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A Markov Random Field Model for
Network-based Analysis of Genomic Data

Zhi Wei and HongZhe Li

Abstract

A central problem in genomic research is the identification of genes and path-
ways involved in diseases and other biological processes. The genes identified or
the univariate test statistics are often linked to known biological pathways through
gene set enrichment analysis in order to identify the pathways involved. However,
most of the procedures for identifying differentially expressed genes do not uti-
lize the known pathway information in the phase of identifying such genes. In
this paper, we develop a Markov random field (MRF)-based method for identify-
ing genes and subnetworks that are related to diseases. Such a procedure models
the dependency of the differential expression patterns of genes on the networks
using a local discrete MRF model. Simulation studies indicated that the method
is quite effective in identifying genes and subnetworks that are related to disease
and has higher sensitivity and lower false discovery rates than the commonly used
procedures that do not use the pathway structure information. Applications to
two breast cancer microarray gene expression datasets identified several subnet-
works on several of the KEGG transcriptional pathways that are related to breast
cancer recurrence or survival due to breast cancer. The proposed MRF-based
model efficiently utilizes the known pathway structures in identifying the differ-
entially expressed genes and the subnetworks that might be related to phenotype.
As more biological networks are identified and documented in databases, the pro-
posed method should find more applications in identifying the subnetworks that
are related to diseases and other biological processes.
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Abstract

1 Motivation:

A central problem in genomic research is the identification of genes and pathways
involved in diseases and other biological processes. The genes identified or the uni-
variate test statistics are often linked to known biological pathways through gene set
enrichment analysis in order to identify the pathways involved. However, most of the
procedures for identifying differentially expressed genes do not utilize the known path-
way information in the phase of identifying such genes. In this paper, we develop a
Markov random field (MRF)-based method for identifying genes and subnetworks that
are related to diseases. Such a procedure models the dependency of the differential
expression patterns of genes on the networks using a local discrete MRF model.

2 Results:

Simulation studies indicated that the method is quite effective in identifying genes and
subnetworks that are related to disease and has higher sensitivity and lower false discov-
ery rates than the commonly used procedures that do not use the pathway structure
information. Applications to two breast cancer microarray gene expression datasets
identified several subnetworks on several of the KEGG transcriptional pathways that
are related to breast cancer recurrence or survival due to breast cancer.

3 Conclusions:

The proposed MRF-based model efficiently utilizes the known pathway structures in
identifying the differentially expressed genes and the subnetworks that might be related
to phenotype. As more biological networks are identified and documented in databases,
the proposed method should find more applications in identifying the subnetworks that
are related to diseases and other biological processes.

4 Contact:

Hongzhe Li, email: hongzhe@mail.med.upenn.edu.
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Introduction

Identification of genes and pathways involved in diseases and other biological processes is
one of the important problems in genomic research. Microarray technology makes it possible
to measure the expression levels of almost all human genes and therefore facilitate the iden-
tification of genes and pathways that are related to disease initiation and development. In
a typical experiment, several phenotypes are compared, with a certain number of biological
replicates for each phenotype. The goal is to identify the differentially expressed (DE) genes
among the different phenotype groups.

There are many novel statistical methods that have been developed for identifying the
DE genes. A general approach is to conduct a hypothesis test at each gene and then correct
for multiple testing. Most of the statistics used are t statistics and differ primarily in the
estimation of the variance (Dudoit et al., 2002; Tusher et al., 2001). Other methods include
the empirical Bayes methods that can effectively pool data from different genes (Efron et
al., 2001; Lonnstedt and Speed, 2002; Newton et al., 2003; Kendziorski et al., 2003). These
DE genes identified are often linked to a pre-defined list of groups of genes such as known
pathways in order to identify which groups include more DE genes than expected by chance
using a hypergeometric distribution. Alternatively, the gene set enrichment analysis (GSEA)
(Subramanian et al., 2005; Tian et al., 2005) can be used. For such a GSEA, one starts with
a pre-defined list of groups of genes and assigns every such group a score that is essentially
the average of the univariate test statistics of its member genes. The groups with high scores
are more likely to be DE and p-values can be obtained by permutation methods.

One limitation of the commonly used methods of identifying the DE genes or the GSEA
is that network structures are not utilized in the analysis. However, the interaction network
is a more precise way to represent information than lists of genes or pathways, as it describes
which genes are closely connected within a given pathway. Hence it has the potential to detect
more subtle changes of gene expressions, such as local disturbances within known pathways.
Rahnenführer et al. (2004) demonstrated that the sensitivity of detecting relevant pathways
can be improved by integrating information about pathway topology. In Sivachenko et al.
(2005), a network topology extracted from literature was used jointly with microarray data
to find significantly affected pathway regulators. Nacu et al. (2006) proposed an interesting
permutation-based test for identifying subnetworks from a known network of genes that are
related to phenotypes. The method is essentially based on a spatial scan statistic treating
genes collected on the networks as neighbors. However, their method does not explicitly
utilize the dependency of gene differential expression patterns on the network. Rapaport et
al. (2007) proposed to first smooth the gene expression data on the network based on the
spectral graph theory and then to use the smoothed data for classification. The method
explicitly assumes that the true gene expression levels should be similar for genes that are
neighbors on the networks. However, this assumption may be questionable due to both
activating and inhibiting effects of gene regulations.

Markov random field (MRF) models have been widely used in image analysis in order
to account for the local dependency of the observed pixel intensities (Besag, 1986) and
have also been applied for functional prediction of proteins in order to account for the local
dependency of protein functions in the protein-protein interaction networks (Deng et al.,
2002; Deng et al., 2004; Letovsky and Kasif, 2003). The MRF model has also be applied for
discovering molecular pathways from protein interaction and gene expression data (Segal et
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al., 2003). In this paper, we propose to develop a Markov random field (MRF)-based method
for identifying the DEs and the subnetworks that are related to the phenotypes, where the
MRF model is used to capture the dependency of the differential expression patterns for
genes on the networks. Our method combines the two-group empirical Bayes method of
Newton et al. (2003) and Kendziorski et al. (2003) with a MRF model to model the
dependency of the differential expression patterns. In our model and those of Newton et al.
(2003) and Kendziorski et al. (2003), each gene is either DE or equally expressed. Those
genes which are EE present data according to some background Gamma distribution, and
those which are DE present data according to a different distribution. The specific forms of
these distributions arise by another layer of mixing over the latent mean expression level for
each gene and the latent means follow another Gamma distribution. Such empirical Bayes
approaches allow a level of information sharing amongst genes.

The rest of the paper is organized as follows. We first introduce the model assumptions
and a MRF model. We then provide an iterative conditional mode algorithm (ICM) of Besag
(1986) for parameter estimation and for identifying the DE genes. We present simulation
studies to demonstrate the methods and to compare the results with other commonly used
methods for DE gene identification. Finally, we present results of applying the proposed
method to two breast cancer gene expression datasets in order to identify the genes and the
subnetworks that are related to breast cancer recurrence or death due to breast cancer. We
conclude the paper with a brief discussion of the results and methods.

Statistical Models and Methods

Notation and Assumptions

Given microarray gene expression profiling data under two conditions, we want to determine
which genes are differentially expressed. Each gene can have two states, labeled 0 and 1,
representing equally expression (EE) and DE, respectively. An arbitrary state assignment
of gene set S will be denoted by x = (x1, x2, · · · , xp), where xi is the corresponding state
of gene i and is 1 if gene i is differentially expressed (i.e., DE) and 0 otherwise. We write
x∗ for the true but unknown gene state and interpret this as a particular realization of a
random vector X = (X1, X2, · · · , Xp), where Xi assigns state to gene i. We let the yi denote
the observed mRNA expression level of gene i and y the corresponding vector, interpreted
as a realization of a random vector, Y = (Y1, Y2, · · · , Yp), where Yi itself is a vector yi =
(yi1, yi2, · · · , yim; yi(m+1), · · · , yi(m+n)), composed of the m replicates under one condition and
n replicates for the other. We further introduce the notation yi.m =

∑m
j=1 yij and yi.n =∑m+n

j=m+1 yij.
In order to specify the joint distribution of Y , we make the following assumptions:

Assumption 1. Given any particular realization x, the random variables Y = (Y1, Y2, · · · , Yp)
are conditionally independent and each Yi has the same unknown conditional density function
f(yi|xi), dependent only on xi. The conditional density of the observed gene expression y,
given, x, is simply,

l(y|x) =

p∏
i=1

f(yi|xi).

3

Hosted by The Berkeley Electronic Press



Assumption 2. The true state x∗ is a realization of a locally dependent discrete MRF with
a specified distribution {p(x)}, which is defined in the next Section.

Gamma-Gamma model for gene expression data

In this section, we first briefly review the Gamma-Gamma model for gene expression data
introduced in Newton et al. (2003) and Kendziorski et al. (2003). We define f(.|µi), which
characterizes fluctuations in repeated measurements under the same condition from a gene i
having latent mean expression level µi, and π(µi), which describes fluctuations in these means
among genes. We assume that the observation yi is a sample from a gamma distribution
having shape parameter α > 0 and a mean value µi; thus, with scale parameter λi = α/µi.
The corresponding density function can be written as

f(y|µi) =
λα

i yα−1exp{−λiy}
Γ(α)

for measurement y > 0. Note that the coefficient of variation in this distribution is 1/
√

α,
taken to be constant across genes i. Following Newton et al. (2003), we take π(µi) to be an
inverse gamma. More specifically, fixing α, the quantity λi = α/µi has a gamma distribution
with shape parameter α0 and scale parameter v. Let θ = (α, α0, v) be the parameters used
to specify these two distributions. The joint predictive density for the replicates yi of gene
i under the same condition is

f(yi) =

∫ (∏
y∈yi

f(y|µi)

)
π(µi)dµi.

Under this general model, we have for the first condition

f(yi1, · · · , yim) = K1

(
∏m

j=1 yij)
α−1

(v + yi.m)mα+α0
,

where

K1 =
vα0Γ(mα + α0)

Γm(α)Γ(α0)
,

and for the second condition

f(yi(m+1), · · · , yi(m+n)) = K2

(
∏m+n

j=m+1 yij)
α−1

(v + yi.n)nα+α0
,

where

K2 =
vα0Γ(nα + α0)

Γn(α)Γ(α0)
.

Therefore, given the differential expression state xi, we have

f(yi|xi; θ) = [f(yi1, · · · , yim) ∗ f(yi(m+1), · · · , yin)]xi

×[f(yi1, · · · , yim, yi(m+1), · · · , yin)](1−xi)
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=


K1K2

(∏m+n
j=1 yij

)α−1

(v + yi.m)mα+α0 (v + yi.n)nα+α0




xi

×


K

(∏m+n
j=1 yij

)α−1

(v + yi.m + yi.n)(m+n)α+α0




1−xi

,

where

K =
vα0Γ((m + n)α + α0)

Γm+n(α)Γ(α0)
.

Then based on the assumption 1, the conditional density of all p genes can be written as

l(y|x; θ) =

p∏
i=1

f(yi|xi; θ). (1)

Discrete local MRF model for joint differential expression states

The gene differential expression states x′is are not independent. For example, if a gene is
DE, it is more likely that its upstream regulators are also DE and that these regulators
in turn affect their downstream-regulated genes. In order to explicitly account for such
dependency of differential expression patterns over genes on the networks, we propose to use
the known biological network information compiled in the form of pathways. Examples of
such pathways include the KEGG pathway (Kanehisa and Goto, 2002) and BioCyc pathways
(http://biocyc.com/). In our model, the network is expressed as an undirected graph with
the nodes for genes and edges for connections on the network. Consider the p genes on the
network, let x = (x1, x2, · · · , xp) be the vector of unobserved differential expression states for
the p genes. We propose to model the dependency of x = (x1, x2, · · · , xp) using a MRF with
parameter Φ = (γ0, γ1, β). Specifically, we assume

p(x; Φ) ∝ exp(γ0n0 + γ1n1 − βn01),

where n0 =
∑p

i (1− xi) is the number of genes at state 0, n1 =
∑p

i xi is the number of genes
at state 1 and n01 is the number of edges linking two genes with different states. The γ0 and
γ1 are arbitrary parameters and we require that β > 0, which discourages neighboring genes
to have different differential expression states. By considering any two realizations which
differ only at gene i, it follows that the conditional probability of state k occurring for gene
i, given the states of all other genes is

pi(k|¦) ∝ exp(γk − βui(1− k)), (2)

where ui(1−k) denotes the number of neighbors of gene i having state (1−k), k = 0, 1 (Besag,
1986). Maximum likelihood estimation of Φ, however, is computationally intractable. In
general, it is the constant of proportionality in p(x; Φ) which cannot be evaluated. A simple
alternative to maximum likelihood estimation for a local Markov random field is provided
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by the “coding method” (Besag, 1986), where the estimate Φ̂ is chosen to maximize the
conditional likelihood,

l(x; Φ) =

p∏
i

pi(xi|x∂i; Φ) (3)

=

p∏
i

exp[(1− xi)(γ0 − βui(1)) + xi(γ1 − βui(0))]

exp[γ0 − βui(1)] + exp[γ1 − βui(0)]
,

where x∂i represents the neighbors of gene i.
In order to account for different numbers of neighbors for different genes on the network,

we propose to modify the conditional probability (2) as

pi(k|¦) ∝ exp(γk − βu∗i (1− k)), (4)

where u∗i (1−k) = ui(1−k)/di for k = 0, 1 and di is the number of neighbors for the ith gene.
The conditional likelihood function (3) can be modified accordingly by replacing ui(1 − k)
with u∗i (1− k).

Parameter estimation using ICM and identification of subnetworks

When inferring the true differential expression state x∗ for the p genes, the parameter esti-
mation must be carried out simultaneously. We propose the following algorithm based on the
ICM algorithm of Besag (1986) to estimate the parameter θ in the Gamma-Gamma model
for gene expression data and the parameter Φ in the MRF model. The algorithm involves
the following iterative steps:

1. Obtain an initial estimate x̂ of the true state x∗, using a simple two sample t-test.
2. Estimate θ by the value θ̂ which maximizes the likelihood l(y|x̂; θ) (see Equation 1).
3. Estimate Φ by the value Φ̂ which maximizes the conditional likelihood l(x̂; Φ) ( see

Equation 3) based on current x̂.
4. Carry out a single cycle of ICM based on the current x̂, θ̂ and Φ̂, to obtain a new x̂.

Specifically, for i = 1 to p, update xi which maximizes

P (xi|y, x̂S/i) ∝ f(yi|xi; θ̂)pi(xi|x̂∂i; Φ̂),

subject to xi = 1 or xi = 0.
5. Go to step 2 for a fixed number of cycles or until approximate convergence of x̂.
The converged x̂ are then taken to be the estimate of the true differential expression

states. These estimates can then be mapped back to the network to identify the subnetworks,
which are defined as those connected genes that show differential expressions between the
two experimental conditions.

Simulation Studies

We first present simulation results to demonstrate our proposed methods. To simulate the
data, we first obtained the network structure of 33 human regulatory pathways from the
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Table 1: Comparison of performance for the proposed MRF approach (MRFGG), the
Gamma-Gamma model (GG) of Kendiziorski et al. and standard two-sample t-test ap-
plied to the simulated data. Summaries are averaged over 100 simulations; standard errors
are shown in parentheses. tTest1: two-sample t-test using p-value of 0.05 as cutoff point;
tTEST2: two-sample t-test for FDR=0.05 using the procedure of Benjamini and Hochberg.

% of DE

in simulated data Model Sensitivity Specificity FDR

MRFGG 0.682(0.064) 0.999(0.001) 0.013(0.011)

p=0.115(0.005) GG 0.640(0.035) 0.998(0.001) 0.023(0.015)

tTEST1 0.495(0.033) 0.966(0.005) 0.347(0.037)

tTEST2 0.007(0.009) 1.000(0.000) 0.014(0.075)

MRFGG 0.743(0.067) 0.997(0.003) 0.018(0.014)

p=0.189(0.008) GG 0.664(0.027) 0.996(0.002) 0.023(0.012)

tTEST1 0.495(0.029) 0.966(0.005) 0.229(0.029)

tTEST2 0.010(0.010) 1.000(0.000) 0.009(0.041)

MRFGG 0.793(0.037) 0.991(0.006) 0.020(0.011)

p=0.357(0.009) GG 0.698(0.020) 0.990(0.004) 0.024(0.008)

tTEST1 0.497(0.020) 0.966(0.005) 0.110(0.017)

tTEST2 0.019(0.012) 1.000(0.000) 0.008(0.023)

MRFGG 0.835(0.036) 0.975(0.011) 0.030(0.012)

p=0.486(0.008) GG 0.718(0.018) 0.982(0.006) 0.025(0.008)

tTEST1 0.496(0.017) 0.966(0.006) 0.068(0.012)

tTEST2 0.026(0.014) 1.000(0.001) 0.011(0.022)
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KEGG database (December 2006 version). We are only interested in gene-gene regulatory
relations and any non-gene-gene interactions, e.g., compound-gene relations, compound-
compound relations, were excluded from our analysis. The remaining gene-gene regulatory
data are represented as an undirected graph where each node is a gene and two nodes are
connected by an edge if there is a regulatory relation between them. Loops (nodes connected
to themselves) were eliminated. This results in a graph with 1668 nodes and 8011 edges.

To simulate X, the gene expression states, we initialized the genes in the K pathways to
be DE and the rest of genes to be EE, which gives us the initial X0. Then we performed
sampling five times based on X0, according to Equation (3), with γ0 = 1, γ1 = 1, β = 2. We
chose K = 5, 9, 13, 17, so that we have different percentages of genes in DE states. Next,
given X, we simulated the gene expression level Y according to GG model (Equation (1))
for 1668 genes in two conditions, having three replicates in each condition. We took model
parameters similar to those in Newton et al. (α = 10, α0 = 0.9 and v = 0.5). Simulations
were repeated 100 times to assess the sensitivity, specificity, and false discovery rates of
the proposed MRF GG model (MRFGG). We used the conditional probability (2) and the
conditional likelihood (3) in our analysis. As a comparison, we also performed analysis on
the simulated data sets using the standard two sample t-test which doesn’t consider any
prior information at all, and the empirical Bayesian GG model of Kendziorski et al. (2003).

The results over 100 replications are presented in Table 1, where the sensitivity is calcu-
lated as the average over the 100 replications of the fraction of DE genes correctly identified
by the method; specificity is the average of the EE genes correctly identified; and the false
discovery rate (FDR) is the average of the ratio of the number of false positives to the num-
ber of the genes identified as DE. For t-tests, a cut-value of 0.05 was used for declaring a
gene to be the DE. We observed that overall specificity is high for all three procedures and
the MRFGG model resulted in higher sensitivity than the GG model while the FDRs are
similar. As expected, using a p-value of 0.05 can result in substantially higher FDRs. On
the other hand, if the FDR controlling procedure of Benjamini and Hochberg (1995) was
used, the two sample t-test resulted in very low sensitivity. The gain in sensitivity over the
GG model is greater when there are more DE genes. These results demonstrated that by in-
corporating the network structure information, we can indeed gain sensitivity in identifying
the DE genes.

Application to Real Datasets

We present results from application of the proposed methods to two breast cancer microarray
gene expression studies in order to identify the subnetworks that are related to breast cancer
metastasis or survival from breast cancer. We used the modified conditional probability (4)
and the corresponding conditional likelihood function in the following analyses.

Application to the breast cancer gene expression dataset of Wang
et al.

Wang et al. (2005) reported a large Affymetrix-based gene expression profiling for 286 pa-
tients with lymph-node-negative primary breast cancer. These patients were treated between
1980-1995 with age at surgery ranging 26-86 years and a median age at surgery of 52 yrs.
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Figure 1: Results from analysis of gene expression dataset of Wang et al. (2005). DE
genes identified by the MRFGG method linked to the KEGG pathways, where genes in red
are over-expressed and those in blue are under-expressed in cancer cells with breast cancer
metastasis.
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Figure 2: Results from analysis of gene expression dataset of Miller et al. (2005). DE genes
identified by the MRFGG method linked to the KEGG pathways, where genes in red are
over-expressed and those in blue are under-expressed in cancer cells from the patients who
died of breast cancer.
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No patient received any adjuvant therapy. During the follow-up period, 179 of these patients
were relapse-free at 5 yrs, and 107 of them developed distant metastasis. Gene expression
profiling using Affymetrix HG-133A was performed on all these patients, including 17,819
transcripts that were present in two or more samples. We merge the gene expression data
with the 33 KEGG regulatory pathways and identified 1533 genes on the U133A array that
can be found in the 1668-node KEGG network with 8011 edges. Our goal is to identify which
genes and which subnetworks of the KEGG network of 33 pathways are related to breast
cancer metastasis.

Two-sample t-tests identified only 8 DE genes for FDR of 0.05 using the Benjamini and
Hochberg’s procedure. As a comparison, our proposed procedure identified 72 DE genes.
The parameter estimates were γ0 = 2.64, γ1 = 0.71 and β = 1.24 in the MRF model. Figure
1 shows 17 of these genes that are mapped to the KEGG pathways, where the largest con-
nected subnetwork includes six genes on the Cytokine-cytokine receptor interaction pathway.
This subnetwork, centered around interleukin 8 receptor Beta (IL8RB), is down-regulated
in cancer with relapse. In addition, the chemokine receptor (CCR6) and chemokine (C-C
motif) ligand 20 (CCL20) are also down-regulated in cancers with relapse, indicating that a
chemokine pathway is down-regulated in cancers with relapse. In addition, CCL20/CCR6
involvement in the neoplastic progression and metastatic spread was reported in several
tumor types (Rubie et al., 2006), including breast cancer metastasis (Muller et al., 2001).

Another subnetwork includes 4 genes on the Wnt signaling pathway, including WNT4,
WNT11 and secreted frizzled-related protein 1 (SFRP1), which were down-regulated in can-
cer with metastasis. SFRPs are secreted Wnt antagonists that directly interact with the Wnt
ligand to inhibit signaling and members of the SFRP class bind directly to Wnts, thereby
altering their ability to bind to the Wnt receptor complex. In particular, the SFRP1 gene
is found at chromosome 8p21, a site of frequent loss of heterozygosity in human tumors and
is down-regulated in cervical carcinoma, breast carcinoma and ovary and kidney carcinomas
(Shulewitz et al., 2006). Wnt5b partially inhibits the canonical Wnt/beta-catenin signal-
ing pathway. These findings agree with current knowledge of the involvement of the Wnt
signaling pathway in breast cancer progression (Barker and Clevers, 2006).

We also found that the fibroblast growth factor 3 (FGF-3) and fibroblast growth factor
14 (FGF-14) are up-regulated in breast cancers with metastasis, while the fibroblast growth
factor receptor-4 (FGFR4) is down-regulated. These three genes are connected on the MAPK
signaling pathway. The four closely related human FGFRs and their more than 20 known
ligands control a multitude of cellular processes, including cell growth, differentiation, and
migration, and it has been shown that the FGF/FGFR system plays a critical role in cancer
development due to its angiogenic potential or direct enhancement of tumor growth (Burke
et al., 1998).

Finally, recent study by Souaze et al. (2006) supports the contribution of neurotensin
receptor (NTSR) in human breast cancer progression and pointed out the utility to develop
therapeutic molecules targeting the neurotensin or NT1 receptor signaling cascade. We found
that NTS and NTSR in the neuroactive ligand-receptor interaction pathway are linked and
are both up-regulated in breast cancer with metastasis.
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Application to the breast cancer gene expression dataset of Miller
et al.

Miller et al. (2005) reported a gene expression profiling study of 251 primary breast cancer
tissues resected in Uppsala County, Sweden from January 1, 1987 to December 31, 1989, using
Affymetrix Chip HG-133A and HG-133B (GEO Accession No. GSE3494). The authors
identified an expression signature for p53 which can be used for predicting the mutation
status, transcriptional effects, and patient survival. Among these patients, 236 of them
had follow-up information in terms of time and event of disease-specific survival. Different
from the previous dataset, these patients included both lymph-negative and lymph-positive
patients.

In single gene analysis using t-tests, we obtained only four genes that are DE for FDR=0.05
using the Benjamini and Hochberg’s FDR proedure. The GG methods of Kendziorski et al.
(2003) identified 82 genes and our MRFGG method identified 103 genes. The parameter
estimates were γ0 = 2.54, γ1 = 0.38 and β = 0.55 in the MRF model. Figure 2 shows
several of the connected subnetworks that were identified by the MRFGG method. Similar
to the previous example, we found the genes in the WNT pathway (WNT4, SFRP4 and
FZD7), genes related to the chemokine pathway (CCR7 and CCL19) and neurotensin and
its receptor (NTS and NTSR2) are related to survival from breast cancer. We also found
that Caveolin-1, Caveolin-2 (CAV1 and CAV2) are down-regulated in cancers in patients
who died of breast cancer. A recent study by Sagara et al. (2004) indicated that a reduced
CAV1 mRNA level was significantly associated with increasing tumor size and negative es-
trogen receptor status. There was also a significant association between low CAV2 mRNA
level and negative progesterone receptor status. Sagara et al. (2004) further indicated that
CAV1 suppression correlated closely with that of CAV2 in breast cancer, that CAV1 level
was inversely correlated with tumor size, and that CAV1 and CAV2 levels were correlated
with hormonal receptor status. Therefore, CAV1 and CAV2 play an important role in tumor
progression in breast cancer patients.

The largest subnetwork identified includes 6 genes on the GAP Junction pathway, of
which five genes (CDC25B, CDC2, TUBA1, PRKACB and RAP1B) are up-regulated in
cancer samples from individuals who died of cancer. Interestingly, the gap junction mem-
brane channel protein alpha 1 (GJA1) is, however, down-regulated. GJA1 has been reported
to suppress cell proliferation (Yu et al., 2006) and therefore its down-regulation can lead to
more cancer cell proliferation and increase the chance of death from breast cancer. In ad-
dition, we also observed over-expression of the tight junction proteins claudin-3 (CLDN3)
and claudin-8 (CLDN8). Claudin-3 and claudin-4 are frequently over-expressed in several
neoplasias, including ovarian, breast, pancreatic, and prostate cancers (Morin 2005; Hewitt
et al., 2006).

We also observed over-expression of genes related to Cyclin B1 (CCNB1) and B2 (CCNB2),
together with over-expression of STRATIFIN (SFN) in cancer samples from individuals who
died of cancer. These three genes are on the cell cycle pathway. Cyclins are a family of
regulatory proteins that play a key role in controlling the cell cycle. Abnormalities of cell cy-
cle regulators, including cyclins and cyclin-dependent kinases, have been reported in various
malignant tumors. Zhao et al. (2006) observed significantly greater cyclin B1 expression in
invasive cervical cancer than in normal cervical tissue and indicated that aberrant expression
of cyclin B1 might play an important role in cervical carcinogenesis. In addition, CCNB1
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expression was highly correlated with the labeling index for antigen identified by mAb ki067
(Ki067, associated with increased tumor cell proliferation), which suggests a key role for
CCNB1 in the regulation of neuroendocrine tumor cell proliferation (Igarashi et al., 2004;
Lahad et al., 2005).

Other genes related to breast cancer survival include genes involving ECM-receptor in-
teraction and cell communication pathway (COL2A1,SDC2, TNN, LAMA2, LAMA3 and
SV2B), and genes in the insulin signaling pathway (GYS2,PPP1CAACACB, SREBF1 and
PFKP).

Conclusion and Discussion

We have proposed a MFR-based procedure that uses information of interaction networks in
identification of DE genes. The proposed method utilizes the structure information of the
interaction networks in order to capture the dependency of differential expression patterns
for genes on the network. By doing so, we can expect to obtain results that are not found
by single-gene analysis. Simulation studies and application to several real microarray gene
expression data sets demonstrated that our methods are more sensitive in identifying the DE
genes than some of the commonly used methods while maintaining low false discovery rates.
Results from analysis of two breast cancer microarray gene expression datasets identified
several sub-networks that are related to breast metastasis or death from breast cancer. Some
of the subnetworks were reported in the literature.

We make several assumptions for the proposed methods. First, our proposed methods
depend on the reliability of the structure of the interaction networks. We used KEGG
interaction networks made of 33 regulatory pathways in our analysis of the breast cancer
gene expression data. The edges of the networks include both protein-protein and DNA-
protein interactions. Our methods treat all interactions equally, regardless of type and
direction. However, if different types of interactions can be clearly defined, we can modify
our method to allow for different dependency parameters for different interaction types.
Important future research is to refine network structures and to extend our MFR models to
more complex and refined network structures. Second, we used the Gamma-Gamma model
of Newton et al. (2003) and Kendziorski et al. (2003) for modeling the gene expression
data. Alternatively, one can assume a log-normal-normal model for the gene expression
data. However, as shown in Kendziorski et al. (2003), the Gamma-Gamma model is quite
robust to model misspecification. Third, in our model formulation, for each gene, we only
consider its immediate neighbors on the network as its neighbors (i.e., first degree neighbors).
However, if the differential expression patterns are dependent in neighbors centered at this
gene with a radius r, we may want to include as its neighbors all the genes in this ball. This
can potentially increase the sensitivity of identifying more DE genes.

In this paper, we have focused on the problem of identifying the differentially expressed
genes between two experimental conditions. The MRF-methods can however be extended
in several ways. First, it can be easily extended for identifying genes that show differen-
tial expressions among multiple groups using replicated gene expression profiles following
the parametric empirical Bayes setup of Kendziorski et al. (2003). Second, the methods
can also be extended to deal with other phenotypes such as continuous or censored survival
phenotypes by considering whether a gene is related to the phenotype as a latent state and
using the MFR for modeling such latent states. Third, the methods can also be extended to
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microarray time course gene expression data in order to identify subnetworks that change
their expression states during a biological time course such as cancer initiation and progres-
sion. We are currently working on these extensions. Finally, important future research will
include how to represent and assess the uncertainly of the inference of the true differential
expression states x∗.

In summary, we have proposed a Markov random field model for identifying differentially
expressed genes between two experimental conditions in order to utilize the network structure
information. As more and more networks become available, we expect more applications of
such methods for identifying genes and pathways that are related to various phenotypes.
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