the expectation of function

, with respect to

and conditioned on the observed data and the current

estimate of the parameters. The whole expecta-

tion becomes

(15)

M-step: Compute

(16)

It is to be noted that the expectation must be computed with re-

spect to the posterior distribution of given

the data and the previous estimate of , that is

(17)

Although the EM formulation allows us to reduce the com-

plexity of the original joint maximization problem, the integral

in (17) is still very complicated, and a closed form is not gen-

erally available. In the following, we show how the mean field

theory [25] can be exploited to efficiently compute the expecta-

tion [26], [27].

In (17), the form of is given by (2), and

is a complicated expression containing in-

teractions between different pixels through the prior

given by (6), (10), and (11). The mean field theory sug-

gests that, in the computation of the statistics of a single

element in a random field, the effect of all the other ele-

ments can be approximated by the effect of their means.

Applying this theory to each vector-valued field element ,

in (17) is replaced by the product of the mean

field marginals , which are obtained

from when each , , and each are

replaced by their mean values and , respectively

(18)

where denotes the set of the mean vector values in all the

locations different from , and denotes the vector of all the

mean line values. In this way, the summation in disappears in

(17), and we get

(19)

where use was made of (2) and (18). By neglecting the terms

not depending on , we obtain

(20)
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The expectation is, thus, calculated by a sum of expectations on

the individual pixels. The related densities have the following

form:

(21)

where is a diagonal matrix whose th element is given by

and has been redefined as the set of all the

four pixels in the neighborhood of Fig. 1(a). Apart from terms

independent of , it is easy to verify that the density in (21)

can be expressed as a Gaussian

(22)

with

(23)

and

(24)

The expectations in (20) are, thus

(25)

(26)

The only quantity we still need to calculate is matrix . This

is defined by the mean values of the line elements, that is

(27)

By applying again the mean field approximation, it is easy to

verify that (27) results in

(28)

The mean field values needed in (20) should be calculated itera-

tively, since each of them depends on the status of its neighbor-

hood. Thus, for each , (23), (24), and (28) must be iterated

from the previous mean field status.

The explicit, final form for function is

(29)

Alternately evaluating for the current and

maximizing it for yields an approximated MAP estimate

for the mixing matrix. As soon as this procedure has

reached convergence, the mean field evaluated for ,

, is an approximated maximum of the

posterior marginals estimate for the source images [29]. Note

that, although each binary edge element can only assume values

0 or 1 the mean edge field elements are continuous

valued. A final edge map can be extracted from the mean field

by simple thresholding.

In the cases where a uniform prior is assumed for , the max-

imizer at each M-step can be obtained by setting to zero the

derivative of (29) with respect to , thus yielding

(30)

where, in the particular case of space-invariant noise, the inverse

covariance matrix disappears.

When a nonuniform prior is assumed for , the function

can be nonconcave. In this case, a simulated annealing optimiza-

tion strategy can be a viable option, since the small number of

variables makes the computational cost relatively low.

V. EXPERIMENTAL RESULTS

The efficiency of the EM algorithm described in Section IV

was tested on both synthetic and real piecewise smooth images.

For generating the synthetic images we did not refer to any spe-

cific probability law, and, in this first application, we did not

assume any a priori knowledge about the mixing matrix ele-

ments. As far as the prior is concerned, in the absence of spe-

cific knowledge about the single sources, we assumed the same

Gibbs prior for each of them, with the same hyperparameters

and . These were selected empirically, based on a rough eval-

uation of the noise amount and the intensity jumps in the mix-

tures. However, it is to be noted that our computational scheme

could be augmented with a step for the automatic, dynamic se-

lection of the MRF hyperparameters, based on ML or MAP cri-

teria. We refer to [35] for a recent survey on this subject. Fur-

thermore, when appropriate, assigning different priors/hyperpa-

rameters to the different sources permits to avoid the typical per-

mutation ambiguity of BSS; we verified that the order in which

we assign the priors to the sources is reflected in the order of

the reconstructions [18], [24]. To avoid premature “freezing” of

the source estimates, we employed a few steps of the iterative

scheme for computing the mean values of the sources and the
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Fig. 2. Synthetic images: (a) first mixture (26-dB SNR); (b) second mixture (26-dB SNR); (c) first output of FastICA; (d) second output of FastICA; (e) first
demixed image; (f) second demixed image; (g) edge map of the first demixed image; (h) edge map of the second demixed image.

related edge maps. Since no prior was assumed for , we em-

ployed the updating rule (30) for estimating the mixing matrix

at each iteration.

In all the experiments, the mixtures were generated numeri-

cally, by letting the ideal matrix coefficients to be selected ran-

domly. In most cases, the sources were cross correlated, and we

considered both space-invariant and space-variant noise. How-

ever, the results reported below mainly refer to the space-in-

variant noise situation. The starting point for the mixing matrix

was always chosen randomly, while the starting point for the

sources was always set to the mixtures, and the starting point

for the edge maps was always zero (no edges). Although the

EM strategy, as any alternate optimization scheme, is known

to be suboptimal, i.e., dependent on the initialization of the pa-

rameters to be estimated, in our experiments this choice of the

starting points always led to stabilization of the solutions and

to estimates close to the ideal mixing matrices and sources. On

the other hand, for the kind of cost function we considered, the

uniqueness of a global optimum, as well as the number and the

locations of local optima, are very hard to study.

For a quantitative analysis of the method, we focused both on

the matrix estimate and the source estimates. With respect to the

source estimates, we considered the following normalized least-

squares error (NLSE) for each couple of original and estimated

sources

(31)

where and are the original and the estimated th source, re-

spectively. With respect to the matrix estimate, we defined two

quality indexes: 1) the root mean squared error (rmse) between

the original and estimated matrices and 2) the element-by-el-

ement ratio between the two matrices. This latter is someway

more suitable, since we know that, due to the scale ambiguity,

each column of the mixing matrix can be estimated up to a

scale factor. It is to be noted, however, that these indices can

be computed only when separation is achieved, in such a way

that the estimated sources can be correctly associated with the

original ones. In particular, since in some cases a permutation

in the reconstructions and then in the matrix columns can occur,

this must be corrected before computing the quality indices. Of

course, when separation is not achieved, the estimated sources

cannot be recognized, and the estimated mixing matrix is very

far from the ideal one, so that the quality indices defined cannot

be computed.

In a first set of experiments, we considered two simple piece-

wise constant synthetic images, generated in such a way to be

very little correlated. Fig. 2 shows typical results from mixtures

with a 26-dB signal-to-noise ratio (SNR). By trying with sev-

eral randomly selected mixing matrices and several noise real-

izations, we always obtained similar results in terms of rmse.

It is to be noted that for these synthetic images the FastICA

algorithm is not able to separate the mixture in any of the cases

we considered, even for very little amounts of noise. This fact is

probably due to the small number of levels present in the original

images. Fig. 2(a) and (b) shows the mixtures, Fig. 2(c) and (d)

shows the results of the FastICA algorithm, and Fig. 2(e) and

(f) show the images demixed with our method, for the following

original mixing matrix

The matrix recovered with our method was in this case

obtained with and . The matrix rmse was

0.0045, while the element-by-element ratio was
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Fig. 3. Synthetic images with space-variant noise (14-dB SNR at pixels with
i < j and 20-dB SNR at pixels with i � j): (a) first mixture; (b) second
mixture; (c) first demixed image; (d) second demixed image; (e) edge map of
the first demixed image; (f) edge map of the second demixed image.

The mixing matrix estimated by FastICA was instead

For the same images and matrix of the experiment above,

we also attempted to separate from mixtures with higher noise

levels, and we still obtained satisfactory results, although we ob-

viously observed a degradation as the noise level increases. As

far as the hyperparameters are concerned, we left unchanged

and adopted higher values of for higher noise, in order to avoid

detection of spurious edges in correspondence of noise peaks.

This strategy was also followed for the other experiments.

For 20-, 16.5-, and 14-dB SNR, the mixing matrices were

estimated with rmse , rmse , and rmse

, respectively. As far as the images are concerned, from

a visual inspection we always observed a more than satisfactory

quality of the reconstructions. Moreover, in all the cases consid-

ered above, the NLSE of (31) between the original and recon-

structed images, scaled to zero mean and unit variance, was no

greater than 0.14. In particular, for the case of 26-dB noise, we

obtained and , while for

the case of 14-dB noise, we obtained and

.

As an example, Fig. 3 shows the mixtures, the reconstructed

images, and related edge maps for the case of space-variant

noise (14-dB SNR at pixels with and 20-dB SNR at pixels

with ). In this case, the rmse between the original and es-

timated matrices was 0.0179.

The performance of the method on real images artificially

mixed was similar to the one described for synthetic images. We

considered two images of real texts, mixed with the following

matrix:

In this case, due to the larger size of these images and the higher

number of gray levels, for little amounts of noise (e.g., with

Fig. 4. Real images: (a) first mixture (14-dB SNR); (b) second mixture (14-dB
SNR); (c) first FastICA output; (d) second FastICA output; (e) first demixed
image; (f) second demixed image; (g) edge map of the first demixed image;
(h) edge map of the second demixed image.

26-dB SNR) FastICA is able to separate quite well too, apart

from a sensible noise component in the reconstructed images.

However, for increasing amounts of noise, the reconstructions

obtained with our algorithm remain satisfactorily good, whereas

the ones from FastICA degrade quickly. For a 14-dB SNR, we

obtained the results shown in Fig. 4. The matrix estimated with

our method was

while the element-by-element ratio with the original (after

column permutation) was

The matrix estimated by the FastICA algorithm was instead

The NLSEs on the images reconstructed with our method were,

respectively, and . It is to

be noted that the two source images used here, two portions of a

scanned document, present a nonnegligible correlation of 0.129
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Fig. 5. Real images: (a) first mixture (14-dB SNR); (b) second mixture (14-dB
SNR); (c) first demixed image; (d) second demixed image; (e) edge map of the
first demixed image; (f) edge map of the second demixed image.

Fig. 6. Real images: (a) first mixture (26-dB SNR); (b) second mixture (26-dB
SNR); (c) first demixed image; (d) second demixed image; (e) edge map of the
first demixed image; (f) edge map of the second demixed image.

(computed on the images scaled to zero mean and unit variance).

This could give an extra reason to the bad performance of Fas-

tICA, while, at the same time, highlights the effectiveness of

using MRF image models with cross-correlated sources.

Fig. 5 shows the results of another experiment, where we

mixed real images and then added a noise of 14-dB SNR. Note

that, also in this case, the original sources have a correlation of

0.188.

To further test the robustness of the method against cross-

correlated sources, we performed another experiment where

we mixed a scan of a real text with its horizontally flipped

version. In this case, the correlation between the two sources

is 0.22. The results obtained when the additive noise on the

mixtures has an SNR of 26 dB are shown in Fig. 6. The

mixing matrix was recovered with an rmse of 0.0027 with

respect to the original one.

Another set of experiments was aimed at showing a potential

application of our method to the analysis of ancient and/or

degraded documents. Indeed, in images of ancient documents

it is very frequent the presence of two or more overlapped

texts. In some cases, textures interfering with the main text are

Fig. 7. Show-through image (26-dB SNR): (a) red channel; (b) green channel;
(c) first demixed image; (d) second demixed image; (e) edge map of the first
demixed image; (f) edge map of the second demixed image.

due to seeping or transparency of the ink from the reverse side,

and should be removed to improve both human and automatic

readability. In other cases, e.g., in palimpsests, faint traces of an

underwriting, that is an older text that has been erased to reuse the

support, usually parchment, should be enhanced and extracted

to make it readable to interested scholars. In both situations,

if an approximated linear model is adopted to describe the

phenomenonofoverlappingtexts,BSStechniquescanbethought

as the appropriate methodology for recovering the separated

patterns from multiple observations, in different visible or

nonvisible bands, of the document itself [30]. Furthermore, since

text patterns, at least in their pristine state, are constituted

of homogeneous patches (the characters) with sharp edge

boundaries, the MRF models described here could represent a

very efficient and feasible way to describe the source features.

In a first example, we considered a synthetic image generated

so as to simulate a real bleed-through or show-through effect.

We mixed two texts by a 3 2 matrix, added a noise realization

to obtain a 26-dB SNR, and considered the three mixtures as the

red, green and blue channels of a color image. We then used the

red and green channels [shown in Fig. 7(a) and (b)] as inputs for

separating the two texts. With our method, the separation gave

the results shown in Fig. 7(c)–(f).

In the second example, we considered the color image of a

real-fake palimpsest, depicted in grayscale in Fig. 8(e). In partic-

ular, this one simulates the colors and the mutual position of the

two overlapped texts as they appear in the famous Archimedes

palimpsest [31]. Note that the underwriting is the lighter text.

By processing the green and blue channels of the color image,

we obtained the two separations shown in Fig. 8(a) and (b), and

the related edge maps shown in Fig. 8(c) and (d). In this case, the

linear model is inadequate in correspondence of the areas where

the overwriting completely masks the underwriting, so that this

latter was not satisfactorily recovered in those areas. However, a

simple global thresholding is sufficient to significantly improve

the text readability, as shown in Fig. 8(f).

Besides document restoration and analysis, another possible

application, that we are going to investigate, is the analysis of

remote sensed data, where our method could be effectively used

to classify different geological and vegetation regions.
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Fig. 8. Real-fake palimpsest: (a) first demixed image; (b) second demixed
image; (c) edge map of the first demixed image; (d) edge map of the second
demixed image; (e) grayscale version of the original color image; (f) recovered
underwriting after thresholding.

VI. CONCLUSION

We propose a Bayesian formulation of the linear BSS

problem; this allows us to adopt an EM strategy to solve the

problem as one of MAP estimation. The data model adopted

is the classical noisy linear mixture with unknown coefficients

and additive Gaussian noise. Our source model is a pair of

interacting MRFs, which permits the mutual independence and

the local autocorrelation of the sources to be enforced.

To make our EM approach feasible, we adopted a mean-field

approximation. The status of the mean field at convergence

approximates the MAP estimates of the source maps (intensity

process) and of the regions where the spatial autocorrelation

within the individual sources is broken (line process). Our

procedure can, thus, be adopted to perform joint parameter

and source estimation and segmentation, which is helpful in

subsequent classification and/or recognition tasks. This could

be used, for example, in text analysis and remote sensed area

classification.

Besides the additional advantage of yielding edge maps, our

extensive experimentation with both synthetic and real images

has confirmed the beneficial effect of introducing spatial corre-

lation into the source model, which had been already observed

in the case of one-dimensional signals. In particular, we verified

the robustness of the method in dealing with noise, even space

variant. Furthermore, for sources whose characteristics closely

fit the model we adopted (e.g., text images), independence is no

more a strict requirement, and cross-correlated sources can be

separated as well.

A refinement of the strategy to automatically select the hy-

perparameters and introduce constraints on the interactions be-

tween the edges, as well as a further experimentation on images

from different applications is expected for the future.
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