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Abstract

Extended welded links are a generalization of Fenn, Rimányi, and Rourke’s welded links.

Their braided counterpart are extended welded braids, which are closely related to ribbon braids

and loop braids. In this paper we prove versions of Alexander and Markov’s theorems for

extended welded braids and links, following Kamada’s approach to the case of welded objects.

1. Introduction

1. Introduction

State of the art. Welded links were introduced by Fenn-Rimányi-Rourke [8] as equiva-

lence classes of link diagrams in the 2-dimensional space. They can be considered as virtual

links up to additional Reidemeister moves called forbidden moves of type (F1). Satoh [18]

considered the relation between welded links and ribbon torus-links. He extended a con-

struction of Yajima [22], defining a surjective map Tube from welded knots to ribbon torus-

knots, which allows to associate to any ribbon torus-knot a welded knot. This fact suggested

that ribbon torus-knots could be the topological counterparts of welded knots. However, the

Tube map is not injective: for instance, it is invariant under the horizontal mirror image on

welded diagrams [11, Proposition 3.3] (see also [21, 18]), while welded links in general are

not equivalent to their horizontal mirror images.

The braided counterparts of welded links are welded braids, also introduced in [8].

Welded braid groups can be seen as quotients of virtual braid groups. Fenn-Rimányi-Rourke

proved that these groups are isomorphic to the groups of braid-permutation automorphisms

of the free groups. They are also isomorphic to groups appearing in many other contexts,

see for instance the surveys [7, 4]. In particular, they are isomorphic to the groups of ribbon

braids, which are the braided counterparts of ribbon torus-links. In fact, on braided objects,

the Tube map is an isomorphism [1].

For welded braids and links we have versions of Alexander’s and Markov’s theorems, due

to Kauffman-Lambropoulou [15] and to Kamada [12]. The isomorphism between welded

braid groups and ribbon braid groups guarantees that Alexander’s theorem for welded ob-

jects holds when passing to ribbon braids and ribbon torus-links. However, the lack of a

bijection between welded links and ribbon torus-links impedes us to translate Markov’s the-

orem for welded objects to ribbon braids and ribbon torus-links.
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Motivation and contribution. The aim of this note is to make a step towards a Markov’s

theorem for ribbon braids and ribbon torus-links. This is done by studying a class of objects

that appear as suitable candidates to be a diagrammatical representation of ribbon torus-

links, while remaining in the domain of usual link diagrams. In fact ribbon torus-links can

be also represented by chord-diagrams, see for instance [14]. The objects we consider are

an enhanced version of welded links: they are called extended welded links and have been

introduced in [7]. In a certain sense, they can be seen as a quotient of welded links: in

fact each extended welded link is equivalent to a welded link, but the introduction of certain

marks on the diagrams, called wen marks, adds some moves to the generalized Reidemeis-

ter relations, making it possible that two non-equivalent welded links, when considered as

extended welded links, become equivalent through moves involving wen marks.

There are two reasons that point to extended welded links as promising candidates to be-

ing diagrammatical representations for ribbon torus-links. The first reason is that extended

welded link diagrams are equivalent to their sign reversal, and in consequence to their hor-

izontal mirror image (Proposition 5.1). As for the second reason, let us consider extended

ribbon braids by allowing wens, which are embeddings in the 4-dimensional space of a

Klein bottle cut along a meridional circle, on the braided annuli that compose ribbon braids.

The groups of extended ribbon braids appear when looking for a version of Markov theorem

for ribbon braids and torus-links in B3 × S 1. In fact it can be proven that taken a pair of rib-

bon braids, their closures are isotopic as ribbon torus-links in B3 × S 1 if and only if they are

conjugate as extended ribbon braids [6]. However, if one considers extended ribbon braids

to begin with, the statement is the exact analogue of the usual case in dimension 3: taken a

pair of extended ribbon braids, their closures are isotopic as ribbon torus-links in B3 × S 1 if

and only if they are conjugate as extended ribbon braids. This is relevant to this paper be-

cause the groups of extended ribbon braids are isomorphic to the groups of extended welded

braids, which are the braided counterpart of extended welded links [7, Theorem 6.12].

The main result of this paper is the following:

Theorem 4.1. Two extended welded braid diagrams that admit closure have equivalent

closures as extended welded link diagrams if and only if they are related by a finite sequence

of the following moves:

(M0) isotopy of R2 and generalized Reidemeister moves;

(M1) conjugation in the extended welded braid group;

(M2) a right stabilization of positive, negative or welded type, and its inverse operation.

Structure of the paper. In Section 2 we introduce extended welded braid diagrams and

the extended welded braid groups. We give a presentation for them and describe their re-

lation with virtual and welded braids. In Section 3 we discuss extended welded links and

give a combinatorial description for them in terms of Gauss data. We state a version of

Alexander’s Theorem for extended welded objects (Proposition 3.3) and state some results

that allow us to use Gauss data to describe extended welded links. In Section 4 we prove the

main result (Theorem 4.1). Finally, in Section 5 we show that extended welded knots are

equivalent to their horizontal mirror images (Proposition 5.1).
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2. Extended welded braids

2. Extended welded braids
An extended welded braid diagram, or EW braid diagram on n strings is a planar dia-

gram composed by a set of n oriented and monotone 1-manifolds immersed in R2 starting

from n points on a horizontal line at the top of the diagram down to a similar set of n points

at the bottom of the diagram. The 1-manifolds are allowed to cross in transverse double

points, which will be decorated in three kinds of ways, as shown in Figure 1. Depending

on the decoration, double points will be called: classical positive crossings, classical neg-

ative crossings and welded crossings. On each 1-manifold there can possibly be marks as

in Figure 2, which we will call wen marks. Remark that the inclination of wen marks is arbi-

trary and bears no meaning. Double points and wen marks are required to occur at different

y-coordinates.

Fig. 1. a) Classical positive crossing, b) Classical negative crossing,

c) Welded crossing.

Fig.2. A wen mark on a strand.

An EW braid diagram determines a word in the elementary diagrams illustrated in Fig-

ure 3. We call σ
i

the elementary diagram representing the (i + 1)-th strand passing over the

i-th strand, ρ
i
the welded crossing of the strands i and (i + 1), and τi the wen mark diagram.

Fig.3. Elementary diagrams σ
i
, ρ

i
, and τi.

D 2.1. An extended welded braid, or EW braid to keep notation short, is an

equivalence class of EW braid diagrams under the equivalence relation given by isotopy of

R
2 and the following moves:

• classical Reidemester moves (Figure 4);

• virtual Reidemeister moves (Figure 5);

• mixed Reidemeister moves (Figure 6);

• welded Reidemeister moves (Figure 7);

• extended Reidemester moves (Figure 8).



258 C. D

This equivalence relation is called (braid) generalized Reidemeister equivalence. For n ≥ 1,

the extended welded braid group on n strands WBext
n is the group of equivalence classes of

EW braid diagrams by generalized Reidemeister equivalence. The group structure on these

objects is given by: stacking and rescaling as product, braid mirror image as inverse, and the

trivial diagram as identity.

Fig.4. Classical Reidemeister moves for braid-like objects.

Fig.5. Virtual Reidemeister moves for braid-like objects.

Fig.6. Mixed Reidemeister moves.

Fig.7. Welded Reidemeister moves.

Fig.8. Extended Reidemeister moves.

R 2.2. If wen marks were not allowed, the group defined would be the group of

welded braids WBn, introduced by Fenn, Rimányi and Rourke in [8]. This group is isomor-

phic to loop braid groups LBn, ribbon braid groups rBn, and many others. More precisely,

we can see welded braids as the diagrams describing loop braids. For a survey on these

groups, see [7]. For more details about loop braid groups seen in different contexts, this is a

non-exhaustive list of references: [5, 3, 9, 16, 17, 19, 20].
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EW braid groups WBext
n are isomorphic to ring groups Rn discussed in [3] (see [7] for a

proof of the equivalence). Therefore, they admit a presentation given by the sets of genera-

tors {σ
i
, ρ

i
| i = 1, . . . , n − 1} and {τi | i = 1, . . . , n}, subject to the following relations:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ
i
σ

j
= σ

j
σ

i
for |i − j| > 1

σ
i
σ

i+1
σ

i
= σ

i+1
σ

i
σ

i+1
for i = 1, . . . , n − 2

ρ
i
ρ

j
= ρ

j
ρ

i
for |i − j| > 1

ρ
i
ρ

i+1
ρ

i
= ρ

i+1
ρ

i
ρ

i+1
for i = 1, . . . , n − 2

ρ2
i
= 1 for i = 1, . . . , n − 1

ρ
i
σ

j
= σ

j
ρ

i
for |i − j| > 1

ρ
i+1
ρ

i
σ

i+1
= σ

i
ρ

i+1
ρ

i
for i = 1, . . . , n − 2

σ
i+1
σ

i
ρ

i+1
= ρ

i
σ

i+1
σ

i
for i = 1, . . . , n − 2

τiτ j = τ jτi for i � j

τ2
i
= 1 for i = 1, . . . , n

σ
i
τ j = τ jσi

for |i − j| > 1

ρ
i
τ j = τ jρi for |i − j| > 1

τiρi = ρiτi+1 for i = 1, . . . , n − 1

τiσi
= σ

i
τi+1 for i = 1, . . . , n − 1

τi+1σi
= ρ

i
σ−1

i
ρ

i
τi for i = 1, . . . , n − 1.

2.1. Extended Markov moves.
2.1. Extended Markov moves. We introduce here some “moves” on EW braid diagrams.

Let b1 and b2 be two EW braid diagrams.

• If b1 and b2 represent the same EW braid, then we say that b2 is obtained from b1

by a (M0)-move.

• If b1 and b2 have the same degree (number of strands), then the EW braid diagram

b1b2 is obtained from the diagram b2b1 by conjugation, also called (M1)-move.

• Suppose b1 has degree n. Then ι(b1) is the diagram of degree n + 1 obtained by

adding a trivial strand to the right of b1. If b2 = ι(b1)σn, or ι(b1)σ−1
n , or ι(b1)ρn, we

say that b2 is obtained from b1 by positive, negative, or welded stabilization, also

called (M2)-move.

We introduce also a third type of move, which is a direct consequence of moves (M0) and

(M1), as we will prove in Proposition 3.10, but will be used in Section 5 to enlighten an

important property that extended welded links have and (non extended) welded links do not.

• If b2 is obtained from b1 by replacing each classical crossing of b1 with a crossing

of the opposite sign conjugated by welded crossings as in Figure 9, we say that b2

is obtained by sign reversal.
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Fig.9. Sign reversal.

3. Extended welded links and Gauss data

3. Extended welded links and Gauss data3.1. Extended welded links.
3.1. Extended welded links. An extended welded link diagram, or just EW link diagram,

is the immersion in R2 of a collection of disjoint, closed, oriented 1-manifolds such that all

multiple points are transverse double points. Double points are decorated with classical

positive, classical negative, or welded information as in Figure 1. On each 1-manifod there

can possibly be an even number of wen marks as in Figure 2. We assume that EW link

diagrams are the same if they are isotopic in R2. For an EW link diagram K, we call real

crossings its set of classical positive and classical negative crossings.

D 3.1. An extended welded link or EW link is an equivalence class of EW link

diagrams under the equivalence relation given by isotopies of R2, moves from Definition 2.1

with all possible orientations, and by classical and virtual Reidemeister moves (R1) and (V1)

as in Figure 10. This equivalence relation is called generalized Reidemeister equivalence.

R 3.2. The reason because wen marks on EW links can only appear with even

parity on each component of an EW link diagram is motivated by the relation between EW

objects and ext. ribbon objects. For more details, see [2, proof of Proposition 2.4].

Fig.10. Reidemeister moves of type I.

Fig.11. Closure of an EW braid diagram.

The closure of an EW braid diagram is obtained as for usual braid diagrams (see Fig-
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ure 11), with the condition that EW braids can be closed only when the link obtained has an

even number of wen marks on each component.

Proposition 3.3. Any EW link can be described as the closure of an EW braid diagram

which is generalized Reidemeister equivalent to a (non-extended) welded braid diagram.

Proof. Recall that an EW link can have only an even number of wen marks on each

component. Then, taken l to be an EW link, and L an EW link diagram representing it, it is

always possible to find a diagram L′ without wen marks. This is done by making one wen

mark slide along the component it belongs to, in order to make it adjacent to another wen

mark, and the cancelling the wen marks pairwise. For an example, see Figure 12. Then it

is enough to prove that any welded link can be described as the closure of a welded braid.

This is done in [12, Proposition 8] and [15, Theorem 1].

Alternatively, this result can be proved directly by giving a braiding algorithm, as the one

we present in Subsection 3.2. �

Fig.12. Sliding wen marks along a diagram in order to obtain a wen marks-

free diagram.

3.2. Gauss data.
3.2. Gauss data. We can associate to an EW knot diagram a Gauss data. This is a com-

binatoric description of a Gauss diagram, as intended in the spirit of [10]. In the context of

EW diagrams, Gauss data needs to contain the added information for wen marks. We recall

and adapt here the description of Gauss data given in [12]. Let K be an EW link diagram.

We introduce some notation.

• We denote by CK the set of positive and negative crossings of K, also called the set

of real crossings.

• We define a sign map S K : CK → {−1, 1} on the set real crossings, sending positive

crossings to 1 and negative crossings to −1.

• For a real crossing c ∈ CK , let Nc be a regular neighbourhood of c; we denote by

WK the closure of R2 \
⋃

c∈CK
Nc, and by K |WK

the restriction of K to WK .

• We denote by c1, c2, c3 and c4 the four points that compose ∂N(c) ∩ K, and by C∂
K

the set {ci | c ∈ CK , i ∈ {1, . . . , 4}}. See Figure 13.

Fig.13. Intersection points c1, c2, c3 and c4 composing ∂N(c) ∩ K.
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Define a subset GK ⊂ C∂
K
× C∂

K
× Z/2Z such that (a, b, n + 2Z) ∈ GK if and only if the

restriction of K to WK has an oriented arc starting from a and terminating at b, and n is the

number of wen marks on it. Elements (a, b, 0 + 2Z) and (a, b, 1 + 2Z) will be respectively

denoted by (a, b) and (a, b). Finally, we denote by µK the number of components of K.

D 3.4. The Gauss data of K is the quadruple G(K) = (CK , S K ,GK , µK). We say

that two EW link diagrams K and K′ have the same Gauss data if they have the same number

of components µK = µK′ and if there is a bijection g : CK → CK′ such that g preserves the

signs of the crossings, and the presence of welded marks. This means that if (a, b) is in GK ,

then (g(a), g(b)) is in GK′ , and if (a, b) is in GK , then (g(a), g(b)) is in GK′ .

E 3.5. Let us compute the Gauss data for link L1 in Figure 14. Its Gauss data is

given by:

• CL1
= {c1, c2, c3};

• S L1
= c1 �−→ +1, c2 �−→ +1, c3 �−→ +1;

• GL1
=
{
(c3

2
, c2

1
), (c4

1
, c2

2
), (c4

2
, c1

3
), (c3

3
, c1

1
), (c3

1
, c1

2
), (c4

3
, c2

3
)
}
;

• µL1
= 2.

Fig.14. Two EW link diagram with the same Gauss data.

Let K be an EW link diagram. We say that K′ is the EW link diagram obtained from K

by replacing K |WK
if the following conditions are satisfied:

(1) K and K′ are equal in Nc, for all c ∈ CK ;

(2) K′ has no real crossings in WK′ ;

(3) there is a one-to-one correspondence between the arcs of K |WK
and the arcs of

K′ |WK′
, preserving endpoints, orientation and the parity of the numbers of wen

marks;

(4) there is a one-to-one correspondence between the loops of K |WK
and those of K′ |WK′

.

Note that an EW link diagram K′ has the same Gauss data as K if and only if K′ can be

deformed through an isotopy of R2 such that it is obtained from K by replacing K |WK
.

Lemma 3.6. Let K and K′ be two EW links diagrams with the same Gauss data. Then K

and K′ are equivalent. Moreover one can be obtained from the other by isotopy of R2 and a
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finite sequence of moves of type (V1), (V2), (V3), (M), (T1), and (T2).

Proof. The proof is the same as the one given for the virtual case in [12, Lemma 4]. It

should be noted that there is an unsaid difference in the fact that in the extended welded

context saying that two diagrams have the same Gauss data implies one condition more than

in the virtual and welded cases. This is the condition of preserving wen marks information

on the elements of GK , which is solved by moves (T1) and (T2). Compare Definition 3.4

and virtual Gauss data definition in [12, Section 4]. Other proofs for the virtual case can be

found in [10, 13]. �

We introduce now a particular kind of EW link diagrams.

D 3.7. An EW link diagram is said to be braided if there exists a point on the

plane with respect to which the EW link diagram is braided around. More formally: we can

assume the point to be the origin O of R2, and identify R2 \ {O} with R+×S 1 passing to polar

coordinates and considering S 1 to be oriented anti-clockwise. Let us consider π2 : R+×S 1 →

S 1 to be the standard projection to the second factor. Then L is a braided EW link diagram

if:

(i) L is contained in R+ × S 1;

(ii) each component of L is monotone with respect to the coordinate in S 1;

(iii) the restriction π2 |CL
is injective.

A braided EW link diagram can be represented as the closure of an EW braid diagram,

and the representation is unique up to conjugation ((M1)-move) of EW braid diagrams.

For completeness, we quickly recall here the braiding process exposed in [12] for virtual

link diagrams, which can be adapted without modification to EW diagrams. Let L be an EW

link diagram, and let N1,N2, . . . ,Nn be regular neighbourhoods of its real crossings. With an

isotopy ofR2 we deform L in such a way so that: all the Nis are inR2\{O}; π2(Ni)∩π2(N j) = ∅

for i � j in {1, . . . , n}; each Ni contains two oriented arcs, each of which is mapped to S 1 by

π2 homeomorphically with respect to the orientation of S 1. Finally replace L |WL
arbitrarily

such that the result is a braided EW link diagram, which is equivalent to L (Lemma 3.6).

In the following we will apply the extended Markov moves defined in Subsection 2.1 to

braided EW link diagrams in the natural way. We will still denote them by (M0) and (M2).

Lemma 3.8. Let K and K′ be braided EW link diagrams, possibly with a different degree

as braids, such that K′ is obtained from K by replacing K |WK
. Then K and K′ are related

by a finite number of moves of type (M0) and (M2).

Proof. The proof is the same as the one given for the virtual case in [12, Lemma 5], once

more with the hidden difference that arcs or loops of K |WK
and K′ |WK′

could have wen

marks. However, the operation of replacing the restrictions for EW diagrams preserves the

presence of wen marks, leaving the proof unchanged. �

R 3.9. Moves of type (M1) do not appear in Lemma 3.8 because, as stated before,

braided EW link diagrams are defined as closures of EW braid diagrams up to (M1)-moves.
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3.3. About the sign reversal move.
3.3. About the sign reversal move. Among the extended Markov moves introduced in

Subsection 2.1, the most exotic one is the sign reversal move. As noted in [2, Notation 2.6],

the sign reversal move on an EW link diagram changes its Gauss data by reversing the signs

associated to the crossings and leaving everything else unchanged. We refer to the effect of

the sign reversal move on the Gauss data as the sign reversal of the Gauss data.

Proposition 3.10. The following statements hold:

(1) For EW link diagrams, sign reversal is a consequence of moves (T1) − (T4).

(2) For braided EW link diagramns, sign reversal is a consequence of moves of type

(M0).

(3) For EW braid diagrams, sign reversal is a consequence of moves of type (M0) and

(M1).

Proof.

(1) Remark that when move (T4) is applied to a crossing, it locally induces a sign

reversal on that crossing. Let L be an EW link. It is always possible to introduce

a pair of wen marks on each components through a (T1) move. Then, we make

one wen mark of each pair slide along the component until it comes back to the

starting point, on the other side of the other wen mark of the pair. In such a way it

will have passed once on the overstrand of each crossing in which the component

is involved as an overstrand, conjugating the crossings by welded crossings and

changing the sign of the crossing. Then we cancel the pairs of wen marks added

through an inverse (T1) move. The resulting diagram L′ is the sign reversal of L,

and is equivalent to L through the moves (T1) − (T4).

(2) Same as point 1.

(3) This is a direct consequence of point 2, since moves (M1) allow to pass wen marks

from the bottom to the top of a diagram.

�

Lemma 3.11. Two braided EW link diagrams with the same Gauss data are related by a

finite sequence of Markov moves of types (M0) and (M2). If the Gauss data of one braided

EW link diagram is the sign reversal of the Gauss data of the other, then the two diagrams

are related by a finite number of Markov moves of type (M0) and (M2).

Proof. The first part is the same as in [12, Lemma 6]. We recall it here for completeness.

Let L and L′ be braided EW link diagrams with the same Gauss data. Let c1, . . . , cn be the

real crossings of L, and N1, . . . ,Nn the relative regular neighbourhoods. In the same way let

c′
1
, . . . , c′n be the real crossings of L′ and N′

1
, . . . ,N′n their neighbourhoods. Let us distinguish

two cases, depending on the order of the images of the crossings through π2 (Definition 3.7).

(a) Suppose the crossings π2(N1), . . . , π2(Nn) and π2(N′
1
), . . . , π2(N′n) appear on S 1 in

the same cyclic order. Then, with an isotopy of R2 we can deform L keeping the

braidedness, in such a way that Ni and N′
i

coincide for i = 1, . . . , n, and the restric-

tions of L and L′ to these disks are identical. By Lemma 3.8, one can pass from L to

L′ with a finite number of Markov moves of type (M0) and (M2).

(b) Suppose that π2(N1), . . . , π2(Nn) and π2(N′
1
), . . . , π2(N′n) do not appear on S 1 in the

same cyclic order. It is enough to treat the case when only a pair, for example
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π2(N1) and π2(N2), is exchanged. Then, with a finite sequence of moves (M0) and

(M1) (details in [12, Lemma 6]) it is possible to move one crossing, preserving at

each step the braidedness and the Gauss data, in order to reconduct ourselves to

case (a).

Let us now consider the case in which L and L′ are braided EW link diagrams with sign

reversed Gauss data. We consider two cases as before.

(a) Suppose the crossings π2(N1), . . . , π2(Nn) and π2(N′
1
), . . . , π2(N′n) appear on S 1 in the

same cyclic order. Again with an isotopy of R2 we can deform L keeping the braid-

edness, in such a way that Ni and N′
i

coincide for i = 1, . . . , n, but the restrictions of

L and L′ to these disks present opposite crossings. Let us apply to L a sign reversal.

Then we obtain a braided EW diagram L′′ which is equivalent to L via (M0) moves

by Proposition 3.10, whose crossings regular neighbourhoods N′′
1
, . . . ,N′′n contain

a real crossing conjugated by welded crossings. With an isotopy of R2, push the

welded crossings outside of the regular neighbourhood, deforming L′′ in such a way

that N′′
i

and N′
i

coincide for i = 1, . . . , n, and the restrictions of L′′ and L′ to these

disks are identical. Then by Lemma 3.8, one can pass from L′′ to L′ with a finite

number of Markov moves of type (M0) and (M2).

(b) Suppose the crossings π2(N1), . . . , π2(Nn) and π2(N′
1
), . . . , π2(N′n) appear on S 1 in

the same cyclic order. Then with the manoeuvre recalled in point 3.3 of the first

part, we reconduct this case to point (a) of this part.

�

The following is a corollary of the first part of Lemma 3.11, which is a direct consequence

of the fact that the braiding process does not change the Gauss data. In the case of virtual

link diagrams, it appears in [12, Corollary 7].

Corollary 3.12. For an EW link diagram K, a braided EW link diagram obtained by the

braiding process is uniquely determined up to EW Markov moves (M0) and (M2).

4. A Markov theorem for welded extended diagrams

4. A Markov theorem for welded extended diagrams
Theorem 4.1. Two EW braid diagrams that admit closure (i.e., the links obtained have

an even number of wen marks on each component) have equivalent closures as EW link

diagrams if and only if they are related by a finite sequence on the following moves:

(M0) isotopy of R2 and generalized Reidemeister moves;

(M1) conjugation in the EW braid group WBext
n ;

(M2) a right stabilization of positive, negative or welded type, and its inverse operation.

Proof. Let b and b′ be EW braid diagrams that admit closure related by (M0) moves. Then

their closures b̂ and b̂′ are equivalent EW link diagrams for definition of generalized Rei-

demeister equivalence. Suppose that b and b′ are related by moves of type (M1) and (M2):

then also in these cases their closures b̂ and b̂′ are clearly equivalent as EW link diagrams.

On the other hand, let K and K′ be EW link diagrams representing the same exteded

welded link. Then there is a finite sequence of EW link diagrams K = K0,K1, . . . ,Ks = K′

such that Ki is obtained from Ki−1 by oriented generalized Reidemeister moves of kind
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(R1a), (R1b), (V1), (R2a), (R2b), (R2c), (R2d), (V2a), (V2b), (V2c), (R3), (V3), (M), (F1),

(T1), (T2), (T3), or (T4), as shown in Figure 15 [12, Proposition 11]. Applying the braid-

ing process to each Ki, we obtain a braided EW link K̃i with the same Gauss data as Ki.

By Corollary 3.12, K̃i is uniquely determined up to moves (M0) and (M2). To prove the

statement it is enough to check that for each i = 1, . . . , s, K̃i and K̃i−1 are equivalent up to

moves (M0) − (M2). All the moves except (T1), (T2), (T3) and (T4) are considered in [12,

Theorem 2]. So let us consider the remaining cases. Suppose that Ki is obtained by Ki−1 by

a (T1), (T2), (T3) or (T4) move. Then, let ∆ be a 2-disk in R2 that contains one of these

moves, and let ∆c be such that Ki ∩∆
c
= Ki−1 ∩∆

c. Deform Ki and Ki−1 by an isotopy of R2

in such a way that Ki∩∆ and Ki−1∩∆ satisfy the condition to be a braided EW link diagram.

Applying the braiding process to Ki ∩∆
c and Ki−1 ∩∆

c we obtain diagram K̃′
i

and K̃′
i−1

such

that:

K̃′i ∩ ∆ = Ki ∩ ∆ and K̃′i−1 ∩ ∆ = Ki−1 ∩ ∆ and K̃′i ∩ ∆
c
= K̃′i−1 ∩ ∆

c

Then K̃′
i

and K̃′
i−1

are related by a (M0) move corresponding to (T1), (T2), (T3), or (T4).

Since K̃′
i

has the same Gauss data as Ki, it is equivalent by Markov moves to K̃i (Lemma

3.11). Same for K̃′
i−1

and K̃i. Therefore K̃i and K̃i−1 are equivalent by Markov moves. �

Fig.15. Oriented generalized Reidemeister moves.
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5. Extended welded knots and horizontal mirror images

5. Extended welded knots and horizontal mirror images
Let K be an EW diagram. Its horizontal mirror image K† is its reflection with respect to

a line on the plane of the diagram, as in Figure 16. In this section we show that EW knots

are equivalent to their horizontal mirror images. In particular, we show that the horizontal

mirror image K† of an EW knot diagram K is equivalent to the sign reversal of K.

Fig.16. An extened welded knot diagram K and its horizontal mirror image K†.

Proposition 5.1. Every EW knot diagram is equivalent to its horizontal mirror image.

Proof. Consider an EW knot diagram K. Let us denote by sK the sign reversal of K. The

Gauss data of sK is obtained by changing all the sign in K’s Gauss data. It is easy to see that

K† has the same Gauss data as sK (also shown in [11, Section 2.2]). By Lemma 3.6, sK and

K† are equivalent. Then, K† is equivalent to K by Proposition 3.10. �
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