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This article provides a Markov model for the
term structure of credit risk spreads. The model
is based on Jarrow and Turnbull (1995), with the
bankruptcy process following a discrete state
space Markov chain in credit ratings. The pa-
rameters of this process are easily estimated
using observable data. This model is useful for
pricing and hedging corporate debt with imbed-
ded options, for pricing and hedging OTC
derivatives with counterparty risk, for pricing
and hedging (foreign) government bonds subject
to default risk (e.g., municipal bonds), for pric-
ing and hedging credit derivatives, and for risk
management.

This article presents a simple model for valuing risky
debt that explicitly incorporates a firm’s credit rat-
ing as an indicator of the likelihood of default. As
such, this article presents an arbitrage-free model for
the term structure of credit risk spreads and their
evolution through time. This model will prove use-
ful for the pricing and hedging of corporate debt with
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imbedded options, for the pricing and hedging of OTC derivatives
with counterparty risk, for the pricing and hedging of (foreign) gov-
ernment bonds subject to default risk (e.g., municipal bonds), and
for the pricing and hedging of credit derivatives (e.g. credit sensitive
notes and spread adjusted notes). This model can also be used for
risk management purposes, as it is possible to calculate the expected
credit exposure profile over the life of a contract or a portfolio of
contracts. To our knowledge, this is the first contingent claims model
to explicitly incorporate credit rating information into the valuation
methodology. Our model is an extension and a refinement of that
contained in Jarrow and Turnbull (1995).

Previous models for the pricing of risky debt can be subdivided
into three classes. The first class of models views the firm’s liabili-
ties as contingent claims issued against the firm’s underlying assets,
with the payoffs to all the firm’s liabilities in bankruptcy completely
specified. Bankruptcy is determined via the evolution of the firm’s
assets in conjunction with the various debt covenants [e.g., Black and
Cox (1976), Chance (1990), Merton (1974), and Shimko, Tejima, and
van Deventer (1993)]. This approach is difficult to implement in prac-
tice because all of the firm’s assets are not tradeable nor observable.
Secondly, to utilize this technique, the complex priority structure of
the payoffs to all of the firm’s liabilities need to be specified and in-
cluded in the valuation procedure. This is a difficult task [see Jones,
Mason, and Rosenfeld (1984)]. Furthermore, since this approach does
not use credit rating information, it cannot be used to price credit
derivatives whose payoffs depend directly on the credit rating [e.g.,
credit sensitive notes and spread adjusted notes, see Das and Tufano
(1995) for additional elaboration].

The second class of models views risky debt as paying off an ex-
ogenously given fraction of each promised dollar in the event of
bankruptcy. Bankruptcy is determined when the value of the firm’s
underlying assets hits some exogenously specified boundary [e.g.,
Hull and White (1991), Longstaff and Schwartz (1992), and Nielsen,
Saá-Requejo and Santa-Clara (1993)]. This approach simplifies the first
class of models by both exogenously specifying the cash flows to risky
debt in the event of bankruptcy and in simplifying the bankruptcy pro-
cess. Although this approach simplifies computation by avoiding the
need to understand the complex priority structure of payoffs to all
of the firm’s liabilities in bankruptcy, it still requires estimates for the
parameters of the firm’s asset value, which is nonobservable; and it
still cannot handle various credit derivatives whose payouts depend
on the credit rating of the debt issue.

The third class of models avoids these last two problems. This ap-
proach, like the second, also views risky debt as paying off a fraction
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of each promised dollar in the event of bankruptcy; but the time
of bankruptcy is now given as an exogenous process [e.g., Jarrow
and Turnbull (1995) and Litterman and Iben (1991)]. This bankruptcy
process is specified exogenously and does not explicitly depend on
the firm’s underlying assets. The advantage of this approach is that it
allows exogenous assumptions to be imposed only on observables.
All three classes of models are arbitrage-free.1 In fact, this modeling
approach includes the previous two as special cases where the pay-
off process and/or the bankruptcy process are endogenously derived.
Also, the third approach can easily be modified to include credit rating
information in the bankruptcy process, and therefore it can be used to
price credit derivatives dependent on the credit rating. This provides
the motivation underlying the choice of the model in this article.

This article takes the Jarrow and Turnbull (1995) model, and char-
acterizes the bankruptcy process as a finite state Markov process in
the firm’s credit ratings. This new credit risk model has the following
characteristics:

1. Different seniority debt for a particular firm can be incorporated
via different recovery rates in the event of default.

2. It can be combined with any desired term-structure model for
default-free debt [e.g., Black, Derman, and Toy (1990), Cox, In-
gersoll, and Ross (1985), or Heath, Jarrow, and Morton (1992)].

3. It utilizes historical transition probabilities for the various credit
rating classes to determine the pseudo-probabilities (martingale,
risk adjusted) used in valuation.

4. It can be utilized, as shown in Jarrow and Turnbull (1995), to
price and hedge options on risky debt or credit derivatives. The
pricing and hedging of vulnerable options is a special case of this
analysis.

For implementation, we impose one simplifying assumption on
the interaction between the default-free term structure and the firm’s
bankruptcy process. We assume that the two processes are statistically
independent under the pseudo-probabilities. Alternatively stated, the
Markov process for credit ratings is independent of the level of spot
interest rates (under the pseudo-probabilities). For investment grade
debt, this appears to be a reasonable first approximation in the his-
torical probabilities, though for speculative grade debt, the accuracy

1 An analogy can be made between this class of models and those used to price equity options, that
is, Jarrow and Turnbull’s (1995) exogenous assumption on observables is equivalent to Black and
Scholes (1973), whereas Merton’s (1974) assumption on firm values is equivalent to the approach
of Geske (1979).
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of the approximation deteriorates.2 The merit of this assumption is an
outstanding empirical issue. It is imposed as a simplifying assumption
to facilitate empirical investigation. If needed, it can be easily relaxed,
as shown in Jarrow and Turnbull (1995). The extension of our credit
class model in continuous time to include spot rate–dependent prob-
abilities can be found in Lando (1994).

An important application of this model is in the area of risk man-
agement. In the recent (1993) Group of Thirty report,3 two of the
recommendations address the issue of measuring current and poten-
tial credit exposure, and aggregating credit exposures. The model can
be used to define the current credit exposure and to generate the dis-
tribution of credit exposure over the life of a contract. Two commonly
used statistics can be computed: the maximum exposure and expected
exposure time profiles. That is, starting from a particular credit class,
one can compute the probability of being in a given credit class after
a fixed time interval. For pricing purposes, it is necessary to use the
“risk-neutral” probabilities. For risk management purposes, however,
it is necessary to use both the “risk-neutral” and the empirical prob-
abilities. This model can also be extended to portfolios of contracts
such as interest rate and foreign currency swaps.

An outline of this article is as follows. Section 1 describes the rele-
vant features of the Jarrow and Turnbull model. Section 2 presents the
discrete time model. Section 3 presents the continuous time model.
Section 4 concludes the article.

1. The Jarrow–Turnbull Model

The model we use is based on Jarrow and Turnbull (1995). We con-
sider a frictionless economy with a finite horizon [0, τ ]. Trading can
be discrete or continuous (both cases are studied below). The un-
derlying uncertainty is represented by a filtered probability space
(Ä,Q,Fτ , (Ft )0≤t≤τ ). The details of this filtered probability space are
specified later. Traded are default-free zero-coupon bonds of all ma-
turities, a default-free money market account, and risky zero-coupon
bonds of all maturities.

2 Moody’s Special Report (1992), Figures 15–18, show that 1-year default rates for investment grade
bonds have had little variation over the time period 1970–1991. Although speculative grade 1-year
default rates exhibit more variation, on an absolute level, it is not large. The standard deviation of
1-year default rates is highest for B-rated firms, and there it is only 5.04%. Longstaff and Schwartz
(1992) provide some evidence inconsistent with this hypothesis.

3 The Group of Thirty is an international financial policy organization whose members include
representatives of central banks, international banks, and securities firms. They issued a report
entitled “Derivatives: Practice and Principles” in July 1993 to improve the supervisory and capital
requirements of the off balance sheet risks related to derivatives trading activity.
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We assume that there exists a unique equivalent martingale mea-
sure Q̃ making all the default-free and risky zero-coupon bond prices
martingales, after normalization by the money market account. This
assumption is equivalent to the statement that the markets for default-
free and risky debt are complete and arbitrage-free [see Harrison and
Pliska (1981)]. Sufficient conditions for the satisfaction of this assump-
tion can be found in Jarrow and Turnbull (1995). Given information at
time t , we denote conditional expectation and conditional probability
statements with respect to the equivalent probability measure by Ẽt (•)
and Q̃t (•), respectively.

Let p(t, T ) be the time t price of a default-free zero-coupon bond
paying a sure dollar at time T where 0 ≤ t ≤ T ≤ t . We assume
forward rates of all maturities exist and that they are defined (1) in the
discrete time case by f (t, T ) ≡ − log(p(t, T + 1)/p(t, T )) and (2) in
the continuous time case by f (t, T ) ≡ −∂

∂T log p(t, T ). The default-free
spot rate, denoted r (t), is defined by r (t) ≡ f (t, t). We do not specify
any particular stochastic process for spot rates. They can be modeled
directly as in Cox et al. (1985), or indirectly via forward rates as in
Heath et al. (1992). The money market account accumulates returns
at the spot rate and is denoted as either

B(t) = exp

(
t−1∑
i=0

r (i)

)
in the discrete time case,

or B(t) = exp

(∫ t

0
r (s)ds

)
in the continuous time case.

Under the maintained assumption of arbitrage-free and complete
markets, we can write default-free bond prices as the expected, dis-
counted value of a sure dollar received at time T , that is,

p(t, T ) = Ẽt

(
B(t)

B(T )

)
. (1)

Let v(t, T ) be the time t price of a risky zero-coupon bond promis-
ing to pay a dollar at time t where t ≤ T ≤ τ . This promised dollar
may not be paid in full if the firm is bankrupt at time T .4 If bankrupt,
the firm pays only δ < 1 dollars. The fraction δ, called the recovery
rate, can depend on the priority (seniority) of the risky zero-coupon
debt relative to the other liabilities of the firm.

4 The term “bankrupt” should not be interpreted too literally. In our context it covers any case of
financial distress that results in the bondholders receiving less than the promised payment.
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The recovery rate δ is taken to be an exogenously given constant.
This constancy is imposed for simplicity of estimation. As shown in
Jarrow and Turnbull (1995), it implies that the stochastic structure of
credit spreads will be independent of the recovery rate, and depen-
dent only on the stochastic structure of spot interest rates and the
bankruptcy process. This assumption can easily be relaxed [see Das
and Tufano (1995)].5

Let τ ∗ represent the random time at which bankruptcy occurs.
Then,

v(t, T ) = Ẽt

(
B(t)

B(T )
(δ1{τ ∗≤T } + 1{τ ∗>T })

)
(2)

where 1{τ ∗≤T } is the indicator function of the event {τ ∗ ≤ T }. The
risky zero-coupon bond’s price is seen to be the expected, discounted
value of a “risky” dollar received at time T . Note that if bankruptcy has
occurred prior to time t , it is assumed that claimholders will receive δ
for sure at the maturity of the contract. This implies that the risky term
structure simplifies considerably as v(t, T ) = δẼt (

B(t)
B(T ) ) = δp(t, T ).

In other words, in bankruptcy, the term structure of the risky debt
collapses to that of the default-free bonds.

Next, we assume that the stochastic process for default-free spot
rates {r (t)0≤t≤τ } and the bankruptcy process, as represented by τ ∗,
are statistically independent under Q̃. This assumption is imposed
for simplicity of implementation. This assumption implies that the
bankruptcy process (under the pseudo-probabilities) is uncorrelated
with default-free spot interest rates. Under the additional structure im-
posed below, it will also imply that the bankruptcy process (under the
empirical probabilities) is uncorrelated with default-free spot interest
rates. The reasonableness of this assumption is an outstanding empiri-
cal issue. The relaxation of this assumption is discussed in Jarrow and
Turnbull (1995) and implemented in Lando (1994). Whether or not
this generalization is required awaits empirical testing of the simpler
model.

Under this assumption, Equation (2) simplifies to

v(t, T ) = Ẽt

(
B(t)

B(T )

)
Ẽt (δ1{τ ∗≤T } + 1{τ ∗>T })

= p(t, T )(δ + (1− δ)Q̃t (τ
∗ > T )), (3)

where Q̃t (τ
∗ > T ) is the probability under Q̃ that default occurs after

date T . The risky zero-coupon bond’s price is the default-free zero-

5 Random recovery rates δ(xT ), where xT is the state variable, are also easily fitted into the valuation
model, as in Chapter 3 of Lando (1994).
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coupon bond’s value multiplied by the expected payoff (in dollars) at
time T . As revealed in Equation (3), the evolution of the term struc-
ture of risky debt is uniquely determined via specifying a distribution
for the time of bankruptcy, Q̃t (τ

∗ > T ), under the martingale proba-
bilities. The contribution of our article is an explicit modeling of this
distribution as the first hitting time of a Markov chain, with credit rat-
ings and default being the relevant states. This modeling exercise is
the content of the remaining sections.

2. Credit Ratings and Default-Probabilities: The Discrete Time
Case

This section models the distribution of default time in a discrete trad-
ing economy. Discrete trading is illustrated first for two reasons. First,
because its mathematical simplicity facilitates understanding. Second,
because the discrete time model, parameterized in terms of its con-
tinuous limit (the next section), is the model formulation actually im-
plemented on a computer. The theorems in this section parallel those
developed in the continuous time section.

2.1 Valuation
The distribution for the default time is modeled via a discrete time,
time-homogeneous Markov chain on a finite state space S =
{1, . . . ,K }. The state space S represents the possible credit classes,
with 1 being the highest (Aaa in Moody’s rankings) and K − 1 be-
ing the lowest (C in Moody’s rankings). The last state, K , represents
bankruptcy.

The discrete time, time-homogeneous finite state space Markov
chain {ηt : 0 ≤ t ≤ τ } is specified by a K × K transition matrix6

Q =


q11 q12 · · · q1K

q21 q22 · · · q2K
...

qK−1,1 qK−1,2 · · · qK−1,K

0 0 · · · 1

 (4)

where qij ≥ 0 for all i, j , i 6= j , and qii ≡ 1 −∑K
j=1
j 6=i

qij for all i. The

(i, j)th entry qij represents the actual probability of going from state i
to state j in one time step. We assume for simplicity that bankruptcy
(state K ) is an absorbing state, so that qK i = 0 for i = 1, . . . ,K − 1

6 With a slight abuse of notation, we denote the probability measure and the transition matrix as
Q. No confusion should arise because the meaning is made clear by the context.
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and qK K = 1. This explains the last row in the transition matrix. In
Jarrow and Turnbull (1995) this assumption is relaxed.

The time homogeneity of this transition matrix is imposed for sim-
plicity of estimation. Based on the evidence contained in Moody’s
Special Report (1992), it appears to be more reasonable for invest-
ment grade bonds, than it is for speculative grade bonds. Again, the
validity of this assumption is an outstanding empirical issue.

Let qij (0,n) denote the n-step transition probability of going from
state i at time 0 to state j at time n. It is well known that the n-step
K × K transition matrix, Q0,n whose (i, j)th entry is qij (0,n) satisfies
Q0,n = Qn, the n-fold matrix product of Q.

Estimates of this transition matrix, with a time step of 1 year, can
be obtained from Moody’s Special Report (1992) [see Lucas and Lon-
ski (1992, Table 6) or Standard & Poor’s Credit Review (1993)]. The
nonzero entries of the historical matrix tend to be concentrated around
the diagonal, with movements of two credit ratings (or more) in a year
being rare or nonexistent.

Under the maintained assumption of complete markets and no ar-
bitrage opportunities, the transition matrix from time t to time t + 1
under the equivalent martingale probability is given by

Q̃t,t+1 =


q̃11(t, t + 1) q̃12(t, t + 1) · · · q̃1K (t, t + 1)

q̃21(t, t + 1) q̃22(t, t + 1) · · · q̃2K (t, t + 1)
...

q̃K−1,1(t, t + 1) q̃K−1,2(t, t + 1) · · · Q̃K−1,K (t, t + 1)

0 0 · · · 1


(5)

where q̃ij (t, t+1) ≥ 0, for all i, j, i 6= j , q̃ii(t, t+1) ≡ 1−∑K
j=1
j 6=i

q̃ij (t, t+
1), and q̃ij (t, t + 1) > 0 if and only if qij > 0 for 0 ≤ t ≤ τ − 1.
Without additional restrictions, the martingale probabilities q̃ij (t, t+1)
can depend on the entire history of the process up to time t . Hence,
under the martingale probabilities, the process need not be Markov.
To facilitate empirical implementation, it is desirable to impose more
structure on these probabilities. In particular, we assume that the risk
premia adjustments are such that the credit rating process under the
martingale probabilities satisfy7

q̃ij (t, t + 1) = πi(t)qij for all i, j, i 6= j where (6)

7 One can always write q̃ij (t, t + 1) = πij (t)qij where πij (t) can depend on the entire history of
the process up to time t . The restriction in Equation (6) is twofold. First, πij (t) is independent of
j , and second, it is a deterministic function. The independence of j implies that moving from i
to 1 receives the same risk premium as moving from i to K . This restriction may not be true in
practice.
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πi(t) is a deterministic function of time such that

q̃ij (t, t + 1) ≥ 0 for all i, j, i 6= j and
K∑
j=1
j 6=i

q̃ij (t, t + 1) ≤ 1 for i = 1, . . . ,K .

In matrix form, we can write this as

Q̃t,t+1 − I = 5(t)[Q − I ]

where I is the K × K identity matrix and 5(t) = diag(π1(t), . . . ,
πK−1(t), 1) is a K × K diagonal matrix.

The last row in the transition matrix for Q̃t,t+1 in conjunction with
Equation (6) implies that πK (t) ≡ 1 for all t . The proportionality ad-
justments πi(t) have the interpretation of being risk premiums. These
transform the actual probabilities to those used in valuation. For later
use, it is important to note that the restrictions imposed on the mar-
tingale probabilities q̃ij (t, t + 1) in Equation (5) imply that πi(t) ≥ 0
for all i and t .

This assumption is imposed to facilitate statistical estimation since
the historical transition matrix Q can be utilized in the inference pro-
cess. The actual parameterization estimated is based on the continuous
time limit, and it is discussed in the next section. The implication of
this assumption (combined with the previous structure) on the evo-
lution of credit spreads is discussed later in this section.

Given this structure, we can now compute the probability of default
occurring after date T , that is, Q̃t (τ

∗ > T ). Let q̃ij (0,n) denote the
n-step transition probabilities of going from state i at time 0 to state
j at time n. It is well known that the n-step K × K transition matrix,
Q̃0,n, whose (i, j)th entry is q̃ij (0,n), satisfies

Q̃0,n = Q̃0,1Q̃1,2, . . . , Q̃n−1,n. (7)

Lemma 1 (Probability of Solvency in Terms of Q̃). Let the firm be
in state i at time t, denoted by ηt = i and define τ ∗ = inf{s ≥ t : ηs =
K }, which represents the first time of bankruptcy. Then, the probability
that default occurs after time T is

Q̃i
t (τ
∗ > T ) =

∑
j 6=K

q̃ij (t, T ) = 1− q̃iK (t, T ).

Proof. Since K is absorbing, the event (τ∗ > T ) is equivalent to ηt

not being in state K at time T , when starting in state i at time t . Using
the Q̃t,T matrix gives the result.
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In Lemma 1 we make explicit the credit class dependence via a
superscript on the conditional probability Q̃i

t . Lemma 1 shows how
to compute the probability of solvency at any future date T , starting
from credit class i at time t . This solution requires the computation of
an n-fold matrix product.8

We can use these characterizations of the probability of solvency
to rewrite the risky zero-coupon bond’s valuation. Let vi(t, T ) be the
value of a zero-coupon bond issued by a firm in credit class i at time
t . Then9

vi(t, T ) = p(t, T )(δ + (1− δ)Q̃i
t (τ
∗ > T )), (8)

where Q̃i
t (τ
∗ > T ) is obtainable from Lemma 1.

Equation (8) provides a characterization of the credit risk spread.
Given that the forward rate for the risky zero-coupon bond in credit
class i is defined by

f i(t, T ) ≡ − log(vi(t, T + 1)/vi(t, T )),

Equation (8) yields

f i(t, T ) = f (t, T )+ 1{τ ∗>t} log

(
[δ + (1− δ)Q̃i

t (τ
∗ > T )]

[δ + (1− δ)Q̃i
t (τ
∗ > T + 1)]

)
. (9)

This gives an explicit representation for the credit risk spread
( f i(t, T )− f (t, T )) in terms of the recovery rate (δ) and the transition
matrix for credit classes Q̃ (as given in Lemma 1). Equation (9) shows
that credit spreads are always strictly positive in this model, except
in bankruptcy. In bankruptcy, as in the discussion after Equation (2),
f K (t, T ) = f (t, T ). Equation (9) also shows that the previous assump-
tions, in conjunction, imply that the credit spreads ( f i(t, T )− f (t, T ))
and ( f i(t, T )− f j (t − T )) are constants, except for random changes
in credit ratings. Although this implication appears contrary to some
preliminary evidence [see Das and Tufano (1995)], its rejection awaits
a more thorough empirical investigation.

To get the spot rate, set T = t in Equation (9) and simplify

r i(t) = r (t)+ 1{τ ∗>t} log(1/[1− (1− δ)q̃iK (t, t + 1)]). (10)

In bankruptcy, r K (t) = r (t).

8 In the special case that 5(t) is a constant matrix, independent of t , Q̃0,n = Q̃n , where Q̃n is the
n-fold matrix product. Then, Q̃i

t (τ
∗ > T ) = Q̃i

0(τ
∗ > T − t), as the process is time homogeneous.

9 We can rewrite Equation (8) as

vi(t, T ) = p(t, T )[1− (1− δ)Q̃i
t (τ
∗ ≤ T )].

The right side is the value of a default-free bond less the present value of the loss if default occurs.
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2.2 Options and hedging
For practical applications, hedging jumps in credit ratings is essential.
This section discusses how to hedge such jumps in both risky bonds
and in (vulnerable) options on the term structure of credit risk spreads.
To do so we must first extend our valuation methodology to apply
to (vulnerable) options on the term structure of credit risk spreads.
Afterwards, we analyze hedging these jumps in credit ratings.

As shown in Jarrow and Turnbull (1995), valuing (vulnerable) op-
tions on the term structure of credit risk spreads is a straightforward
application of the martingale pricing technology. Given the random
payoff to a credit-risky claim, say CT at time T , its value at time t ,
denoted Ct , is

Ct = Ẽt (CT /B(T ))B(t). (11)

For example, a European call option with exercise date T and strike
price X on the risky firm’s zero-coupon bond, maturing at time M ≥
T , would have the random payoff CT = max[v(T ,M ) − X , 0], with
time t value given by Equation (11).

Valuation is thus transformed into an expected value calculation.
Utilizing Lemma 1, simple formulas for risky coupon bonds, futures
on risky bonds, options on risky debt, and vulnerable options can
be obtained (via direct substitution). Expanding the traded securities
to include common stock, this method also allows us to price equity
options and convertible debt under the above scenario [see Jarrow
and Turnbull (1995) for details].

To hedge credit rating changes (including bankruptcy), as shown in
Jarrow and Turnbull (1995), the standard option hedging techniques
are applicable. Sufficient information to apply these techniques is a
careful description of the evolution of forward rates for the risky and
riskless zero-coupon bonds.

Define the function

φ(t, T , i)=


log

(
[δ+(1−δ)Q̃i

t (τ
∗ > T )]

[δ+(1−δ)Q̃i
t (τ
∗ > T+1)]

)
for i = 1, . . . ,K−1,

0 for i = K .
(12)

The change in the firm’s forward rate over [t, t + 1] is easily deduced
from Equation (9). Let the firm’s time t credit rating be ηt = i, then

f ηt+1(t + 1, T )− f i(t, T ) = [ f (t + 1, T )− f (t, T )]

+ [φ(t + 1, T , ηt+1)− φ(t, T , i)] (13)

for ηt+1 ∈ {1, 2, . . . ,K } with pseudo-probabilities q̃iηt+1(t, t + 1). The
first component of the change in the risky firm’s forward rates is due
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to changes in the default-free forward rate structure and a shortening
of time to maturity. Any desired term structure model can be applied
[e.g., Cox, Ingersoll, and Ross (1985) or Heath, Jarrow, and Morton
(1992)]. This component of the risk is hedged in the same manner as
employed in the literature on interest rate options.

The second component of the change in the risky firm’s forward
rates is due to changes in the default probability arising from an un-
predictable change in credit class and a (predictable) shortening of
the time to maturity. This risk has at most K different outcomes (if
q̃iηt+1(t, t+1) > 0 for all possible ηt+1). To hedge this credit class risk,
in general, one needs at most K of this firm’s credit risky securities. As
the entire term structure of the risky firm’s zero-coupon bonds trade,
enough securities are available to implement this trading strategy. The
hedging procedure is analogous to that used in any multinomial (but
Markov) process, and a description of this technique can be found in
Jarrow and Turnbull (1995).

2.3 Fitting the credit class zero-curves
Given estimates of the empirical transition matrix Q, and the risk pre-
mium (π1(t), . . . , πK−1(t) for 0 ≤ t ≤ τ − 1), Equation (8) provides a
theoretical pricing formula for risky zero-coupon bonds. This formula
can be utilized to identify arbitrage opportunities across the credit-
risky term structures.

Alternatively, this methodology can be utilized to price and hedge
options on the risky debt (Section 2.2). This section presents a recur-
sive procedure for selecting the risk premium (π1(t), . . . , πK−1(t) for
all t) such that the theoretical pricing formula exactly matches a given
initial term structure of credit-risky zeros (or credit class spreads).

From Equation (8), given estimates of the risky zero coupon bonds
(vi(t, T )), the default-free zeros (p(t, T )), and the recovery rate (δ),
the initial (time 0) credit class zero-curves will be matched if Q̃i

0(τ
∗ ≤

T ) is selected such that

Q̃i
0(τ
∗ ≤ T ) = [p(0, T )− vi(0, T )]/[p(0, T )(1− δ)] (14)

for i = 1, . . . ,K and T = 1, 2, . . . , τ.

We next show how to select (5(t): t ∈ 0, 1, . . . , τ − 1) such that
Equation (14) is satisfied. The procedure is recursive.

Given the empirical transition matrix Q, we have

Q̃0,1 = I +5(0)(Q − I ).

From this matrix, and Lemma 1, we get

Q̃i
0(τ
∗ ≤ 1) = πi(0)qiK .
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Substitution into Equation (14) and algebra gives

πi(0) = [p(0, 1)−vi(0, 1)]/p(0, 1)(1−δ)qiK for i = 1, . . . ,K−1. (15)

Given that we have computed these risk premium, we can now return
to Equation (6) and compute Q̃0,1.

Given the empirical transition matrix Q and Q̃0,t (calculated from
the previous step), we have

Q̃0,t+1 = Q̃0,t [I +5(t)(Q − I )].

From this matrix, and Lemma 1, we get

Q̃i
0(τ
∗ ≤ t + 1) =

K∑
j=1

q̃ij (0, t)πj (t)qjK .

In matrix form, after substitution into Equation (14) and algebra gives

Q̃0,t

 π1(t)q1K
...

πK (t)qK K

 =
 [p(0, t + 1)− v1(0, t + 1)]/p(0, t + 1)(1− δ)

...

[p(0, t + 1)− vK (0, t + 1)]/p(0, t + 1)(1− δ)

 .
Assuming that Q̃−1

0,t exists (denote its entries by q̃−1
ij (0, t)), the solution

to the matrix equation is

πi(t) =
K∑

j=1

q̃−1
ij (0, t)[p(0, t + 1)− vi(0, t + 1)]/[p(0, t + 1)(1− δ)qiK ].

(16)
Given these risk premium, we can now compute Q̃0,t+1 via Equation
(6).

In practical applications one should, of course, check that the re-
sulting risk premium is nonnegative and the resulting matrix is indeed
a probability transition matrix. If they are not, this indicates an incon-
sistency of the data with the model. An illustrative computation in
Section 3.4.4 clarifies this issue and provides an alternative estimation
procedure when an inconsistency is observed.

This completes the recursive procedure. Equations (15) and (16)
will also prove useful for estimating the parameters of the continuous
time Markov chain model introduced in subsequent sections.

2.4 Discussion
This completes our analysis of the discrete time case. Some additional
results can now be derived with respect to the shape and behavior of
credit class spreads, but to avoid redundancy, these are only provided
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for the continuous time case. The purpose of this section was to intro-
duce the fundamental insights in a simple fashion and to introduce a
structure suitable for computer implementation. Having accomplished
this task, we quickly move on to the continuous time analysis.

3. Credit Ratings and Default Probabilities: The Continuous Time
Case

This section models the distribution for default time in a continuous
trading economy. The continuous time setting facilitates the derivation
of additional insights due to the availability of stochastic calculus. It
also provides the parameterization of the bankruptcy process most
suitable for estimation.

3.1 Valuation
The distribution for default time is modeled via a continuous time,
time-homogeneous Markov chain on a finite state space S =
{1, 2, . . . ,K }. As in the discrete time setting, these states represent
the various credit classes, with state 1 being the highest and state K
being bankruptcy.

A continuous time, time-homogeneous Markov chain {ηt : 0 ≤ t ≤
τ } is specified in terms of its K × K generator matrix

3 =


λ1 λ12 λ13 . . . λ1,K−1 λ1K

λ21 λ2 λ23 . . . λ2,K−1 λ2K

...

λK−1,1 λK−1,2 λK−1,2 . . . λK−1 λK−1,K

0 0 0 . . . 0 0

 (17)

where λij ≥ 0 for all i, j , and

λi = −
K∑
j=1
j 6=i

λij for i = 1, . . . ,K .

The off-diagonal terms of the generator matrix λij represent the tran-
sition rates of jumping from credit class i to credit class j . The last
row of zeros implies that bankruptcy (state K ) is absorbing.
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The K ×K t -period probability transition matrix for η is given by10

Q(t) = exp(t3) =
∞∑

k=0

(t3)k/k !, (18)

[see Karlin and Taylor (1975, p. 152)]. For the discrete time approxi-
mation to this system, let [0, τ ] be divided into τ steps of equal length.
Then the one-step transition matrix of Equation (4) is given by Q(1)
via Equation (18). Denote the (i, j)th entry of the Q(t)matrix by qij (t).

By construction, state 1 is viewed as the best credit rating and K −1
is the worst credit rating prior to the state of default. To be sure that
the Markov chain used to model credit rating changes reflects the fact
that “lower credit classes are riskier,” there exists a simple condition
on the generator matrix that one can check.

Lemma 2 (Credit Ratings Versus Risk). The following statements
are equivalent:

1.
∑

j≥k qij (t) is a nondecreasing function of i for evey fixed k and
t.

2.
∑

j≥k λij ≤
∑

j≥k λi+1, j for all i, k such that k 6= i + 1.

Proof. This follows by combining Proposition 7.3.2, Theorem 7.3.4,
and the remark on p. 251 in Anderson (1991).

Note that a generator matrix, in which the (K−1)×(K−1) submatrix
of 3 has the structure of a birth-death chain and where the default
intensities in the K th column do not decrease as a function of row
number, will satisfy the conditions of this lemma.

We assume that the generator matrix under the equivalent martin-
gale probability is given by

3̃(t) ≡ U (t)3, (19)

where U (t) = diag(µ1(t), . . . , µK−1(t), 1) is a K × K diagonal matrix
whose first K − 1 entries are strictly positive deterministic functions
of t that satisfy∫ T

0
µi(t)dt < +∞ for i = 1, . . . ,K − 1.

10 To get Equation (18) as the limit of the discrete time case, first divide 1 into n equal periods
of length (1/n). Define [I + 3/n] to be the transition matrix over each subperiod. Then, Q =
[I +3/n]n . As n→∞, Q → exp(3).
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For the more general case, the U matrix could be both history and time
dependent. This is the analogous assumption to that preceding Equa-
tion (6) in the discrete time case. The entries (µ1(t), . . . , µK−1(t), 1)
are interpreted as risk premia, that is, the adjustments for risk that
transform the actual probabilities into the pseudo-probabilities suit-
able for valuation purposes.

The K × K probability transition matrix from time t to time T for
η under the equivalent martingale measure is given as the solution
to the Kolmogorov differential equations [see Cox and Miller (1972,
p. 181)]:

∂Q̃(t, T )

∂t
= −3̃(t)Q̃(t, T ) and (20a)

∂Q̃(t, T )

∂T
= Q̃(t, T )3̃(T ) with the initial condition (20b)

Q̃(t, t) = I . (20c)

Let the (i, j)th entry of the Q̃(t, T ) matrix be denoted q̃ij (t, T ).
Under the assumption in Equation (19), the credit rating process is

still Markov, but it is now inhomogeneous. In the selection of this re-
striction, we faced a trade-off between computability of the transition
matrix Q̃(t, T ) and the ability to match any given initial term structure
of credit risk spreads. Equation (19) was our compromise. A special
case illustrates this reasoning. When

3̃ = diag(µ1, . . . , µK−1, 1)3

for strictly positive constants µ1, . . . , µK−1, the Markov process is time
homogeneous. Here, the solution to Equation (20) is easily computed
as

Q̃(t, T ) = exp(diag(µ1, . . . , µK−1, 1)3(T − t)).

But this restriction does not enable the model to match any given
initial term structure of credit risk spreads. Equation (19) is the simplest
extension, which satisfies both requirements.

Analogous to Lemma 1 for the discrete time case we have

Lemma 3 (Probability of Solvency in Terms of Q̃). Let the firm be
in state i at time t, that is, ηt = i and define τ ∗ = inf{s ≥ t : ηs = K }.
Then

Q̃i
t (τ
∗ > T ) =

∑
j 6=K

q̃ij (t, T ) = 1− q̃iK (t, T ).

The proof of this lemma is identical to that used in Lemma 1.
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Conditional survival probabilities can be obtained via the expres-
sion

Q̃i
t (τ
∗ > T + 1|τ ∗ > T ) = Q̃i

t (τ
∗ > T + 1)/Q̃i

t (τ
∗ > T ). (21)

Given this lemma we can value the risky firm’s zero-coupon bonds
as in Equation (8), that is,

vi(t, T ) = p(t, T )(δ + (1− δ)Q̃i
t (τ
∗ > T )), (22)

where Q̃i
t (τ
∗ > T ) is obtainable from Lemma 3.

Given that the forward rate for the risky zero-coupon bond in credit
class i is defined by f i(t, T ) ≡ −∂

∂T log vi(t, T ), Equation (22) yields

f i(t, T ) = f (t, T )− 1{τ ∗>t}

 (1− δ)
∂

∂T
Q̃i

t (τ
∗ > T )

δ + (1− δ)Q̃i
t (τ
∗ > T )

 . (23)

In bankruptcy, f i(t, T ) = f (t, T ). We define the credit risk spread to
be [ f i(t, T )− f (t, T )].

To get the spot rate, let T → t in Equation (23). One obtains

r i(t) = r (t)+ (1− δ)λiKµi(t)1{τ ∗>t}, (24)

since ∂Q̃i
t (τ
∗ > T )/∂T = −∂Q̃i

t (τ
∗ ≤ T )/∂T = −λiKµi(t). In bank-

ruptcy, ri(t) = r (t).
The spot rate on risky debt is seen to exceed the default-free spot

rate by a credit risk spread of (1− δ)λiKµi(t), where δ is the recover
rate and λiKµi(t) is the pseudo-probability of default. This expression
is analogous to that given in the discrete time case [Equation (10)], and
it can also be found in Jarrow and Turnbull (1995).

3.2 Options and hedging
Analogous to the discrete time case, option valuation is a straight-
forward application of the martingale pricing technology and cor-
responds to computing an expectation as in Equation (11). Conse-
quently we need not repeat that discussion.

Hedging credit rating changes is also analogous to the discrete time
case. Similar to that case, given a specification of the stochastic process
for the risky forward rates, hedging follows the standard procedures
[details are in Jarrow and Turnbull (1995)]. All that remains to be done,
then, is to derive the stochastic process for changes in forward rates.
This is the content of this section.

Let Nij (t) where i = 1, . . . ,K −1 and j = 1, . . . ,K be independent
Poisson processes under the probability measure Q with intensities
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λij . The counting process Nij (t) represents a credit class jump from
state i to state j at time t if Nij (t) − Nij (t−) = 1 where Nij (t−) =
limε→0 Nij (t − ε).

Under the martingale measure Q̃, Nij (t) has intensities λijµi(t) for
i = 1, . . . ,K − 1 and j = 1, . . . ,K .

We can represent the Markov chain process {ηt : 0 ≤ t ≤ τ } as

ηt = η0 +
K−1∑
i=1

K∑
j=1

∫ t

0
( j − i)1{ηt−=i,ηt 6=K } dNij (t). (25)

Define the function

φ(t, T , i) =


−(1− δ)∂Q̃i

t (τ
∗ > T )/∂T

δ + (1− δ)Q̃i
t (τ
∗ > T )

for i = 1, . . . ,K − 1

0 for i = K .
(26)

Then, letting η0 = i0 be the firm’s credit rating at time 0, we have

f ηt (t, T )− f i0(0, T ) = [ f, (t, T )− f (0, T )] (27)

+
∫ t

0
φ′(s, T , ηs−)ds +

K−1∑
i=1

K∑
j=1

×
∫ t

0
(φ(s, T , j)− φ(s, T , i))1{ηs−=i} dNij (s),

where φ′(s, T , ηs−) = dφ(s, T , ηs)/ds.
The first component of the change in the risky debt’s forward rates

is due to changes in the default-free forward rates. Any desired default-
free term structure model can be applied to hedge this risk as is done
in the interest rate option literature [e.g., Heath, Jarrow, and Morton
(1992)].

The second component is a smoothly varying term arising from the
shortening of time to maturity. If the Markov chain is time homoge-
neous, this is always negative.

The third component of the change in the risky debt’s forward rates
is due to jumps in the credit rankings. At any time s in state ηs− = i,
there are at most K jump processes needed to be hedged, that is,
Ni1(s), . . . ,NiK (s). These can be hedged in the standard manner using
at most K risky zero-coupon bonds (or any other traded claims subject
to this risk). A description of these hedging procedures can be found
in Jarrow and Turnbull (1995).
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3.3 Examples
This section illustrates some important insights related to credit risk
spreads via three examples. The first two examples illustrate the im-
portance of taking into account the entire structure of the generator
matrix when calculating default probabilities and hence credit risk
spreads. The third shows how to generate the model used in Jarrow
and Turnbull (1995) as a special case of this article’s analysis.

Example 1. Consider the generator matrix

3 =
−0.11 0.10 0.01

0.05 −0.15 0.1
0 0 0


In this example, there are three possible states. Examining the first
row, the probability of staying in the first credit class over a small
period of time 1t is approximately 1 − 0.111t . The transition rate
from the first credit class to the second credit class is 0.10, and the
rate of default from the first credit class is 0.01. One could then make
the inappropriate estimate that a firm that is in this credit class will
have a probability equal to 1− exp(−0.01t) of defaulting before time
t since the holding time is exponential. This, of course, does not take
into account the possibility of downgrading (occurring with rate 0.1)
and subsequent default (occurring with rate 0.1 in the lower class).
In Figure 1 we illustrate the difference by graphing the true default
probability as a function of time (the top curve) and the one based
on the rate of default directly from the highest credit rating.

It is important to estimate risks of downgrading and risks of default
in lower rating classes to get an accurate estimate of default rates for
the top-rated firms. In Figure 2 we show the spreads [see Equation
(23)] under the assumption that δ = 0, and it is clear that it is quite
possible for the spread to be decreasing over time. This will typically
happen to very low credit classes. Recall that the spread is really
a survival contingent spread: it reflects forward rates obtained if no
default occurs before the maturity date. Hence, if a low-rated firm has
survived long, it may have a lower spread simply because survival
increases the probability that it has reached a higher credit rating.

Example 2. Now consider the generator matrix

3 =

−0.13 0.10 0.02 0.01
0.05 −0.16 0.1 0.01
0 0.05 −0.15 0.1
0 0 0 0
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Figure 1
A comparison of the true default probability as a function of time for credit class 1 and
an exponential distribution based on the one-step default probability for credit class 1. This
comparison is for Example 1.

Figure 2
The spreads (forward rate credit class i less the default-free forward rate) as a function of maturity
are graphed for credit classes 1 and 2. These spreads are for Example 1. A zero recovery rate is
assumed.
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Figure 3
Default probabilities as a function of time for credit classes 1, 2, and 3. These default probabilities
are for Example 2.

In this example there are four possible states. From the first row, the
rate of default is 0.01. Note in this example that the two top credit
classes have the same risk of direct default (the rate is 0.01 for direct
default), but as Figure 3 illustrates, the probability of default for the
second class (middle graph) is higher than that of the first class, simply
because the second class is closer to the risky third class, whose high
default probabilities are the top graph in Figure 3.

Example 3. If we change the last row of the generator matrix in Ex-
ample 2 so that the rate of default is 0.01 (and change the diagonal
element correspondingly to −0.06), we see that the default proba-
bilities, and therefore the spread structure, becomes independent of
credit class. The lower graph of Figure 1 illustrates the default prob-
ability as a function of time (an exponential distribution). It is equiv-
alent to a bankruptcy process independent of credit classes, which is
the model analyzed in Jarrow and Turnbull (1995).

3.4 Parameter estimation
To utilize this model to price and hedge credit-risky bonds and op-
tions, we need to estimate the parameters of the stochastic process
given in Equation (23). This estimation procedure can be decomposed
into two parts. The first part estimates the parameters generating the
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default-free forward rates, f (t, T ); the second part estimates the pa-
rameters generating the credit risk spread [the second term in Equation
(23)].

3.4.1 Estimation of default-free parameters. The parameter esti-
mation problem for the stochastic process generating default-free for-
ward rates is a well-studied issue in the realm of interest rate options
[see Amin and Morton (1993) and Heath et al. (1992)]. Consequently
we refer the reader to that literature for the relevant insights.

3.4.2 Estimation of the bankruptcy process parameters. The
parameter estimation problem for the stochastic process generating
the credit risk spread involves estimating the recovery rate (δ), which
can depend on the seniority of the debt, and estimating the generator
matrix 3̃ defined in Equation (19).

3.4.3 Estimating the recovery rate. An estimate of the recovery
rate (δ) can be obtained historically from past defaults, or implicitly
via market prices.

Table 1 reproduces the historical recovery rates from Moody’s Spe-
cial Report (1992). As can be seen, these recovery rates increase as
the seniority of the debt increases. These numbers vary across time.

An implicit procedure generates an estimate for δ (given estimates
for all the other parameters) by setting the theoretical value equal to
a market price for some traded derivative security and then inverting
(most often numerically). The implicit procedure could utilize zero-
coupon bond prices [Equation (22)], spot rates [Equation (24)], coupon
bonds, or options.

3.4.4 Estimating the generator matrix Λ. An estimate of the gen-
erator matrix 3̃ can also be obtained either historically or implicitly.
The implicit procedure estimates the generator matrix 3̃ implicitly us-
ing market prices for the risky zero-coupon bonds. Implicit estimation
of the generator matrix 3̃ would be preferred to historical estimation
if it is believed that the historical transition matrix does not represent
the actual transition matrix. This could be due to either nonstationar-
ies in the bankruptcy process or untimely changes in the credit ratings
by the rating agency. For example, if credit rating changes lag the ac-
tual changes in the default probabilities, then the historical transition
matrix of changes in credit ratings will not be the relevant probability
matrix.

In an implicit estimation procedure for 3̃, (K −1)× (K −1) param-
eters need to be estimated [see Equation (17)]. This is a large number
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of parameters to imply out from the data. We therefore suggest using a
decomposition of the generator matrix under the martingale measure
into a product of the empirical generator matrix, which may be read-
ily estimated, and a low-dimensional vector of time-dependent risk
premia. Prices observed in the markets and the empirical generator
matrix (historical or predicted) may then be used to imply out the risk
premia.

Alternative ways of simplifying the estimation of 3̃ could be to
restrict the number of strictly positive transition probabilities between
states so that, for example, only jumps to the adjacent state can occur.
This will reduce the number of parameters to 2(K − 1). Under this
restriction it is also possible to relax the assumption on the risk premia
so that πi(t) becomes πij (t). Another approach would be to reduce
the number of states to three classes: investment grade, speculative
grade, and default. However, if the true process of ratings with the K -
dimensional state space is Markovian, it will typically not be the case
that this process on the smaller state space is Markovian. Applying a
function that is not one to one to a Markov chain destroys the Markov
property.

We now concentrate on the historical approach. Our estimation
procedure is based on the zero-coupon bond prices and utilizes the
decomposition of the generator matrix 3̃ into the product of the em-
pirical generator matrix 3 and the risk premia (µ1(t), . . . , µK−1(t))
[see Equation (19)].

3.4.5 Estimation of the empirical generator matrix3. Estimates
of the empirical generator matrix 3 can be obtained from past obser-
vations of credit rating changes [see Moody’s Special Report (1992) or
Standard & Poor’s Credit Review (1993)]. From a statistical viewpoint,
the Markov chain model we have specified is very convenient. If we
observe over a time period [0, T ] the exact times of credit class tran-
sitions and defaults, a classical estimator of an off-diagonal element
λij of the generator matrix is given by

λij =
Nij (T )∫ T

0 Yi(s)ds
,

where

Nij (T ) = total number of transitions from i to j over the period [0, T ]

and
Yi(s) = number of firms in class i at time s.

For a derivation of this result, and for extensions to estimation
of transition rates that are time dependent, have external covariates,
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or are based on censored observations, see Andersen and Borgan
(1985).

For this article we use data reported in Standard and Poor’s Credit
Review (1993). These data do not include the exact timing of transi-
tions, but they do include estimates of 1-year transition probabilities
that are obtained by observing the credit ratings of a fixed group of
firms at the beginning and at the end of the year. We use these esti-
mates to obtain an approximation to the generator matrix, and this,
in turn, will be used to obtain transition probabilities Q̂(t) for every t .

Given the estimate of Q̂(1), we can estimate the generator matrix by
assuming that the probability of making more than one transition per
year is small. In other words, every firm is assumed to have made ei-
ther zero or one transition throughout the year. Under this hypothesis,
it can be shown given λi 6= 0 for i = 1, . . . ,K − 1 that11

exp(3)≈



eλ1
λ12(eλ1−1)

λ1
· · · λ1K (eλ1−1)

λ1
λ21(eλ2−1)

λ2
eλ2 · · · λ2K (eλ2−1)

λ2
λK−1,1(eλK−1−1)

λK−1

λK−1,2(eλK−1−1)

λK−1
· · · λK−1,K (eλK−1−1)

λK−1
0 0 · · · 1


.

(28)
To obtain our estimates of 3̂, we set Q̂(1) equal to the right side of
Equation (28) to obtain12

q̂ii = e λ̂i for i = 1, . . . ,K − 1 and (29a)

q̂ij = λ̂ij (e
λ̂i − 1)/λ̂i for i 6= j and i, j = 1, . . . ,K − 1. (29b)

The solution to this system is

λ̂i = log(q̂ii) for i = 1, . . . ,K − 1 and (30a)

λ̂ij = q̂ij log(q̂ii)/[q̂ii − 1] for i 6= j and i, j, . . . ,K − 1. (30b)

A 1-year transition matrix is given in Standard and Poor’s Credit
Review (1993) and is reproduced in Table 2 in the Appendix. It poses
one problem for our analysis. Transitions to the “Not rated” (NR) cate-

11 See the Appendix for a proof. Since Q(1) = exp(3) ≈ I + 3, we could have used the approx-
imation 3̂ = Q̂(1) − I , but we choose Equation (28) since it provided a better fit of exp(3̂) to
Q̂(1) in our data.

12 The notation q̂ij should not be confused with the pseudo-probabilities q̃ij defined in the discrete
time section.
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Table 2
Average 1-year transition probabilities, 1981–1991

Rating at the end of year

Initial
rating AAA AA A BBB BB B CCC D NR

AAA 0.8746 0.0945 0.0077 0.0019 0.0029 0.0000 0.0000 0.0000 0.0183
AA 0.0084 0.8787 0.0729 0.0097 0.0028 0.0028 0.0000 0.0000 0.0246
A 0.0009 0.0282 0.8605 0.0628 0.0098 0.0044 0.0000 0.0009 0.0324
BBB 0.0006 0.0041 0.0620 0.7968 0.0609 0.0151 0.0017 0.0043 0.0545
BB 0.0004 0.0020 0.0071 0.0649 0.7012 0.0942 0.0115 0.0218 0.0970
B 0.0000 0.0017 0.0027 0.0058 0.0451 0.7196 0.0380 0.0598 0.1272
CCC 0.0000 0.0000 0.0102 0.0102 0.0179 0.0665 0.5729 0.2046 0.1176

Standard and Poor’s Credit Review (1993), Table 10.

Table 3
Modified transition probabilities

Rating at the end of year

Initial
rating AAA AA A BBB BB B CCC D

AAA 0.8910 0.0963 0.0078 0.0019 0.0030 0.0000 0.0000 0.0000
AA 0.0086 0.9010 0.0747 0.0099 0.0029 0.0029 0.0000 0.0000
A 0.0009 0.0291 0.8894 0.0649 0.0101 0.0045 0.0000 0.0009
BBB 0.0006 0.0043 0.0656 0.8427 0.0644 0.0160 0.0018 0.0045
BB 0.0004 0.0022 0.0079 0.0719 0.7764 0.1043 0.0127 0.0241
B 0.0000 0.0019 0.0031 0.0066 0.0517 0.8246 0.0435 0.0685
CCC 0.0000 0.0000 0.0116 0.0116 0.0203 0.0754 0.6493 0.2319
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

No-rating category eliminated.

gory are listed, but no estimates of subsequent defaults or reentrance
to the rating categories are reported.13 We choose to eliminate this
part of the sample by redefining the transition probability from state
i to j (both states different from NR) as being

qij = fraction of firms going to j from i

fraction of firms going to a state different from NR
. (31)

This is the modified transition matrix reported in Table 3. Using
the estimation procedure described above we get an estimate of the
generator matrix 3̂, reported in Table 4.

3.4.6 Estimation of the risk premium. Estimates of the risk pre-
mia (µ1(t), . . . , µK−1(t)) can be obtained from the zero-coupon bond
prices [Equation (22)].

13 As noted in the Standard & Poors Credit Review (1993), the majority of the transitions to an NR
originate from issuers repaying outstanding debt or bringing it below a limit of $25 million, but
some are caused by insufficient information being provided by the issuer and subsequent defaults
do occur.
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Table 4
Generator matrix estimated from modified transition probabilities in Table 3

Rating at the end of year

Initial
rating AAA AA A BBB BB B CCC D

AAA −0.1154 0.1019 0.0083 0.0020 0.0031 0.0000 0.0000 0.0000
AA 0.0091 −0.1043 0.0787 0.0105 0.0030 0.0030 0.0000 0.0000
A 0.0010 0.0309 −0.1172 0.0688 0.0107 0.0048 0.0000 0.0010
BBB 0.0007 0.0047 0.0713 −0.1711 0.0701 0.0174 0.0020 0.0049
BB 0.0005 0.0025 0.0089 0.0813 −0.2530 0.1181 0.0144 0.0273
B 0.0000 0.0021 0.0034 0.0073 0.0568 −0.1929 0.0479 0.0753
CCC 0.0000 0.0000 0.0142 0.0142 0.0250 0.0928 −0.4318 0.2856
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Using an analytic approximation to the forward equation [Equation
(20b)], we get that over a small time period 1t14

Q̃(t, t +1t) ≈ I + 3̃(t)1t = I + U (t)31t . (32)

Letting 5(t) ≡ U (t) and Q − I ≡ 31t in Equations (15) and (16),
yields an estimation procedure for the risk premia U (t). U (t) in this
approximation is assumed to be right continuous over [t, t+1t). This
estimation procedure will be such that the model prices given via
Equation (22) will exactly match the initial credit-risky zero-coupon
bond price curves.

3.4.7 Survival probabilities and spreads under risk neutrality.
We can illustrate some main features of the model by looking at the
risk-neutral case, that is, the case where the pricing measure and the
empirical measure are the same.

From the estimated generator matrix, we have calculated the sur-
vival probabilities for firms of the various credit ratings as a function
of time. In other words, if a firm is in a given credit class today, and
if its rating evolves according to the Markov chain specified by the
empirical generator matrix, what is the probability of having no de-
faults within the next t years? The result is shown in Figure 4. Note
that with the modified empirical transition matrix specified in Table 3,
we could have obtained estimates for survival probabilities for integer
years in the future by simply calculating powers of that matrix and
reading off the entry in the default column. But we are interested in
default probabilities for every time to maturity, and in particular for

14 This approximation comes from the forward equation [Equation (20b)]. For small 1t ,

∂Q̃(t, T )/∂T
∣∣

T=t+1t
≈ [Q̃(t, t +1t)− I ]/1t and Q̃(t, t +1t)3̃(t +1t) ≈ Q̃(t, t)3̃(t) = 3̃(t).

Substitution into Equation (20b) gives Equation (32).
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Figure 4
The survival probabilities (no defaults in the next t years) for the different credit classes as a
function of time. These graphs are based on the generator matrix given in Table 4.

periods shorter than 1 year. Our estimate of the generator matrix pro-
vides us with estimates of these probabilities. As expected, the default
probabilities for every fixed time are lower for the better rated firms.

In Figures 5 and 6 we have graphed forward spreads as defined
in Equation (23) for investment grade and speculative grade bonds,
respectively. We have set the recovery rate equal to zero in order
to give the graphs an alternative interpretation as hazard rates: The
hazard rate corresponding to credit class i at time t is the rate of
default at time t for a firm that is in class i at time 0 and which has
not defaulted up to time t . The spread at time 0 is the credit spread on
the spot rate. If we set the recovery rate to δ > 0, these spot rate credit
spreads are multiplied by 1 − δ. For a value of δ equal to 0.67, this
would bring the extremely high spreads on speculative rates down
in a more reasonable range, but it would also lower the already very
low spreads on the investment grade bonds.

3.4.8 An illustrative estimation of the risk premia. This section
illustrates the computation of the risk premia (µ1(t), . . . , µK−1(t)) for
t = 0, 1, . . . , τ utilizing the procedure described above. This example
demonstrates the feasibility of performing the described computations
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Figure 5
The spreads (forward rate credit class i less the default-free forward rate) in basis points as a
function of maturity for credit classes AAA, AA, A, and BBB. These spreads assume risk neutrality
and a zero recovery rate. They are based on the generator matrix given in Table 4.

Figure 6
The spreads (forward rate credit class i less the default-free forward rate) in basis points as a
function of maturity for credit classes BB, B, CCC. These spreads assume risk neutrality and a
zero recovery rate. They are based on the generator matrix given in Table 4.
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and provides some preliminary insights useful for designing a more
thorough empirical investigation of the proposed model.

The computations were performed using bond index price data for
Friday, December 31, 1993. The corporate bond price data was kindly
provided by Lehman Brothers, and it is included in Table 5.

Table 5 contains a matrix whose columns correspond to various
maturity ranges, and whose rows correspond to credit classes. Within
each cell of the matrix is given (1) the number of bond issues repre-
sented in the cell, (2) the market value weighted coupon payment for
the cell, and (3) the (bid) “yield to worst” (market value weighted)
for the cell. The yield to worst is the bond’s yield, except when
a bond is callable. When callable, the yield to worst is the mini-
mum of the following two numbers: (1) the yield computed based
on the bond’s maturity date, and (2) the yield computed based on the
bond’s first call date. Obviously this is an incomplete adjustment to
incorporate a bond’s call provision into the calculation of the bond’s
yield. As such it can introduce significant error into the following
procedure. In essence the computation of yield to worst can place
a callable bond’s yield in the wrong maturity cell. This observation
error is important to keep in mind when evaluating the subsequent
results.

The first step in the computation of the risk premium from this
corporate bond data is to strip out the risky zero-coupon bond prices.
Our procedure for doing this is described in the Appendix. The results
are provided in Table 6. Also included in Table 6 are default-free
zero-coupon bond prices. These are the U.S. Treasury strip prices as
reported in the Wall Street Journal for December 31, 1993. Figures 7
and 8 contain the graphs of these zero-coupon bond prices.

Occasional “mispricings” can be observed in these various zero-
coupon bond price curves. Indeed, whenever the credit class term
structures cross, potential arbitrage opportunities exist. For example,
at the maturity of 1 year, the AA zero is priced above the AAA zero-
coupon bond, and the B zero-coupon bond is priced above the BA-
zero coupon bond. These crossings are inconsistent with the previous
model structure. For the purposes of this section, we attribute these
mispricings to noise in the data (most likely due to the yield-to-worst
issue previously discussed). The noise in the data is particularly both-
ersome when the number of issues in a cell are small, such as in the
case of the B-rated bonds in the first two maturity classes (only one
issue each).

These mispricings will generate risk premium (µ1(t), . . . , µK−1(t))
for t = 0, . . . , τ that do not satisfy the conditions imposed in Equation
(6) [using 5(t) = U (t) from Equation (32)], which guarantee that Q̃ is
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Figure 7
Stripped zero-coupon bond prices on December 31, 1993, versus time to maturity for Treasuries,
AAA, and AA rated debt. A face value of $100 is assumed. Treasuries are —–, AAA are – – –, and
AA are - - - - - -.

a probability matrix. The relevant condition is that the risk premium
is nonnegative, µi(t) ≥ 0, for all credit classes i and times t .15

To illustrate this outcome we compute the risk premia using the
(unconstrained) procedure as described in Section 2.3. Needed for this

15 Strictly speaking, the condition is that µi(t) > 0 for all credit classes and times (where the
generator matrix has strictly positive values). However, imposing strict positivity will not allow
us to solve the minimization problem. Therefore we do not impose this strict positivity condition
(see footnote 16).
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Figure 8
Stripped zero-coupon bond prices on December 31, 1993, versus time to maturity for A, BAA,
BA, B, and CAA rated debt. A face value of the $100 dollars is assumed. A are ——, BAA are – –
–, BA are - - - - - -, B are – - – - –, and CAA – - - – - - –.

computation are an estimate of the recovery rate (δ) and an estimate
of the Q matrix. We set δ̂ = 0.3265, which is the weighted average
value for 1991 as given in Table 1. We set Q̂ equal to the generator
matrix given in Table 4 [as required by Equation (32)], with one small
modification. In order that the risk premia µi(0) for i = 1, . . . ,K−1 are
well-defined for credit class i via Equation (15), we need to guarantee
that the one-step default probability qiK 6= 0. This is not satisfied by
the default probabilities in the first two rows of Table 4. For this
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reason we replace the zero default probabilities qiK for these two
rows with 0.0001 (and reduce the diagonal element in row i by an
equal amount). This is the smallest significant number possible within
Table 4.

The results of this computation are given in Table 7. As noted,
many of the risk premia are negative, indicating the existence of arbi-
trage opportunities, data errors, or model rejection. We believe these
mispricings are most likely due to the noise introduced into the com-
putation of the zero-coupon bond prices due to the yield-to-worst
issue previously discussed.

Given that an unconstrained estimation procedure for (µ1(t), . . . ,
µK−1(t)) for t = 0, . . . , 14) indicates mispricings, we next compute
the best values for the risk premia consistent with no arbitrage, where
“best” is defined to mean minimizing the sum of squared errors of the
actual prices from the model prices. This procedure uses all the data,
including the mispriced zero-coupon bonds.

The constrained estimation technique follows a recursive procedure
similar to that described in Section 2.3. We now briefly describe this
procedure.16

At step 0, we find such that (µ1(0), . . . , µK−1(0)) such that∑K−1
i=1 [vi(0, 1) − vi(0, 1)observed]2 is minimized subject to µi(0) ≥ 0

for i = 1, . . . ,K − 1, where vi(0, 1) is determined from Equation (3)
and Q̃i

0(τ
∗ > 1) in Equation (3) is determined as Equation (15) in the

text.
Given the optimized values for (µ1(0), . . . , µK−1(0)), to prepare for

the next step in the procedure, we compute the one-step transition
matrix Q̃0,1, using Equation (6).

At step t+1, we enter with Q̃0,t . We compute (µ1(t+1), . . . , µK−1(t+
1)) such that

∑K−1
i=1 [vi(0, t+1)−vi(0, t+1)observed]2 is minimized sub-

ject to µi(t+1) ≥ 0 for i = 1, . . . ,K−1, where vi(0, t+1) is determined
from Equation (3) and Q̃i

0(τ
∗ > t + 1) in Equation (3) is determined

as Equation (16) in the text. In particular,

Q̃i
0(τ
∗ > t + 1) = 1−

K∑
j=1

q̃ij (0, t)µj (t)qjk .

Given the optimized values for (µ1(t + 1), . . . , µK−1(t + 1)), we
then compute Q̃0,t+1 using Equation (6) in order to prepare for the
next step.

16 To satisfy the strict positivity condition in footnote 15, one could add the restriction that µi(0) ≥
0.0001 for all i. The estimates obtained in this case would be similar to those subsequently
reported.
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The recursive procedure stops when t + 1 = 14.
The constrained estimates for the risk premia are contained in Ta-

ble 8. The theoretical risky zero-coupon bond prices consistent with
these risk premia are contained in Table 9. The standard error of the
estimate and the percentage error (standard error/average price in the
column) are provided under each column in Table 6. The percentage
error is seen to be the smallest for the shortest maturity zeros, and
increases as time to maturity increases. This is to be expected as pric-
ing errors compound in the computing procedure. The dollar pricing
error for maturities less than 4 years is no more than $1.0826 per $100
face value bond. For maturities exceeding 4 years, the pricing error is
at most $3.7908 per $100 face value bond. These risky zero-coupon
bonds and the risk premia (µ1(t), . . . , µK−1(t)): t = 1, . . . , 14) in Ta-
bles 8 and 9 provide the necessary inputs for computing the values
of options on risky debt and credit derivatives.

The previous tables demonstrate the simplicity of obtaining the pa-
rameter estimates for the Markov model. They also provide additional
insights into numerous estimation issues that need to be addressed
in a more thorough investigation. First, the data underlying the esti-
mates for the risky zero-coupon bonds need to be filtered to remove
all imbedded options. This filtering will remove the yield-to-worst bias
present in the previous results. Second, to get a more homogeneous
set of bond prices, partitioning by industry groups may be a good
idea. Third, time-series observations are needed to (1) verify the time
consistency of the estimations and (2) for testing trading strategies to
see if the “mispricings” are due to arbitrage opportunities, data errors,
or model misspecification.

4. Conclusion

This article develops a Markov model for the term structure of credit
risk spreads, extending the work of Jarrow and Turnbull (1995). The
bankruptcy process is modeled via a discrete state space, contin-
uous time, time-homogeneous Markov chain in credit ratings. This
bankruptcy processes’ parameters can be estimated from observable
data. An illustrative example is provided. The validation or rejection
of this model awaits subsequent research.

Appendix A

Proof of Equation (28). This matrix can be derived using a probabilistic
argument. Under this hypothesis, we can approximate the evolution
of the firm’s credit rating over a year by assuming that if the firm leaves
state i before the year is over for state j , it is absorbed in state j . To
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make our argument, we define τij to be independent exponentially
distributed random variables with intensities λij . Let τi ≡ minj τij , then

τi is exponentially distributed with parameter − λi ≡
K∑
j=1
j 6=i

λij

and prob(τi = τij | τi ≤ 1) = prob(τi = τij ) = λij/ − λi [see Resnick
(1992; Exercise 4.45 and Proposition 5.1.1)]. Our hypothesis implies
that

qii = prob(τi > 1) = eλi and

qij = prob(going to state j before time 1)

= prob(τi = τij and τi ≤ 1)

= prob(τi = τij | τi ≤ 1)prob(τi ≤ 1) = λij

−λi
(1− eλi ).

This completes the probabilistic argument. We now provide a second
proof.

The hypothesis, in analytic form, is that

(i) λijλjk ≈ 0 for i 6= j and j 6= k, and
(ii) For each i,

∑∞
n=0(

∑n
m=0 λ

m
i λ

n−m
j )/n! is independent of j .

Roughly, in probabilistic terms, (i) states that starting in state i, it is
unlikely to jump to j and then k, in a small time period; (ii) states that
starting in state i, given that one jumps out, the likelihood of jumping
to state j (in a small time period) is proportional to λij .

Now, exp(3) =∑∞n=03
n/n!.

Performing the matrix multiplication term by term, and then summing,
one gets that the diagonal elements are eλj for j = 1, . . . ,K − 1. This
follows from (i) alone. The off-diagonal elements (i, j) for i 6= j are

λij

[ ∞∑
n=0

(
n∑

m=0

λm
i λ

n−m
j

)/
n!

]
.

This also follows from (i) alone. But since the rows of exp(3) sum to
one, we get

eλi +
K∑
j=1
j 6=i

λij

( ∞∑
n=0

(
n∑

m=0

λm
i λ

n−m
j

)/
n!

)
= 1,

hence the result, since λi ≡ −
∑K

j=1
j 6=i
λij . This completes the argument.
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Appendix B

Procedure for stripping risky zero-coupon bond prices
We use the maturities T = 1, 2, 3, 4, 5, 6, 7, 10, and 14 years. These
are the midpoints of the maturity ranges given in Table 5.

Given are

c = coupon,

yi
T = yield to worst for the ith credit class, and

T = maturity.

Let Bi
T be the bond’s price.

To strip out the zeros, we first compute Bi
T by

Bi
T =

T∑
j=1

c

(1+ yT ) j
+ 100

(1+ yT )T
.

This assumes the coupon payment is made once per year and the
face value is 100. Then, using a triangular system of equations, we
compute vi(T ) recursively as follows:

Bi
1 = (c + 100)vi(1) compute vi(1)

Bi
2 = cvi(1)+ (c + 100)vi(2) compute vi(2)

...

Bi
7 = cvi(1)+ cvi(2)+ · · · + (c + 100)vi(7) compute vi(7),

missing T = 8, 9. To determine these we used linear interpolation.
Let

vi(8) ≡ (2/3)vi(7)+ (1/3)vi(10)

vi(9) ≡ (1/3)vi(7)+ (2/3)vi(10).

Bi
10 = cvi(1)+ · · · + cvi(7)+ c[(2/3)vi(7)+ (1/3)vi(10)]

+ c[(1/3)vi(7)+ (2/3)vi(10)]

+ [c + 100]vi(10) compute vi(10),

missing T = 11, 12, 13. To determine these let

vi(11) ≡ (3/4)vi(10)+ (1/4)vi(14)

vi(12) ≡ (1/2)vi(10)+ (1/2)vi(14)

vi(13) ≡ (1/4)vi(10)+ (3/4)vi(14).
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Bi
14 = cvi(1)+ · · · + cvi(10)+ c[(3/4)vi(10)+ (1/4)vi(14)]

+ c[(1/2)vi(10)+ (1/2)vi(14)]

+ c[(1/4)vi(10)+ (3/4)vi(14)]

+ [c + 100]vi(14) compute vi(14).
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