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Abstract—The electric power grid is a complex critical in-
frastructure network. Its inter-connectivity enables long-distance
transmission of power for more efficient system operation. The
same inter-connectivity, however, also allows the propagation of
disturbances. In fact, blackouts due to cascading failures occur
because of the intrinsic electrical properties of this propagation
and physical mechanisms that are triggered by it. In this
paper we propose a stochastic Markov model, whose transition
probabilities are derived from a stochastic model for the flow
redistribution, that can potentially capture the progression of
cascading failures and its time span. We suggest a metric that
should be monitored to expose the risk of failure and the time
margin that is left to perform corrective action. Finally we
experiment with the proposed stochastic model on the IEEE 300
bus system and provide numerical analysis.

I. INTRODUCTION

In this paper we develop a stochastic model to capture the
progression of cascading failures in power grids. During the
past decade a great deal of research effort has been devoted
to studying the vulnerability of the power grid. There are two
main lines of research: one focusing on static failure models,
and one on dynamic failure models.

A. Static Failure Analysis

Studies using static failure models focus on the topological
robustness of the grid, primarily gauging how the network
connectivity changes after failures (or intentional attacks) on
its nodes or links. The work by Rosas-Casals, Valverde, Solé
et al. (2007) (see [1] and [2]) numerically examined the impact
of node removals on the system global connectivity, and
analytically evaluated the critical threshold of node removals
to fragment a power grid network. This work related the
topology robustness of a power grid network with its node
degree distribution, assumed to be Geometric (or equivalently
Exponential). Later, Wang, Scaglione, and Thomas (2010),
improved the nodal degree model, showing excellent fit with
a mixture distribution, sum of a truncated geometric random
variable and an irregular discrete random variable [3]. Interest-
ingly, the power grid is even more vulnerable to disconnection
under this more realistic nodal degree distribution model. Xiao
and Yeh (2010) [4] also studied the problem of cascading link
failures in power networks using percolation theory. However,
the power grid network has been incorrectly modeled as a
random geometric graph. Recently, Hines, Cotilla-Sanchez,
et al. (2011) [5] performed blackouts simulations, on several
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realistic power grid networks, under different attack strategies
such as random attack, degree-attack, max or min-traffic
attack, and tried to identify critical buses in terms of topology
vulnerability by examining the attack impacts. They compare
the simulation results with the predictions of other models,
but do not provide an analytical static failure model, other
than direct simulation. [5] also proposed that power grids
may exhibit the critical slowing down phenomenon, which
can be detected as a noticeable increase in the correlation of
some phase angle or system frequency, that is a suitable risk
indicator for the advent of a cascading blackouts.

B. Dynamic Overload Failure Analysis

Analysis based on static-failure approaches reveals intrinsic
vulnerabilities of the power grid network, but does not de-
scribe the evolution of system-wide blackouts, which is what
dynamic failure analysis does.

To this end, the analysis incorporates triggering events,
load flow re-distribution models, subsequent events of line-
overload, all aimed at modeling the propagation of breakdowns
in the network. In a nutshell, what differentiate dynamic
models is the mechanism that governs the re-distribution of
flows after failures and the overloading of lines.

The literature is divided in two main categories: one based
on graph theory analysis and one using power grid analysis,
often including an economic power dispatch after each failure,
i.e., the linear OPF (optimal power flow).

1) Graph theoretic approaches: Motter and Lai (2002) pro-
posed a model to study cascading overload failures in a power
grid provoked by single intentional attacks [6]. Following
Holme and Kim in [7], Motter and Lai assumed that every
node pair in the power grid network exchanges some flow
along the shortest path connecting them. Therefore, the load
at a node matches its so called betweenness, measured as
the total number of shortest paths passing through the node.
Considering a node capacity limit, nodes can exceed such
limit and when they fail, the flow is redistributed. Under some
conditions, this may cause new nodes to become overloaded
and their failures continue to propagate, producing a cascading
phenomenon. Crucitti, Latora, and Marchiori (2004) modified
the Motter-Lai cascading model in two ways[8]: (1) the over-
loaded nodes are not removed from the network, instead, the
flow passing through them has progressively worse efficiency,
due to congestion; (2) the damage caused by the cascading
failures is quantified in terms of network efficiency, instead of
being measured as the size of remaining connected component.
These cascading models have been studied testing them on
real-world network topologies, for the Internet and the North
American power grid, as well as on random topologies, for
example, Watts-Strogatz Small-world graphs, Kleinberg scale-
free network model, and the Erdös-Rényi random graphs (see
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[9] [10]). The conclusion drawn from this model is that the
heterogeneity of load distribution in a network makes it partic-
ularly vulnerable to cascading failures which can be triggered
by breaking down a single key node. In a similar vein, Wang
and Rong (2009) [11] proposed a cascading model where the

initial load setting on each bus is Lj =
(
kj

∑
m∈Γj

km

)α

with kj being node j degree and and Γj being the immediate
neighboring set of node j, and α a tunable parameter; if
one node is attacked and fails, its load will be proportionally
redistributed to all its neighbors. However, the assumptions
of load setting as well as flow distribution have no physical
connection to the mechanism of realistic power grid operation.
This model leads to the conclusion that the attack on the buses
with the lowest loads may be more harmful than the attack on
those with the highest loads.

2) Models based on realistic power flows: Dobson, Car-
resras et al. (2001) included the physical modeling of a
power grid network in [12] to study the cascading process.
They defined an initial model to probe the complex dynamics
of power grid blackouts, that consists of a linearized DC
power flow model for power flow dispatch.The power flow re-
dispatch after node or line failures is realized as a deterministic
optimization (LOPF) to minimize the change in generation
or load shedding subject to system constraints, emulating
the re-dispatch of energy generation that are part of normal
system operations. Later Carreras, Karamitsos, Bao et al. (see
[13] [14] [15]) adopted similar models as in [12]. Carreras,
Lynch et al. (2002) used the power blackouts model of [12]
to identify the critical points and transitions for cascading
blackouts, based on a tree-topology network and the IEEE 118-
bus network [13]. Karamitsos and Orfanidis (2006) applied
the model from [12] to analyze power grid blackouts in
simple networks with ring or tree topology [14]. Bao, Cao,
et al. gave a similar power grid blackouts model as that in
[13] except that it allows instantaneous line overload and the
tripping of a line is only caused by accumulative effect of
overload[15]. The authors also defined power flow entropy
to quantify the heterogeneity of power flow distribution in a
network and experiments cascading failures in a small-world
300-node system and the IEEE 300-bus system.

3) Stochastic modeling: A few authors have considered
stochastic modeling. Dobson, Carreras and Newman (2005)
[16] analyzed the line trips data of several blackouts in the
US, and found that, the branching process model can provide
a good fit for the cumulative number of line trips. Branching
processes are useful to model population growth: each indi-
vidual in one generation produces some random number of
individuals in the next generation.

The graph theoretic approaches we surveyed use models
that are appropriate for communication or vehicular networks.
Information packets and vehicles can switch their route, and
they preferentially choose shorter paths. And the nodes in
such a network can easily switch roles as traffic generator
or receiver. The flows in an electric power grid network
obey Kirchhoff’s Voltage/Current laws (KVL and KCL) and
Ohm’s law [17].The conservation of flows can be viewed as
an equivalent constraint as Kirchhoff’s circuit law. However,

Kirchhoff’s voltage law and Ohm’s law are unique for a
electric circuit network. Another distinction is that nodes in
a power grid (frequently called buses) are divided in three
classes: generators, loads and intermediate nodes. It does not
make sense to interchange them.

While the class of models using economic dispatch after
each failure is consistent with the physical reality of electrical
power grids flows, the optimal power flow model, as shown in
[12], may not be an appropriate approach to simulate the flow
re-distribution process during the cascading failures. Although
the cascading process in a power grid starts from isolated
random contingencies, the root reason for the spreading of
failures may lie in some intrinsic weakness of the network or
some hidden failures, which go un-detected and therefore do
not lead to timely corrective action. During the escalation of
cascading failures, hundreds of lines are switched off in less
than an hour period, and usually there is not enough time
for planning any optimized generation re-dispatch or load-
shedding. Only local transient controls are engaged, like the
Generation Governor Control (GGC). Also, including the OPF
in the simulation model is somewhat self-contradictory: on
the one hand, it makes a necessary adjustment in generation
and performs load shedding, in order to avoid line overloads
after line outages; on the other hand, the job is left somewhat
unfinished, since the OPF used does not perfectly depresses
the flows well below the line capacity limits. Instead, some
chance is left for additional overloads and line trips, so as to
model the following stages.

Another common drawback in the prior art is the inability
to capture the evolution process of cascading failures with
regard to time since they only describe the cascading process
in network state stages.

C. Our Contribution

In this paper we propose a stochastic model based on
Markov transition of the power grid state, which incorpo-
rates the uncertainties in the system load settings and the
corresponding generation and line flows, the flow distribution
directly coming from the network equations. This model is
able to identify and predict the critical paths of the possible
cascading failures, given some steady initial condition, with a
probabilistic model that allows to explore selectively the future
beyond single failures.

The statistical analysis enabled by the proposed model
indicates that under normal operation conditions power grid
is more robust than one where independent flows occur. This
implies that Kirchoff’s laws and Ohm’s law impose a robust-
ness not present in, say, transportation networks because they
force an orderly distribution of flows whereas a transportation
network admits a random distribution and the possibility of
one that could be disastrous.

The rest of the paper is organized as follows. In Section
II we presents the system model and the flow distribution
in a power grid network. In Section III we introduce a new
stochastic model to determine the statistics of the flows, their
changes in case of failures, and the probability they have
of overloading lines and therefore propagating more failures,



3

based on a Markov process model. Note that the branching
process introduced by [16], though somewhat similar, is only
modeling the number of line that are switched off, without
consideration of the location of failures and how the cascading
process propagate in the network, which our analysis provides.
We introduce metrics that can be monitored to unveil what is
the risk of failure and the time margin that is left to perform
corrective action in Section III-E. Numerical examples and
conclusions (Section IV, V) complete this paper .

II. SYSTEM MODEL AND FLOW DISTRIBUTION

The DC power flow approximation is a standard approach
widely used in optimizing flow dispatch and for assessing
line overloads (see [18] for more details). Consider a power
grid transmission network with n nodes interconnected by
m transmission lines. Each network node is associated with
an input power Pi which is positive for a generation bus,
negative for a load bus, or equal to zero for a transmission
substation bus. Each transmission line l = (i, j), between
nodes i and j, has line impedance zpr(l) = rl + jxl, with rl
being the resistance and xl the reactance. Usually for a high-
voltage transmission network, it holds that xl � rl, i.e., the
reactance dominates. The DC power flow model assumes that
rl ≈ 0, that the voltage magnitude at all buses approximate
their specified base values, i.e., ‖Vi‖ ≈ 1.0 (p.u.), and that
the angular separation across any transmission line is small
enough so that sin(θi−θj) ≈ θi−θj . Given a grid containing
ng generation buses and nl load buses with the injected power
vectors as G and −L respectively1, the network flow equation
can be written as follows:

P = B′θ, (1)

where P = [GT ,−LT ]T represents the vector of injected real
power and θ the phase angles . B′ is defined as

B′ = AT diag (yl)A, (2)

where yl = 1/xl is the line admittance; diag (yl) represents
a diagonal matrix with entries of {yl, l = 1, 2, · · · ,m}.
A := (Al,k)m×n is the line-node incidence matrix, arbitrarily
oriented, defined as: Al,i = 1; Al,j = −1, if the lth link is
from node i to node j and Al,k = 0, k �= i, j. And the power
flow through each transmission line F is:

F = diag (yl)Aθ. (3)

A line is considered as overloaded if the power flow through
it exceeds the line limit determined by its thermal capacity or
static/dynamic stability conditions, i.e., with |Fl| ≥ Fmax

l .

A. Solving the DC Flow Equation

In the DC power flow model (1), the network admit-
tance matrix is approximated as the B′ matrix which is a
real symmetric matrix by construction. Therefore its eigen-
decomposition (EVD) has n linearly independent real eigen-
vectors:, i.e.

B′ = VΛV
T , (4)

1For the sake of brevity, here we take the interconnection buses as load
buses with L = 0.

where V is an orthogonal matrix, and Λ is real and diagonal. It
is true that usually all the lines are inductive, with xl > 0, in a
high-voltage transmission network. Hence all the off-diagonal
entries of B′ are non-positive and diagonal entries non-
negative. Therefore B′ can be viewed as a weighted Laplacian,
which, according to [19], is positive semidefinite and 0 is its
smallest eigenvalue. We assume the eigenvalue to be ordered
as λn ≥ · · · ≥ λ2 ≥ λ1 = 0. If the power grid network is
connected, 0 is a simple eigenvalue with the corresponding
eigenvector v1 = 1√

n
1. The second smallest eigenvalue,

λ2 > 0, is called the algebraic connectivity of the network,
which indicates that how closely the nodes in the network are
connected together.2 If the grid network is disconnected and
divided into (k̂ > 1) islands, the B′ will have k̂ eigenvalues of
0 and k̂−1 is called the degree of reducibility of the topology
[19]. More details on a disconnected grid can be found in [20].

Applying the pseudo inverse of B′ we get the Least Squares
(LS) solution to the DC power flow equation:

θ = VΛ†
V

TP =
n∑

i=k̂+1

λ−1
i vi · ξi (5)

where
ξi = vT

i P, i = 1, 2, · · · , n

are the projection coefficients of P onto the vectors in V

so that P can be written as a linear combination of column
vectors in V, i.e.,P =

∑n
i=1 ξivi. Here (·)† represents pseudo

inverse by taking the reciprocal of each non-zero singular
values on the diagonal, leaving the zeros in place, and trans-
posing the resulting matrix. If the power settings is balanced
or feasible, that is,

ξi = 0, for i = 1, · · · , k̂,

(5) gives the exact solution to the DC power flow equation
which satisfies B′θ = P , same as that in [17] where the
equation is solved by taking inverse of the reduced B′ matrix
for each isolated subnetwork and setting the angle of the
reference node (called slack bus) to 0 .

On the other hand, if any ξi corresponding to the null space
of B′ does not equal to zero, it means that the DC power flow
equation does not hold, or the power generation and loads are
not balanced and the system in fact experiences oscillations in
such a situation. And the least square solution by (5) in fact
indicates the mean value of the oscillation process.

B. Flow Distribution

Now let us further examine how the coupling structure of
a power grid affects the flow distribution on the transmission
lines. Define the weighted line-node incidence matrix as

Ã =
√
yA (6)

2In rare cases, some transmission line(s) may carry an capacitive reactance
with xl < 0. Hence it is possible that one or more eigenvalues in (4) become
negative. So (4) is no longer equivalent to the SVD of the matrix B′. Instead,
the latter gives B′ = V′|Λ|VT , with the pairs of singular vectors from V′
and V corresponding to a negative eigenvalue differ only by a factor of −1
while the rest pairs of vectors are still identical to each other. We can also
generalize the definition of algebraic connectivity to be the second smallest
absolute eigenvalues, i.e., |λ2|.
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where
√
y = diag{√yl}. So that B′ = ÃT Ã. We can therefore

derive the following:
Lemma 1: For a given operating condition P and weighted

line-node incidence matrix as (6), the vector of flows F in the
grid is either equal or it oscillates around the following value:

F =
√
y(ÃT )†P. (7)

Proof: : The proof is omitted in this paper due to the
limited space but can be found in the full paper [20].

Lemma 1 shows that the line flows are coupled with the
power injections through the matrix

√
y(ÃT )†: the component

vectors in F are in fact the left singular vectors of Ã stretched
by

√
y with projection coefficients of

(
s−1
i ξi

)
.

Note that (7) gives the flow-power sensitivity matrix and
can be used to estimate the statistics of line flows given the
statistics of injected power(see Section III-B).

III. THE STOCHASTIC MODEL FOR CASCADING PROCESS

A cascade of failures may be triggered when one or more
components in the power transmission network are randomly
or intentionally brought down. The initial outage results in a
re-distribution of line flows in the network, which may in turn
cause the flow through some other line(s) to increase and reach
the state of overloading. The overloaded lines are prone to
fail and be tripped by protective relays after some duration of
time, which in turn cause another around of flow re-dispatch.
This process continues until no more line outage occurs. The
relay settings that require a line in the transmission network
to trip are various, e.g., the voltage drops, line overloads,
or even some complex stability index. However, here we
mainly consider the line tripping events caused by overloading
and other random factors like mis-trips of protective relays,
human errors, mal-operations or intentional attacks, lightening
or unpruned trees, etc, which are among the main reasons that
trigger cascading failures.

In this paper a stochastic model based on conditional
Markov transition is proposed to study the cascading failures
in a power grid, which is able to indicate which part in the
network will be under stress and therefore most likely to
break down given current network conditions and states. One
important purpose of this cascading model is to help discover
the most probable and critical evolution path for cascading
failures.

A. A Conditional Markov Transition Model for the Cascading
Process in Power Grids

First we define the grid state as the vector of line states as
s = [s1, s2, · · · , sm] and sl ∈ [0, 1]. For each line sl = 0
represents the state that the line is tripped, and sl = 1 that
when the line is on, and works normally. So that the admittance
of the line at time t can be represented as yl(t) = ylsl(t) and
the network admittance matrix is

B′(t) = AT diag {yl(t)}A. (8)

Since s(t) is an m-dimension binary vector clearly its state
space S contains totally 2m possible outcomes. Define the
stage index h as the total number of tripped lines, with

0 1

)(tl

)(tu l
Fig. 1: The line state transition

h = 0, 1, · · · ,m. The total state space then can be divided
into (m + 1) subsets, each subset S(h) with (mh ) different
outcomes respectively. If the system starts from an intact
system with normal operating conditions with all 1’s in s(0),
we can assume that

p{s(0)} =

{
1, if s(0) = (1, 1, · · · , 1)
0, otherwise.

(9)

We then model the random process of the grid state as
conditionally Markovian on the evolution process of line flows
in the grid network. Given the flow vector evolution over
time, the state transition probability is a function of the line
transition rates assuming that the relays operate independently.

The line state transition is depicted as in Fig. 1. λl(t) is
the line tripping rate and μl(t) the line restoration rate. λl(t)
is time-varying and depends on the line flow process given
current network conditions and states.The line restoration is as-
sociated with the reclosing mechanism of the protective relays
which are intended to recover from temporary contingencies
which exist only for a very short instant. Since the contributive
factors to cascading failures are usually persistent, a reclosed
line will soon be tripped again and not reclosed. Therefore in
the rest of the paper we will ignore the line restoration in our
transition model by assuming that ul(t) = 0. That is, sl = 0
can be viewed as an absorbing state. Thus, with dt = t′ − t
and 0 < dt 	 1, we have that

p{sl(t′) = 1|sl(t) = 1} = 1− λ(t)dt
p{sl(t′) = 0|sl(t) = 1} = λ(t)dt
p{sl(t′) = 1|sl(t) = 0} = 0
p{sl(t′) = 0|sl(t) = 0} = 1.

(10)

Assuming independent tripping on the lines, the network
state s(t) transition can be obtained by the concatenation of
all the line transitions. Define the set of normally operating
lines in the network as Ln

s (t) = {l; sl(t) = 1}, so the the set
of down lines is Ld

s (t) = L0\Ln
s (t). Let K(t) = |Ln

s (t)| called
the network size of the state s(t). Here L0 = {1, 2, · · · ,m}
includes all the transmission lines in an intact system. At
the next time instant t′ with the state vector as s(t′) with
operational lines of Ln

s (t
′), the set of tripped lines is T (t, t′) =

Ln
s (t) \ Ln

s (t
′). Hence we have the transition probability as

p{s(t′)|s(t)} =
∏

i∈Ln
s (t′)

(1− λi(t)dt)
∏

j∈Ln
s (t)\Ln

s (t,t′)

λj(t)dt (11)

Considering dt as infinitesimal, we can omit o(dt) in (11) so
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Fig. 2: The Markov transition model for power grid cascading failures.

that,

p{s(t′)|s(t)} =

⎧⎪⎪⎨
⎪⎪⎩

1−
∑

i∈Ln
s (t′)

λi(t)dt, if s(t′) = s(t),

λk(t)dt, if T (t, t′) = k ∈ Ln
s (t),

0, otherwise.
(12)

That is, (12) only considers the state transitions with at most
one line tripped, i.e., |T (t, t′)| ≤ 1.

The state transition diagram of the cascading failures pro-
cess in the network is shown in Fig. 2. For the network admit-
tance matrix B

′(h)
k , h stands for the stage index which is equal

to the number of cumulative line trips h = m− |Ln
s (t)| and k

indicates the most recently tripped line. For the transition rate
λ
(h)
l , h is the stage index of current state while l the possibly

tripped line at the next instant. There are two points worth
noting here. (1) λl(t) is time-varying and depends on the line
flow process in the grid; in the following subsections we will
discuss how λl is associated with random contingencies, line
overloading, and tripping mechanism. (2) There are overlaps
in B

′(h)
k in Fig.2, which means that the state transition from

some different prior states in fact aim at a same target.

Now we further discuss the overlapping target states in the
transition of (12). For the sake of clarity, we will denote a
state with its stage index listed explicitly, i.e., as s(h), for the
rest of this subsection. Since we only consider state transitions
with at most one line tripped, only (m−h)+1 states in S are
reachable during the next instant, given the current state. By
reachable we mean the corresponding transition is associated
with a non-zero transition rate in (12). Because s(h)(t) implies
that the grid has (m− h) operating lines, it can arrive at only
(m − h) different states in S(h+1), during the next instant.
Given the subset sizes, the overlap ratio of target states for

the state transition from S(h) to S(h+1):

r(h) =
(mh ) (m− h)(

m
h+1

) = h+ 1. (13)

This indicates that given a target state s from S(h+1), there
are (h + 1) different states from S(h) that can transit to it.
Denote this set of from states as F (s)

(
⊆ S(h)

)
. Therefore

the probability of s(t′) = s can be obtained as

p {s(t′) = s} =
∑

v∈F(s)

p {s(t′) = s| s(t) = v} p{s(t) = v}

+p {s(t′) = s| s(t) = s} p {s(t) = s} ,
(14)

with the transition probabilities from (12). For any v ∈ F (s),
define the tripped line index as

k∗v = Ln
v \ Ln

s , (15)

so that the corresponding transition probability will be
p {s(t′) = s| s(t) = v} = λk∗

v
dt. Therefore (14) becomes

p {s(t′) = s} =
∑

v∈F(s)

λk∗
v
p{s(t) = v} dt

+

⎛
⎝1−

∑
i∈Ln

s

λi(t)dt

⎞
⎠ p {s(t) = s} ,

(16)

B. Line Overloading Probability

To define the line overloading probability, we need to model
the flow as a random process. We use Lemma 1 to express
the statistics of the flows as a function of the statistics of the
operating conditions next.

Lemma 2: Assume the power injection P (t) = [G(t)T −
L(t)T ]T has mean and covariance:

μP (t) =

[
μg(t)
−μl(t)

]
, CP (t) =

[
Σgg(t) Σgl(t)
Σlg(t) Σll(t)

]
.

(17)
Then, the line flows mean and covariances are:

μF (t) =
√
yt(Ã

T
t )

†μP (t)

CF (t) =
√
yt(Ã

T
t )

†CP (t)(Ãt)
†√yt,

(18)

with
√
yt = diag{

√
yl(t)}.

Note that usually it is a rational assumption that the injection
power at each bus are independent of each other, i.e., the
covariance matrix CP (t) is diagonal. However, the numerical
analysis based on (18) indicates that under normal operation
conditions the line flows in a power grid are in fact correlated
with each other and this correlation makes the grid more robust
than one where independent flows occur.

With some necessary direction adjustments in the line-node
incidence matrix A, we are able to make sure that μF (t) ≥ 0.
If there exists any μFl

(t) ≤ 0, we only need to reverse the
corresponding line direction from l = (i, j) to l = (j, i), which
will make the mean value non-negative. Note this line direction
adjustment does not cause any change in B′

t(t), as shown in
(2). The variance is σFl

=
√
CF (l, l).

If P (t) is Gaussian, so is the distribution for Fl(t). In this
case, the overloading probability ρl(t) = p{|Fl(t)| > Fmax

l },
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for the lth transmission line, as

ρl(t) = Q(al) + 1−Q(bl) ≈ Q(al) (19)

in terms of the Q-function Q(x) =
∫∞
x e−t2/2/(

√
2π)dt with

al =
Fmax

l −μFl(t)

σFl(t)
and bl =

−Fmax
l −μFl(t)

σFl(t)
. Note that both al

and bl, are time-varying. For the sake of brevity, however, we
omit the time index in the rest of this paper. The approximation
is valid if μF (t) � 0, since 1−Q(bl) = p{Fl(t) < −Fmax

l }
becomes negligible compared to the first term in (19).

Taking al as the normalized distance of the line flow to
its overload threshold, the approximation (19) makes the line
overload probability ρl(t) fully dependent on al.

We can expect that the overload status of line flows in
a power grid network might be correlated. Under normal
operating conditions, most line flows will stay safely below the
line capacities; while during the escalation phase of cascading
failures, some of the lines may become overloaded and get
tripped within a very short time. We define the Mahalanobis
overload distance [21] (Mahalanobis 1936) based on the
covariance matrix CF (t) as

Dm =

√
(Fmax − μF (t))TC

†
F (t)(Fmax − μF (t)). (20)

which can be viewed as the overload distance of all the lines
in the network as a whole. On the other hand, if the line flows
are independent of each other, the covariance matrix CF (t)
will become diagonal and the network Mahalanobis overload
distance be equal to the Euclidian overload distance,

De =
√∑

la
2
l . (21)

Obviously we should have Dm ≥ De under normal operations
and we can take the ratio (Dm/De) as a correlation indicator
for the line overloading.

C. Level Crossing Intervals of the Line Flow Process

Within some time window [t0, t0+T ], the flow Fl(t) can be
considered as a stationary low-pass Gaussian process equal to
the sum of its mean, which is deterministic, plus a zero-mean
component vFl

(t), that has the same temporal (and spatial)
covariance as the flow, RFl

(τ), i.e., Fl(t) = μFl
+ vFl

(t). Its
power spectrum S(ω) is usually bandlimited, that is, S(ω) ≈ 0
for |ω| > Ŵ , with Ŵ as its largest frequency. Given the flow
process on a line Fl(t) with the overloading threshold of Fmax

l ,
we can then define the time series of successive up-crossings
tul (i) and down-crossing tdl (i) instants, i.e. the time instants
when the flow Fl(t) crosses the threshold Fmax

l from below
and those when the flow crosses the threshold from above,
respectively, as shown in Fig.3. The corresponding series of
crossing intervals, during which Fl(t) > Fmax

l and which
Fl(t) ≤ Fmax

l , are:

τul (i) = tdl (i)− tul (i)

τdl (i) = tul (i)− tdl (i − 1). (22)

τul (i) are called overload and τdl (i) the normal-load intervals.
Given al and ρl, the overload and normal-load interval

means of the flow process Fl(t) are

τ̄ul =
2πρle

a2
l /2

W
, τ̄dl =

2π(1 − ρl)e
a2
l /2

W
, (23)

where W=

√
−R′′(0)
R(0) is the equivalent bandwidth of the flow

process. Hence, from Rice [22], the probability density of
an upward level-crossing interval, τ > 0, (i.e., the overload
interval in our case) can be approximated as below:

fT (τ ; al) ≈

⎧⎪⎨
⎪⎩

πτ
2τ̄2

l
exp

[
−π

4

(
τ
τ̄l

)2
]
, al � 1

1
τ̄l
exp

(
− τ

τ̄l

)
, al 	 −1

(24)

where τ̄l is the mean sojourn time. Obviously the PDF of a
normal-load interval can be approximated as fT (τ ;−al) from
(24). Two points are worth noting[22]: a) for a medium-value
al, say, al ∈ [−3, 3], it is uneasy to obtain an analytical-form
fT (τ ; al) which in fact lies between above two limits and is
usually estimated by numerical results; b) (24) approximates
well only for smaller τ ’s (compared with its τ̄l). For larger
τ ’s, the PDF tends to approach fT (τ ; al) ∝ exp

(
− τ

τ̄l

)
. Next

Section III-D uses fT (τ ; al) to estimate the average line state
at the end of each interval, whose accuracy, however, will
be shown not dependent on the availability of an analytical-
form fT (τ ; al) for a medium-value al, or the approximation
accuracy for larger τ ’s. Note that the following analysis within
this section are then all based on the assumption of stationarity
within some limited time window. In [20], we extend the
results to non-stationary conditions.

D. Transition of Line States

Here we derive the line state transition probabilities (see
Fig. 1) as a function of the state transition rates λl(t) (c.f.
(10)), and relating these state transition rates to the flow Fl(t)
statistics at time t and the overloading threshold Fmax

l . We
further assume that transition rates depend only on the network
state but not on the prior history, since the behavior of the
relay that trips the line does not have memory in our model.
The case of relays with memory, for example, due to repeated
attempts of turning the line back on, can be easily handled
generalizing the analysis by increasing the number of states,
including a certain number of temporary sl = 0 states before
the complete shut down. A possible model for the transition
rate to state sl(t) = 0 from sl(t) = 1 of the lth line is:

λl(t) =

{
λ∗
l , tul (i) < t ≤ tdl (i)

λ0
l , tdl (i− 1) < t ≤ tul (i),

(25)

where λ∗
l is related with the relay settings specified to trip

off an overloaded line within some time threshold which can
be different for each line; and λ0

l represent the line tripping
rate caused by random contingencies which is usually trivial
compared with λ∗

l , i.e., λ0
l 	 λ∗

l . Fig. 3 shows how the
overload/normal load intervals determine the transition rate
λ(t). From this model and the statistics derived in the previous
section for the sojourn time we have:

Lemma 3: The probability p {sl(t) = 1} of the lth line state
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Fig. 3: The overload intervals of F (t) and the transition rate of λ(t)

at the end of an overload and a normal-load interval are:

p
{
sl
(
tdl (i)

)
= 1

}
= e−λ∗

l τ
u
l (i)

p {sl (tul (i)) = 1} = e−λ0
l τ

d
l (i).

(26)

Proof: The proof is omitted in this paper due to the
limited space but can be found in the full paper [20].

E. Time Measure of Safety

Utilizing the probability density of level-crossing intervals
and the statistics of line state transitions, we recognize the
expectation of line state probability at the end of each overload
interval:

Lemma 4:

αl = E
{
p
{
sl
(
tdl (i)

)
= 1

}}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− λ∗
l τ̄

u
l exp

(
(λ∗

l τ̄
u
l )2

π

)
erfc(λ

∗
l τ̄

u
l√
π
), al � 1

1/ (λ∗
l τ̄

u
l + 1) , al 	 −1

c1

[
1− λ∗

l τ̄
u
l exp

(
(λ∗

l τ̄
u
l )2

π

)
erfc(λ

∗
l τ̄

u
l√
π
)
]
+

+ c2 [1/ (λ
∗
l τ̄

u
l + 1)] , al medium-value

(27)
βl = E {p {sl (tul (i)) = 1}}

=

⎧⎪⎨
⎪⎩

1− λ0
l τ̄

d
l exp

(
(λ0

l τ̄
d
l )

2

π

)
erfc(λ

0
l τ̄

d
l√
π
), al 	 −1

1/
(
λ0
l τ̄

d
l + 1

)
, al � 1

1− λ0
l τ̄

d
l , al medium-value

(28)
where c1, c2 > 0 are interpolation coefficients with c1+ c2 =
1.0; c1 → 1 as al � 1; satisfying c2 → 1 as al 	 −1.

Proof: The proof is omitted in this paper due to the
limited space but can be found in the full paper [20].

Hence we can have the expected time for the line to stay
connected as follows:

Lemma 5: Given the overload probability ρl of the l-th line,
the level crossing density γl at Fmax

l , and the line tripping
rates λ∗

l for an overload line and λ0
l caused by random

contingencies, the expected time for the line to stay safe is:

Tl = (κ̄l − 1)/γl + E{Δtl}, (29)

where

κ̄l = [(1 + βl)− (βl − αl)ρl] /(1− αlβl) (30)

is the expected number of crossings after which the lth line
finally gets tripped; and

E{Δtl} =
[
ΔT ∗

l +ΔT 0
l

]
/(1− αlβl) (31)

is the mean duration of the last interval, with
ΔT ∗

l = (1 − αl) [βl + (1− βl)ρl] /λ
∗
l and

ΔT 0
l = (1− βl) [1− (1− αl)ρl] /λ

0
l .

Proof: The proof is omitted in this paper due to the
limited space but can be found in the full paper [20].
Tl can be viewed as a measure for the line to stay “safe”

and minl Tl(t0) is a global metric for the safety of the grid
under current network condition and

l∗ = arg min
l

Tl (32)

indicates the line under the most distress. If the network
transfers from one state to another, however, the Tl’s all
change, because the flows will be redistributed, and most likely
this minimum will shrink further and happen at a different line.

F. Normalized Overload Distance and Minimum Safety Time

Using the approximation of (19), we can see that the over-
loading probability ρl, the expected line non-trip probabilities
αl and βl at the end of each overload or normal-load intervals,
the average crossing rate γl, the average crossing intervals τ̄ul
and τ̄dl , the expected number of crossings before line trips κ̄l

as well as the expected safety time Tl, can all be defined as
functions of one variable al, the normalized distance of the line
flow Fl(t) to it overload threshold. If al is positive and large,
the line flow stays safely away from its overload threshold, i.e,
lightly-loaded. However, if al gets smaller and closer to zero
or even becomes negative, it implies that its mean approaches
or exceeds beyond the overloading threshold Fmax

l .
Now we further illustrate how these quantities relate with

the normalized overload distance a (the line index is omitted
here). Fig. 4 shows a sample set of the curves evaluated with
W = 10−3 Hz, λ∗ = .0017 Hz, and λ∗ = 7.7 · 10−11

Hz. Fig. 4(a) depicts the overload probability curve and the
probabilities of α(a) and β(a); as a decreases, i.e., the line
flow turns more and more overloaded, α(a) will gradually
decrease to zero; on the other hand, β(a) = 1.0 most
of the cases except the extremely lightly-loaded condition.
This is interesting because when a � 1, the normal-load
interval grows to be very lengthy (longer than years), which
consequently drives the line state at the end of the interval
β(a) → 0. Fig. 4(b) shows that the crossing rate γ(a) achieves
its maximum γmax =W/π at a = 0; and when |a| � 1,
the crossing rate becomes extremely small. Fig. 4(c) indicates
that τ̄u(a) grows as a decreases while τ̄d(a) grows as a
increases; if a � 1, both ρl and γ approach zero while
τ̄u(a) approaches the limit of

√
2π/|aW |; on the other had,

if a 	 −1, both (1 − ρl) and γ approach zero while τ̄d(a)
approaches the same limit

√
2π/|aW |. Fig. 4(d) shows that

κ̄(a) is monotonic-increasing with a except that an abrupt drop

to 1.0, beyond a ≈
√
ln
[
(W/λ0)2/(40π)

]
exactly the same

location where β(a) goes down to 0 very sharply. This tells us
that when neglecting the extremely lightly-loaded conditions
the line flows always tend to have less crossings before the trip
happens. This is very important for analyzing non-stationary
flow process in the next section. Fig.4(e)(f) present the curves
of E{Δt(a)} and T (a): both grow monotonically with a. And
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Fig. 4: The quantities versus the normalized distance to the overload threshold
a: (a) the overloading probability ρ(a), the line non-trip probabilities α(a)
and β(a); (b) the average crossing rate γ(a); (c) the average interval length
τ̄u(a) and τ̄d(a); (d) the expected number of crossing before tripping κ̄(a);
(e) the average time before tripping in the last interval E{Δt}; (f) the safety
time T (a).

it is very clear that as a � 1, T (a) approaches 1/λ0, while
as a 	 −1, T (a) approaches 1/λ∗.

Based on the above analysis one can clearly see that the
most critical lines in a network in the sense of a shortest
safety time can also be identified as the line with the smallest
overload distance al given current operating condition, That is

l∗ = arg min
l

Tl = arg min
l

al. (33)

The definition of al =
Fmax

l −μFl

σFl

tells that the value of al
depends on three factors, i.e., the line capacity Fmax

l , the mean
of the line flow μFl

, and the corresponding variance σFl
.

IV. SIMULATION AND EXPERIMENT RESULTS

We experiment with the proposed stochastic model on the
IEEE 300 bus system. The IEEE-300 system is a synthe-
sized network from the New England power system and
has a topology with 300 nodes and 411 links. The initial
operating equilibrium and conditions, (G(0), L(0), θ(0), F (0))
are taken or derived from the power flow solution of the
system data from [23]. Taking the mean of P (0) as μP (0) =

[G(0)T ,−L(0)T ]T , We set the standard deviation of the loads
as σL = δ|L(0)|, but ignore the variance in G. For simplicity,
we assume that the loads and generation are statistically
independent of one other. The line capacities are set as
Fmax = max{η|F (0)|, 2.0(p.u.)} with η = 1.20. Here
we take F (0) as the rational flow distribution under normal
operating conditions and assume that the line capacity allows
a 20% load increase [24]. The minimum of line capacity is
set to be 2.0 p.u. so that the vibration in the lines which
usually carry small flows will not cause frequent line trips.
Analysis on the load record from realistic power grids [25]
has shown that the load process can be approximated as a
low-pass Gaussian process with an equivalent bandwidth of
W ≈ 10−5Hz and the load data assumes an extremely strong
correlation within a time window about T = 30 mins. Since
the flow process in a grid can be seen as a linear projection
from the load process, we can apply the equivalent bandwidth
W and the corresponding stationary time window length T
to the flow processes in the grid. Table I below summarizes
all the simulation parameters in our experiments. The random
contingency probability of an electric power grid is usually
by design extremely small, except under some very special
conditions such as when a thunderstorm occurs in the area,
λ0(t) may become non-trivial during a very short temporary
interval. Here we set λ0 = 7.7 · 10−11 for all the lines
which accounts for a contingency rate of about 1-in-a-year.
For simplicity of simulation, the line tripping rate is assumed
to be constant for all the lines as λ∗ = 1.92 · 10−2.

TABLE I: Simulation Parameters for the Cascading Process in the IEEE 300
Bus System

T 30 mins λ∗ 1.92 · 10−2

W 10−5 Hz λ0 7.70 · 10−11

δ 0.07 η 1.20

Under the given operating conditions as described above
and with parameters in Table I, the IEEE-300 system has a
minimum safety time of minl Tl ≈ 105 hours. In order to
trigger and observe a cascading process, we have to manually
introduce some random contingencies within a short instant at
the beginning of the simulation (i.e., tripping the line 115-131
at t = 10min). Fig. 5 shows the evolution process of cascading
failures under some stress conditions. The increasing curve
of cumulative line trips is comparable to those recorded in
[16]. During the fast escalation phase, the cumulative line trips
grows exponentially with an exponent of 0.3178 min−1. And
this corresponds to multiplication of the cumulative line trips
by a factor of 1.37 every minute. Please note that here we
display a most severe case of cascading evolution during which
no actions have been taken to stop the propagation of flow
overloads. In realistic operation, some protective actions such
as intentional load shedding or islanding may be executed, in
the middle of this process, to slow and finally calm down the
process.

Fig. 6 displays the normalized overload distance al, the
minimum safety time Tl, the overload margin (Fmax

l − μFl
)

and the flow variance σFl
of all the lines in the network after
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line 115-131 tripped and all the data points have been sorted
according to al in the ascending order. The line 115-131 is
an important backbone link which initially carries a 3.78 (p.u)
load flow and is among the most heavily loaded lines in the
network. It can be seen from Fig. 6 that tripping the line 115-
131 cause the mean flow on some lines to go beyond their line
capacities and result in some negative overload distances and
very small Tl. Therefore additional line trips can be expected
to happen very quickly. Fig. 6 verifies that the minimum safety
time of each line Tl grows monotonically as al increases and
it also indicates that the variance in a line flows seems to be a
more dominant factor than the overload margin (Fmax

l −μFl
)

to determine the corresponding normalized overload distance
since the former has a clear descending trend when ordered
by al.

Fig.7 shows the Mahalanobis overload distance Dm(t) and
the Euclidean overload distance De(t) of the whole network

and their ratios Dm(t)/De(t) during the above cascading
process. From the definition of Dm(t) and De(t) in Section
III-B, we know that Dm(t) represents the overall distance of
the whole network from its overload boundary, while De(t) is
a network overload distance evaluated based on the assumption
that all the flows in the network are independent random
variables. It can be seen that during this cascading process
Dm(t) has a clear trend of dropping as more and more lines
get tripped in the system (except some irregular bumps),
which means the remaining network tends to get closer to its
overload boundary. On the other hand, the Euclidean overload
distance De(t) manifests a very different trend: it tends to
grow higher instead of lower. From the flow redistribution
analysis we already know that line trips in a power grid
do not always cause line flow increases; it can cause some
line flows to decrease as well. Since De(t) is evaluated by
assuming that all the flows in the network are independent
of each other, the lightly-loaded lines with large overload
distance, resulted from previous line trips, in the remaining
network are in fact given more weights in the evaluation of
De(t). Therefore De can get larger during a cascading process.
However, this may not truly reflect the overload status of the
whole network. On other hand, it is interesting to notice that
the ratio Dm(t)/De(t) > 1.0 during the process, i.e., the
the Mahalanobis overload distance is always larger than the
Euclidean overload distance. This means that the line flows in
a power grid correlate together therefore act much more safely
than a network whose line flows are independent of each other.
In fact the latter is the worst case in terms of flow-overload
vulnerability. Another worth-noting discovery is that the ratio
of Dm(t)/De(t) gets smaller during the cascading process,
which implies that the correlation of the line flows becomes
weaker as more lines have been removed from the network.
And it can be expected that in case a large portion of lines
have been tripped and the whole network divided into islands,
this ratio may approach 1.0, that is, the line flows become
independent random variables.

V. CONCLUSIONS

In this paper we first examine the flow distribution in
a power grid network which follows a set of significantly
different rules from those of information or traffic networks,
and explain why graphic analysis cannot apply directly on a
power grid network. Then we propose a stochastic cascading
model based on conditional Markov transition. Some of its
advantages include: (1) it takes into account the uncertainty in
the load settings and thus the uncertainties in the generation
and line flows; (2) it correctly captures the stochastic process
of the evolution of cascading failures in a power grid with
regard to real time signal (i.e., instead of stage numbers); (3)
it is able to indicate which parts of the system are under most
stresses therefore most likely to break down in the next time
interval. This is useful to identify and predict the critical paths
of the possible cascading failures, given some steady initial
condition, with a probabilistic model that allows to explore
selectively the future beyond single failures. We introduce
metrics that can be monitored to unveil what is the risk of
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failure and the time margin that is left to perform corrective
action.

The experiments on the proposed model with the IEEE 300-
bus system have shown the evolution process of cascading
failures with the cumulative line trips increasing exponentially
with regard to time, with a comparable pattern as those of the
historical records from some realistic power grids.

The experimental analysis also indicates that the line flows
in a power grid are correlated therefore act much more
safely than a network comprised of independent line flows.
During the cascading process, the correlation of the line
flows becomes weaker as more lines are removed from the
network. As a result the overall distance from the overload
boundary, defined by the Mahalabonis overload distance, may
be decreased.
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