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A Martingale Kronecker Lemma and
Parameter Estimation for Linear Systems

Robert J. Elliott and John B. Moore

Abstract—A continuous-time martingale Kronecker lemma is proved
and used to discuss parameter estimates for linear systems.

I. INTRODUCTION

Kronecker’s lemma is well known in discrete time; see for example
Loève [2] or Neveu [3]. In Section II of this paper, a continuous-time
martingale version is established. This is then applied to discuss pa-
rameter estimation for partially observed linear systems. The filtered
estimates for the matrices involved have previously been derived in
the paper by Elliott and Krishnamurthy [1]. This previous paper
applies maximum likelihood arguments in contrast to the direct
estimates of this work. Further, rates of convergence are discussed
in Section IV. We do not discuss the recursive, adaptive estimation
of the parameters of the system.

II. A M ARTINGALE KRONECKER LEMMA

For simplicity we consider a scalar martingale; convergence results
for the vector case are immediate.

Suppose(
; F ; Ft; P ), t � 0 is a stochastic basis andM is
a continuous locally square integrable martingale. Further,ut is a
positive nondecreasing predictable process such that

ut > c > 0 a.s.

Write zt :=
t

t
u�1r dMr for 0 � t0 � t.

Theorem 2.1:Supposelimt!1 zt(!) = �(!) < 1 a.s. Then
limt!1(1=ut)(Mt �Mt ) exists a.s.

If limt!1 ut(!) = +1, this limit is zero.
Proof: For anys, t0 < s < t, becauseu is nondecreasing

Mt �Ms =
t

s

ur dzr =
t

s

ur d(zr � zs)

=ut(zt � zs)�
t

s

(zr � zs)dur a.s.

Consequently

jMt �Msj � 2ut sup
r�s

jzr � zsj: (1)

Suppose first thatlimt!1 ut(!) = u(!) <1. ThenjMt �Msj �
2u sup

r�s jzr � zsj.
From the hypothesis thatlimt!1 zt(!) = �(!) <1 a.s., for any

" > 0 there is ans0" such that, ifr � s � s0", jzr � zsj < "=2u.
Consequently, ifr � s � s0"

jMt �Msj � ":
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That is,Mt(!) satisfies a Cauchy condition and converges to a limit
�(!). Then,limt!1(1=ut)(Mt �Mt ) = 1=u(��Mt ).

Suppose now thatlimt!1 ut(!) = +1. Give" > 0. Again using
the Cauchy condition forz there is ans" such that, ifr � s" _ t0

jzs � zrj <
"

3
:

Consequently,sup
r�s _t jzr� zs j � "=3. From (1), if t � s" _ t0

1

ut
jMt �Ms _t j �

2"

3
:

Supposet0 � s" _ t0 < t. Now limt!1 ut = +1, so there is a
t" such that, ift > t"

ut � 3jMs _t �Mt j=":

That is,1=utjMs _t �Mt j � "=3. Now

1

ut
jMt �Mt j �

1

ut
jMs _t �Mt j+

1

ut
jMt �Ms _t j:

So if t > s" _ t" _ t0

1

ut
jMt �Mt j � "

and the result is proved.

III. D YNAMICS

On a stochastic basis(
; F ; Ft; P ) suppose there arem- and
n-dimensional Wiener processesw andv, respectively.

A signal processfxtg, t � 0 is described by the equation

dxt = Axt dt+ dwt; x0 2 Rm: (2)

An observation process is described by the equation

dyt = Cxt dt+ dvt; y0 = 0 2 Rn: (3)

We supposew andv have covariance matricesB andD, respectively.
D is assumed positive definite.fYtg, t � 0, will denote the filtration
generated byy.

In the filtering and estimation literature it is often supposed that,
under some reference measureP , y itself is a standardn-dimensional
Brownian motion. These problems are discussed in, for example,
Elliott and Krishnamurthy [1].

Prime (0) will denote transpose, so for vectorsz1, z2, z1z02 is the
Kronecker product.
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From (2)
t

0

dxsx
0

s = A
t

0

xsx
0

s ds+
t

0

dwsx
0

s: (4)

Write

Jt =
t

0

dxsx
0

s; Ot =
t

0

xsx
0

s ds; Mt =
t

0

dwsx
0

s

and

Ĵt =E[JtjYt]; Ô = E[OtjYt]; M̂t = E[MtjYt]:

Recursive formulas which evaluatêJ and Ô are given in [1]. From
(4) Ĵt = AÔt + M̂t. An estimate forA is, therefore

Ât = ĴtÔ
�1
t

and the errorÂt � A = M̂tÔ
�1.

In this paper we investigate the convergence of this error to zero.

IV. CONVERGENCE

Consider a function�(t), t � 0, which is positive nondecreas-
ing and such thatlimt!1

t

0
�(s)�1 ds = � < 1. Note from

Theorem 2.1, this last condition implies thatlimt!1 t�(t)�1 = 0.
An example of such a function is

�(t) = max(1; t(log t)(log log t)�); � > 1:

Clearly any function which grows faster thant�, � > 1, at infinity
satisfies the condition. The strongest results are those for functions
which have the slowest growth at infinity.

Consider the (matrix) martingaleMt. M is locally square in-
tegrable;hMi will denote the predictable nonnegative martingale
process such thatMtM

0

t � hMit is a local martingale.
In fact hMit = BB0

t

0
x0sxs ds and TrhMit =

TrBB0
t

0
x0sxs ds. Consider the martingale

Rt :=
t

0

�(TrhMis)
�1=2

dMs:

Lemma 4.1:Rt is a square integrable martingale solimt!1 Rt =
�(w) < 1 exists a.s.

Proof: E[TrRtR
0

t] = E[
t

0
�(TrhMis)

�1 d(TrhMis)]. Now
t

0
�(TrhMis)

�1 d(TrhMis) < � a.s. Solimt!1 E[TrRtR
0

t] �
� <1 andRt is a square integrable martingale for0 � t � 1.

Corollary 4.2: From Theorem 2.1, if� is continuous

lim
t!1

�(TrhMit)
�1=2

Mt

exists.
If limt!1 TrhMit = +1, this limit is zero. (TrhMit is an

increasing process solimt!1 TrhMit exists and is either finite or
+1.)

Corollary 4.3: limt!1 �(
t

0
x0sxs ds)

�(1=2)Mt exists a.s.
Proof: Note that, apart from the positive constantB� = TrBB0

TrhMit is
t

0

x
0

sxs ds:

Therefore, as� is nondecreasing

�((B� + 1)�1TrhMit) = � (B� + 1)�1
B
�

t

0

x
0

sxs ds

� �
t

0

x
0

sxs ds :

So

�
t

0

x
0

sxs ds

�1

� �((B� + 1)�1Tr hMit)
�1
:

With

Rt :=
t

0

�
s

0

x
0

uxu du

�1=2

dMs

we have

E[TrRtR
0

t] � (B� + 1)� <1:

Therefore,limt!1 Rt exists and is finite a.s. so from Theorem 2.1

lim
t!1

�
t

0

x
0

sxs ds

�1=2

Mt exists a.s.

Corollary 4.4: Supposex satisfies the stability property

L = sup
t

1

t

t

0

x
0

sxs ds <1

and

lim
t!1

�(t) =1:

Then

lim
t!1

�(t)�1=2
Mt = 0 a.s.

Proof:

�((B� + 1)�1(L+ 1)�1TrhMit)

= � (B� + 1)�1(L+ 1)�1
B
�

t

0

x
0

sxs ds

= � (B� + 1)�1(L+ 1)�1
Bt

1

t

t

0

x
0

sxs ds

� �((B� + 1)�1(L+ 1)�1
BLt) � �(t):

Therefore

�(t)�1 � �((B� + 1)�1(L+ 1)�1TrhMit):

With

Rt :=
t

0

�(s)�1=2
dMs

we have

E[TrRtR
0

t] =E
t

0

�(s)�1
d(TrhMis)

� (B� + 1)(L+ 1)� <1:

Therefore,limt!1 Rt exists and is finite a.s. Thus from Theorem 2.1

lim
t!1

�(t)�1=2
Mt is zero a.s.

Theorem 4.5: Supposex satisfies the stability property of Corol-
lary 4.4 andlimt!1 �(t) = 1. Further, supposex satisfies the
excitation condition

�(t)�1
Ôt > K > 0

whereOt =
t

0
xsx

0

s ds and Ôt = E[OtjYt]. Then

lim
t!1

M̂tÔ
�1
t = 0 a.s.

with convergence at a rate�(t)1=2.
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Proof: The stability property states thatsup
t
(1=t)

t

0
x0sxs ds �

L < 1 a.s. Therefore

sup
t

1

t
E

t

0

x0sxs ds � L <1

and, becauselimt!1 t�(t)�1 = 0

sup
t

1

�(t)
E[TrhMit] <1

and the set of random variablesf�(t)�1=2Mtg is bounded inL2. We
can, therefore, condition the convergence of Corollary 4.4 and deduce

lim
t!1

�(t)�1=2M̂t = 0 a.s.

Now

M̂tÔ
�1

t = �(t)�1=2M̂t(�(t)
�1=2Ôt)

�1

<�(t)�1=2M̂t�(t)
�1=2K�1:

Therefore,limt!1 �(t)1=2M̂tÔ
�1

t = 0 a.s. and the result follows.

V. OBSERVATION COEFFICIENT

Recalldys = Cxs ds + dvs. Consequently

t

0

dysx
0

s = C
t

0

xsx
0

s ds+
t

0

dvsx
0

s:

Write

Tt =
t

0

dysx
0

s; Nt =
t

0

dvsx
0

s

T̂t =E[TtjYt]; Nt = E[NtjYt]:

An estimate forC is

Ĉt = T̂tÔ
�1

t

and the error is

Ĉt � C = N̂tÔ
�1

t :

Similar discussions to those in Section IV allow us to conclude
that, under the stability and excitation conditions, the errorN̂tÔ

�1

t

converges to zero almost surely at a rate�(t)1=2.
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Comments on “Robust, Fragile, or Optimal?”

Pertti M. Mäkilä

Abstract—Recently the issue of fragile controllers (high sensitivity of
closed-loop stability and/or performance to small changes in controller
coefficients) produced by using popular robust and optimal control
synthesis methods was raised by the above-mentioned paper.1 This paper
had at least three serious flaws. First, the authors did not provide any
references to the wide earlier work in which methods are given to
analyze and solve fragility and related robustness issues. Second, Keel
and Bhattacharyya used mostly simple textbook examples in which the
optimization criteria for controller synthesis were so simple that they
do not incorporate realistic design considerations. This also resulted in
the third big flaw of the paper by Keel and Bhattacharyya; namely,
the possible explanation given to the cause of these problems via holes
in parametric stability space for high-order controllers is misplaced. A
more direct explanation is in the badly chosen optimization criteria and
controller parameterizations which make the controller synthesis and
realization problems considered rather unrealistic and (mathematically)
ill-posed.

In the present paper we comment on the paper by Keel and Bhat-
tacharyya and discuss fragility and other robustness issues through the
well-established tools of coprime factorizations and robustness optimiza-
tion. The main conclusion is that by adopting sensible optimization
criteria, which take into account enough of the important design con-
siderations directly, and numerically robust controller parameterizations,
controller fragility should not be a big problem in applications of modern
robust and optimal control theory.

Index Terms—Coprime factorizations, fragility, optimality, robustness.

I. INTRODUCTION

In the recent paper by Keel and Bhattacharyya1 the interesting
issue of possible fragility of controllers designed by popular robust
and optimal control synthesis tools was discussed mostly via simple
textbook examples. It was very disappointing that the authors had
completely missed the wide earlier work devoted to methods that
can deal not only with fragility but other robustness issues as well.
This undermines any possible contribution that the paper by Keel
and Bhattacharyya might otherwise have. The present paper provides
earlier references and points out well-known analysis and synthesis
methods that can address and solve fragility and other robustness
problems.

It is widely recognized that typically the most important robustness
issue is related to modeling uncertainty and system perturbations.
Hence many articles and books concentrate on this case. However,
robustness to controller uncertainty also has been addressed by many
authors; see e.g., [18], [13], [16], [17], [8], [19], and the references
therein. In fact, very detailed controller sensitivity studies have
been undertaken in the context of embedded control systems and
fixed word-length controller implementations; see, e.g., [12] and the
references therein. Furthermore, Keel and Bhattacharyya have missed
the fact that controller implementation is in no way restricted to
the particular standard transfer function form that they study for
coefficient sensitivity. In fact, it is part of thefolklore in control
engineering practice that this form should be avoided especially with
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