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Abstract

We develop a mass-conservative characteristic finite element scheme for convec-
tion diffusion problem. This scheme preserves the mass balance identity. It is proved
that the scheme is unconditionally stable and convergent with first order in time in-
crement andk-th order in element size when thePk element is employed. Some
numerical examples are presented to show the efficiency of the present scheme.

1 Introduction

Convection-diffusion problems are solved in various fields of sciences and technologies,
e.g., transport problems of heat and solutes in moving fluids. In many applications the
Peclet number is high, so the problems become convection dominant. In such circum-
stances the Galerkin finite element scheme produces easily oscillation solutions. Hence,
elaborate numerical schemes based on new ideas such as upwind method, Petrov-Galerkin
methods and characteristic(-curve) methods have been developed to perform stable com-
putation. Among them the procedure of the characteristic method is natural from the
physical point of view since it approximates particle movements, and it is attractive from
the mathematical point of view since it symmetrizes the problem. Many authors have
contributed to develop, analyse and apply characteristic finite element schemes; see [1],
[4], [6], [7],[8], [13], [14], [15], [16], [21] and references therein.

An important property that the convection-diffusion problems possess is the mass bal-
ance; the mass should be preserved if there is no source. In the framework of characteristic
methods it it not trivial to maintain this property. Some schemes have been proposed and
studied from this point [1], [6], [8], [21].
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In this paper we present a new characteristic finite element scheme which preserves the
mass balance. Our approach is different from those taken in the previous study. Usually
the characteristic method is used to approximate the material derivative term, i.e., the
time derivative term plus the convection term of non-divergence form. We do not assume
the velocity is incompressible. We use the divergence form and we approximate directly
the time derivative term plus the divergence term (Lemma 1). Thus, it is proved that the
mass balance is satisfied completely. When the equation is of divergence form like the
density equation in the compressible flow field, the mass balance remains true whether
the velocity is incompressible or not. Our result corresponds to it. We prove the stability
and convergence with first order in time increment andk-th order in element size when
thePk element is employed.

We use the Sobolev spacesL2(Ω) andHm(Ω), m≥ 1, with norms denoted by∥ ·∥ and
∥ · ∥m, respectively. We also use the Sobolev spaceWm,∞(Ω). We use the function spaces
Hm(X) = Hm((0,T);X) andCm(X) = Cm([0,T];X) for positive numberT and Banach
spaceX, whose norms are denoted by∥·∥Hm(X) and∥·∥Cm(X), respectively. We often omit
(0,T) andΩ if there is no confusion, e.g., we writeC j(Hm) in place ofC j([0,T];Hm(Ω)).
The symbol(·, ·) is used for the inner products in bothL2(Ω) andL2(Ω)d, d = 2,3. We
usec (with or without subscript) to denote a generic constant independent of discretization
parametersh, ∆t, and solutions, which can take different values at each occurrence.

The remainder of this paper is organized as follows. In Section 2 we present the mass-
conservative characteristic finite element scheme and show the mass balance identity. In
Section 3 we analyze the stability and prove the convergence. In Section 4 we give two
numerical examples. After stating the conclusion, in Appendix we review two upwind
finite element schemes referred in Section 2.

2 A mass-conservative characteristic finite element scheme

Let Ω be a bounded domain inRd (d = 2, 3) with piecewise smooth boundaryΓ, andT
be a positive constant. We consider the convection-diffusion operator

L φ ≡ ∂φ
∂ t

+∇ · (uφ −ν∇φ) ≡ ∂φ
∂ t

+u·∇φ +(∇ ·u)φ −ν∆φ , (1)

whereν(> 0) is a diffusion coefficient andu : Ω×(0,T)→Rd is a given velocity. We do
not assume that the velocityu is incompressible. LetL be a representative length of the
domain. When the Peclet number Pe≡ |u|L/ν is high, the conventional Galerkin finite
element does not work. For the remedy we focus on schemes based on the method of
characteristics.

An important property of the operatorL is the mass-conservation. To describe it we
consider the following initial boundary value problem; findφ : Ω× (0,T) → R such that

L φ = f in Ω× (0,T), (2a)

ν
dφ
dn

−φu·n = g on Γ× (0,T), (2b)

φ(·,0) = φ0 in Ω, (2c)

2



where f : Ω× (0,T) → R, g : Γ× (0,T) → R, andφ0 : Ω → R are given functions. A
corresponding weak formulation to (2) is to findφ : [0,T] →V such that(

∂φ
∂ t

(t),ψ
)

+a1(φ(t),ψ; u(t))+a0(φ(t),ψ) = ( f (t),ψ)+ [g(t),ψ ] (∀ψ ∈V),

(3a)

φ(0) = φ0, (3b)

where

V = H1(Ω), a1(φ ,ψ ; u) = −(φ ,u·∇ψ) , a0(φ ,ψ) = ν(∇φ ,∇ψ), (4)

[φ ,ψ] =
∫

Γ
φψds.

Substitutingψ = 1 in (3a), we can easily derive the mass balance identity fort ∈ (0,T]∫
Ω

φ(x, t) dx=
∫

Ω
φ0(x) dx+

∫ t

0
dt

∫
Ω

f (x, t)dx+
∫ t

0
dt

∫
Γ

g(x, t)dx. (5)

This property is preserved for the conventional Galerkin finite element method as follows.
Let Vh be a finite dimensional subspace ofV and∆t be a time increment. We setNT =
⌊T/∆t⌋. Let φh be the solution of the problem; find{φn

h}
NT
n=1 ⊂ Vh such that forn =

1, · · · ,NT ,(
φn

h −φn−1
h

∆t
,ψh

)
+a1(φn

h ,ψh; un)+a0(φn
h ,ψh) = ( f n,ψh)+ [gn,ψh], ∀ψh ∈Vh,

(6)

whereφ0
h ∈Vh is an approximation toφ0 and the super-scriptn of u, f andg means that

the functions are evaluated att = n∆t. Substitutingψh = 1 in (6) and summing it up from
n = 1 until m, we get form= 1, · · · ,NT∫

Ω
φm

h dx=
∫

Ω
φ0

hdx+∆t
m

∑
n=1

(∫
Ω

f ndx+
∫

Γ
gnds

)
. (7)

This property, however, does not hold for upwind approximations which modify the
convection termu ·∇φ , e.g., the upwind element choice approximation (32), which cor-
responds to the upwind finite differencing on the triangular mesh. To realize (7) in the
framework of upwind approximations has been done by a mass-conservative upwind fi-
nite element method [2], where upwind modification is done for the term−(φ ,u·∇ψ). In
Appendix we review the ideas of these two approximations.

On the other hand, numerical schemes based on Petrov-Galerkin approximation sat-
isfy (7). In the streamline upwind Petrov-Galerkin method we substituteψh+τu(t) ·∇ψh

into ψh elementwise in (6) or a similar equation to it, whereτ is a positive parameter of
element size order [3], [11]. Therefore, by settingψh = 1, the identity (7) is obtained.

Characteristic methods are usually derived from the approximation of material deriva-
tive

L0φ ≡ ∂φ
∂ t

+u·∇φ . (8)
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They are applicable to convection-dominated, or even purely hyperbolic problems and
have an advantage that derived matrices are always symmetric. To the best of our knowl-
edge, however, there are no characteristic schemes which satisfy (7), a discrete version of
the mass balance identity (5). Our idea is to apply the characteristic approximation to the
term

L1φ ≡ ∂φ
∂ t

+u·∇φ +(∇ ·u)φ , (9)

but not to the term (8). The present scheme we show below is proved to satisfy (7).
We assume that the velocityu has the following regularity and vanishes on the bound-

ary. The latter assumption leads to Proposition 1 below, which makes the argument simple
and clear.

Hypothesis 1 The velocityu satisfies

u∈C0(
[0,T];W1,∞(Ω)

)
, u = 0 on∂Ω.

Let X: (0,T) → Rd be a solution of the ordinary differential equation,

dX
dt

= u(X, t).

Then, we can write (8) as

(L0φ)(X(t), t) =
d
dt

φ(X(t), t).

We settn = n∆t for n∈Z. Subject to an initial conditionX(tn) = x we get an approximate
value ofX at tn−1 by the Euler method,

Xn
1 (x) = x−un(x)∆t. (10)

The following result has been proved in [15].

Proposition 1 Under Hypothesis 1 and∆t < 1/∥u∥C0(W1,∞), it holds

Xn
1 (Ω) = Ω.

Let Th ≡ {K} be a partition ofΩ̄ by elementsK, h be the maximum diameter, and
Vh ⊂ H1(Ω) be a finite element space. In the sequel, we assume that the domainΩ is
polygonal, which leads to

∪
{K; K ∈ Th} = Ω̄.

The mass-conservative characteristic (MCC) finite element scheme we propose reads
as follows; find{φn

h}
NT
n=1 ⊂Vh such that forn = 1, · · · ,NT ,(

φn
h −φn−1

h ◦Xn
1 γn

∆t
,ψh

)
+ν(∇φn

h ,∇ψh) = ( f n,ψh)+ [gn,ψh], ∀ψh ∈Vh, (11)
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whereφ0
h ∈Vh is an approximation toφ0, φn−1

h ◦Xn
1 is a composition defined by(

φn−1
h ◦Xn

1

)
(x) = φn−1(Xn

1 (x)) ,

andγn is the Jacobian of the transformationXn
1 ,

γn = det

(
∂Xn

1

∂x

)
= det

(
δi j −∆t

∂un
i

∂x j

)
. (12)

Theorem 1 (mass balance)Let {φn
h}

NT
n=1 be the solution of (11). Under Hypothesis 1

and∆t < 1/∥u∥C0(W1,∞) it holds that form= 1, · · · ,NT∫
Ω

φm
h dx=

∫
Ω

φ0
hdx+∆t

m

∑
n=1

(∫
Ω

f ndx+
∫

Γ
gnds

)
. (13)

Proof.Substituting 1∈Vh into ψh in (11) and multiplying∆t, we get

(φn
h ,1)− (φn−1

h ◦Xn
1 γn,1) = ∆t

{
( f n,1)+ [gn,1]

}
.

By the inverse transformation ofXn
1 and Proposition 1, we have∫

Ω
φn−1

h ◦Xn
1 γndx=

∫
Ω

φn−1
h dx, (14)

which implies

(φn
h ,1)− (φn−1

h ,1) = ∆t
{
( f n,1)+ [gn,1]

}
.

Summing up the equations above formn = 1 until m, we get (13).¤
Remark 1 In the proof of Theorem 1 the numerical computation is assumed to be per-
formed exactly. Letφhi be the base function at nodePi . In the real computation the
integration of composite termφn−1

h ◦Xn
1 γnφhi may cause numerical errors because the in-

tegrand is not smooth on elementK which the support of the integrand intersects with. If
we do not use the identity (14), the term

E1 ≡
m−1

∑
n=0

(φn
h −φn

h ◦Xn
1 γn,1)

should be added to the right-hand side of (13). More precisely the integration of composite
terms is carried out, smallerE1 becomes.

Remark 2 The conventional characteristics/Galerkin finite element method which ap-
proximates the material derivative term (8) leads to the scheme(

φn
h −φn−1

h ◦Xn
1

∆t
,ψh

)
+ν(∇φn

h ,∇ψh)+((∇ ·un)φn
h ,ψh) = ( f n,ψh)+ [gn,ψh], ∀ψh ∈Vh.

(15)

This scheme does not satisfy the mass balance even when divun = 0. Comparing to (15),
the present MCC scheme (11) is simpler and of mass-conservative.
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Remark 3 Neglecting the term of second order in∆t in (12), we can replaceγn by

γn
0 ≡ 1−∆t div un.

When the fluid is incompressible,γn
0 becomes identical. Although this replacement does

not affect the convergence rate shown later in Theorem 3, the quantityE1 in Remark 1
may increase because the identity (14) holds no more.

3 Stability and convergence

In this section we present two main theorems. The former shows the stability of scheme
(11), and the latter gives error estimates.

For a set of function{φn}NT
n=0 we define the following norms,

∥φ∥l∞(L2) ≡ max
0≤n≤NT

∥φn∥, ∥φ∥l2(L2) ≡

(
NT

∑
n=0

∆t∥φn∥2

)1/2

, |φ |l2(L2) ≡

(
NT

∑
n=0

∆t[φn,φn]

)1/2

.

(16)

Theorem 2 (stability) Let {φn
h}

NT
n=0 be the solution of (11). Suppose Hypothesis 1 holds.

Then, there exists a positive constantc1 = c1(∥u∥C0(W1,∞),ν) independent ofh and∆t such
that

∥φh∥l∞(L2) +
√

∆t∥L1hφh∥l2(L2) +
√

ν∥∇φh∥l2(L2) ≤c1(∥φ0
h∥L2 +∥ f∥l2(L2) + |g|l2(L2)),

(17)

where

L1hφn
h ≡

φn
h −φn−1

h ◦Xn
1 γn

∆t
.

Wheng = 0, c1 is independent ofν .

Proof. Substitutingψh = φn
h in (11), we have

1
2∆t

(
∥φn

h∥
2−∥φn−1

h ◦Xn
1 γn∥2)+

∆t
2
∥L1hφn

h∥
2 +ν∥∇φn

h∥
2 = ( f n,φn

h)+ [gn,φn
h ].

(18)

Sinceγn ≤ 1+c∆t, the inverse transformation ofXn
1 (x) leads to

∥φn−1
h ◦Xn

1 γn∥2 ≤ (1+c∆t)
∫

Ω
(φn−1

h ◦Xn
1 )2γndx

= (1+c∆t)∥φn−1
h ∥2. (19)

The right-hand side of (18) is estimated as

( f n,φn
h) ≤ 1

2
∥ f n∥2 +

1
2
∥φn

h∥
2,
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and

[gn,φn
h ] ≤ ∥gn∥L2(Γ)∥φn

h∥L2(Γ) ≤ c∥gn∥L2(Γ)∥φn
h∥H1(Ω)

≤ c2

2ν
∥gn∥2

L2(Γ) +
ν
2
∥φn

h∥
2
H1(Ω).

Combining these estimates with (18), we obtain

1
2∆t

(
∥φn

h∥
2−∥φn−1

h ∥2)+
∆t
2
∥L1hφn

h∥
2 +

ν
2
∥∇φn

h∥
2

≤ c∥φn−1
h ∥2 +

1
2
∥φn

h∥
2 +

1
2
∥ f n∥2 +c1(ν)∥gn∥2

L2(Γ), (20)

which completes the proof by virtue of Gronwall’s inequality.¤
In order to state error estimates we prepare the following hypotheses. LetΠh be the

Lagrange interpolation operator fromC0(Ω̄) into Vh [5].

Hypothesis 2 There exists a positive integerk such that forφ ∈ Hk+1∩C0(Ω)

∥Πhφ −φ∥s ≤ chk+1−s∥φ∥k+1 (s= 0,1).

Hypothesis 3 φ has the regularity,

φ ∈C0(Hk+1)∩C1(Hk)∩C2(L2).

Lemma 1 (consistency)Suppose functionsu andφ satisfy Hypotheses 1 and 3 fork= 1,
respectively. Then, it holds that forn = 1, · · · ,NT

∥∂φn

∂ t
+∇ · (unφn)−

φn−φn−1◦Xn
1 γn

∆t
∥ ≤ c∆t∥φ∥C2(L2)∩C1(H1)∩C0(H2).

Proof. The left-hand side is written as∥I1 + I2∥, where

In
1 =

(
∂φn

∂ t
+un ·∇φn

)
−

φn−φn−1◦Xn
1

∆t
, (21)

In
2 = (∇ ·un)φn−φn−1◦Xn

1 (1− γn)/∆t. (22)

We can evaluateIn
1 like [15] and get

∥In
1∥ ≤ c∆t∥φ∥C2(L2)∩C1(H1)∩C0(H2). (23)

From (12) we have
1− γn

∆t
= ∇ ·un +O(∆t),
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which leads to

∥In
2∥ = ∥∇ ·un(φn−φn−1◦Xn

1 )+O(∆t)φn−1◦Xn
1∥L2

≤ c∆t∥φ∥C0(H1)∩C1(L2). (24)

Combining (23) with (24), we get the result.¤
Now we show the error estimate.

Theorem 3 (error estimate) Let φ be the solutions of (2). Suppose Hypotheses 1, 2 and
3 hold for a positive integerk. Let φh be the solutions of scheme (11) subject to the initial
condition

φ0
h = Πhφ0.

Then there exists a positive constantc2 = c2(∥u∥C0(W1,∞),ν) independent ofh, ∆t andφ
such that

∥φh−φ∥l∞(L2) +
√

∆t∥L1h(φh−φ)∥l2(L2) +
√

ν∥∇(φh−φ)∥l2(L2)

≤ c2
(
hk∥φ∥C0(Hk+1)∩C1(Hk) +∆t∥φ∥C2(L2)∩C1(H1)∩C0(H2)

)
. (25)

Wheng = 0, c2 is independent ofν .

Proof. (2a) is equivalent to

∂φn

∂ t
+un ·∇φn +(∇ ·un)φn−ν∆un = f n. (26)

From (26) it holds that for anyψ ∈ H1(Ω)(
φn−φn−1◦Xn

1 γn

∆t
,ψ

)
+ν(∇φn,∇ψ) = ( f n,ψ)+ [gn,ψ ]− (In

1 + In
2,ψ), (27)

whereIn
1 andIn

2 are defined in (21) and (22). Seten
h = φn

h −Πhφn andηn = φn−Πhφn.
Substitutingψh = en

h in (11) andψ = en
h (27), and subtracting (27) from (11) , we have

1
2∆t

(
∥en

h∥
2−∥en−1

h ◦Xn
1 γn∥2)+

∆t
2
∥L1hen

h∥
2 +ν∥∇en

h∥
2

=

(
en

h−en−1
h ◦Xn

1 γn

∆t
,en

h

)
+ν(∇en

h,∇en
h)

= (In
1 + In

2,en
h)+

(
ηn−ηn−1◦Xn

1 γn

∆t
,en

h

)
+ν(∇ηn,∇en

h). (28)

From Lemma 1 the first term of the right-hand side is estimated as

(In
1 + In

2,en
h) ≤ c∆t2∥φ∥2

C2(L2)∩C1(H1)∩C0(H2) +
1
2
∥en

h∥
2.
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Similarly to [15] we estimate the second term of the right-hand side to obtain(
ηn−ηn−1◦Xn

1 γn

∆t
,en

h

)
=

(
ηn−ηn−1◦Xn

1

∆t
,en

h

)
+

(
ηn−1◦Xn

1 (1− γn)
∆t

,en
h

)
≤

(
∥

ηn−ηn−1◦Xn
1

∆t
∥+c∥ηn−1◦Xn

1∥
)
∥en

h∥

≤
(
∥ηn−ηn−1

∆t
∥+c∥ηn−1∥1 +c∥ηn−1∥

)
∥en

h∥

≤ c
(

h2k∥φ∥2
C0(Hk+1)∩C1(Hk)

)
+

1
2
∥en

h∥
2.

The third term is easily evaluated as

ν(∇ηn,∇en
h) ≤ cνhk∥φ∥C0(Hk+1)∥∇en

h∥ ≤
ν
2
∥∇en

h∥
2 +cνh2k∥φ∥2

C0(Hk+1).

Combining these estimates with (28), we get

1
2∆t

(
∥en

h∥
2−∥en−1

h ◦Xn
1 γn∥2)+

∆t
2
∥L1hen

h∥
2 +

ν
2
∥∇en

h∥
2

≤ ∥en
h∥

2 +c
(

∆t2∥φ∥2
C2(L2)∩C1(H1)∩C0(H2) +h2k∥φ∥2

C0(Hk+1)

)
A similar estimate to (19), the discrete Gronwall inequality and Hypothesis 3 lead to

∥eh∥l∞(L2) +
√

∆t∥L1heh∥l2(L2) +
√

ν∥∇eh∥l2(L2)

≤ c
(

hk∥φ∥C0(Hk+1)∩C1(Hk) +∆t∥φ∥C2(L2)∩C1(H1)∩C0(H2)

)
. (29)

Combining (29) with the estimate ofηn, we complete the proof.¤

4 Numerical examples

In this section we show some numerical results to observe the efficiency of the present
MCC finite element scheme. We compare numerical results of the MCC scheme (11)
with those of the mass-conservative upwind FEM (35) and the conventional characteris-
tics/Galerkin FEM (15).

In schemes (11) and (15) composite functions are integrated on elements. We approx-

imate the integral
∫

K
φn−1

h ◦Xn
1 ψhγndx by a numerical integration formula. We use the

same numerical integration method as the one in [15]. We divide the triangleK into 16
congruent small triangles. Approximatingφn−1

h ◦Xn
1 ψhγn by the linear interpolation on

each small triangle and integrating the interpolated function, we get an approximate value
of the integral. In the following examples we use theP1 element. Hence, Hypothesis 2 is
satisfied fork = 1 [5], which implies the convergence order isO(∆t +h) by Theorem 3.
As we take∆t = O(h) in the examples, the final convergence order becomesO(h).
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Figure 1: Figure 1: A triangleK divided into 16 congruent triangles.

-1

0

1

-1

0

1

0

1

Figure 2: A mesh(N=16) and the exact solutionφ of Example 1 att = 0.5.

Example 1 The data andφ are as follows,

Ω = (−1,1)× (−1,1), T = 0.5,

u(x, t) = (1+sin(t −x1),1+sin(t −x2))
T , ν = 0.01,

φ(x, t) = exp

(
−1−cos(t −x1)

ν

)
exp

(
−1−cos(t −x2)

ν

)
. (30)

Then, the right-hand sidef in (2a) is identically equal to 0. The velocity is not incom-
pressible,∇ ·u ̸= 0. Although Hypothesis 1 is not satisfied, i.e.,u ̸= 0 onΓ, the value of
φ onΓ is almost equal to zero, less 5.0×10−6, we can neglect the effect of the fluxφu·n
on the boundary. Dividing each side of the square intoN segments,

N = 16, 32, 64, 128, 256,

we make partitions{Th} consisting of non-uniform triangular elements; see Fig. 2. We
seth = 2/N and∆t = h. Fig. 3 shows relative errors inℓ∞(L2)-norm,ℓ2(H1

0)-seminorm,
and of mass atT,

∥φh−Πhφ∥X

∥Πhφ∥X

(
X = ℓ∞(L2), ℓ2(H1

0)
)
,

∣∣∣∫Ω φNT
h dx−

∫
Ω ΠhφNT dx

∣∣∣
|
∫

Ω ΠhφNT dx|

by the MCC FEM (•), the conventional characteristics/Galerkin FEM (◦) and the mass-
conservative upwind FEM (⋄). The errors of mass by the mass-conservative upwind FEM
(35) are too small to be plotted in the graph. We can see good convergence results of the

10
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Figure 3: Errors vs.h (Example 1). ℓ∞(L2)-norm (left),ℓ2(H1
0)-seminorm (center), and

mass(right).

Table 1: The slopes of the graphs by the results on the finest two meshes (Example 1).

Scheme symbol ℓ∞(L2) ℓ2(H1
0) mass

(35) ⋄ 0.63 0.61 -
(15) ◦ 1.02 1.19 1.02

MCC (11) • 0.84 1.11 0.90

MCC FEM in both norm and seminorm. Caused by numerical integration error, the mass
balance by MCC is not preserved exactly, but is much better than (15). The slopes of
the graphs obtained from the finest two meshes,N = 128,256, are listed in Table 1. The
theoretical convergence resultsO(h) are reflected.

Example 2 The data andφ are as follows,

Ω = (0,1)× (0,1), T = 1,

u(x) = (−x2sinπx1sinπx2,x1sinπx1sinπx2)
T , ν = 0.1,

φ(x, t) = x1x2(1−x2)cos(t +x1 +x2).

The velocity is not incompressible,∇ ·u ̸= 0. By substituting the aboveφ , u andν in (2a)
and (2b), respectively,f andg are obtained; they are not equal to zero. Dividing each side
of the square intoN segments,

N = 8, 16, 32, 64,

we make partitions{Th} consisting of non-uniform triangular elements. We seth = 1/N
and∆t = 0.8h. Fig. 5 shows relative errors inℓ∞(L2)-norm, ℓ2(H1

0)-seminorm, and of

11



mass atT by the MCC FEM (•), the conventional characteristics/Galerkin FEM (◦) and
the mass-conservative upwind FEM (⋄). The errors of mass by the mass-conservative
upwind FEM (35) are too small to be plotted in the graph. In this example the results
by (15) are slightly better than MCC in both norm and seminorm, but the mass balance
by MCC is much better than (15). The slopes of the graphs obtained from the finest two
meshes,N = 32,64, are listed in Table 2. The theoretical convergence resultsO(h) are
reflected.

0

1

0

1

-0.25

0

0.25

Figure 4: The exact solutionφ of Example 2 att = 1.
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Figure 5: Errors vs.h (Example 2). ℓ∞(L2)-norm (left),ℓ2(H1
0)-seminorm (center), and

mass(right).

Table 2: The slopes of the graphs by the results on the finest two meshes (Example 2).

Scheme symbol ℓ∞(L2) ℓ2(H1
0) mass

(35) ⋄ 1.05 1.07 -
(15) ◦ 0.94 1.06 1.01

MCC (11) • 0.96 1.02 0.97
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5 Conclusions

We have presented a new mass-conservative characteristic finite element scheme of first
order in time increment. The modification from the conventional characteristics/Galerkin
method is very small, i.e., only the multiplication of the Jacobian to the composite term
and the elimination of the term(∇ ·u)φ . The scheme is unconditionally stable. We have
proved the stability and convergence of order∆t + hk , which has been recognized by
numerical results fork = 1. In the forthcoming paper we will present a corresponding
scheme of second order in time increment∆t.

Appendix

Here we review two kinds of upwind finite element approximations developed in the early
days. The one has monotone property and the other does mass-conservation property. The
ideas used for these approximations are simple and natural. From them many improved
upwind finite element/volume schemes have been developed. LetTh = {K} be a partition
of Ω by simplices, i.e., triangles (d = 2) or tetrahedron (d = 3).

A.1 The upwind element choice approximation [17]

Let V = H1
0(Ω) anda(∞)

1 be the bilinear form onV defined by

a(∞)
1 (φ ,ψ; u) = (u·∇φ ,ψ), φ ,ψ ∈V. (31)

Let Vh ⊂ V be the P1 finite element space. The upwind element choice approximation
a(∞)

1h to a(∞)
1 is defined by

a(∞)
1h (φh,ψh; u) = ∑

P
u(P) ·∇φh|Ku

P
ψh(P)measDP, φh,ψh ∈Vh, (32)

whereP runs over all the nodes inΩ, Ku
P is the upwind element atP with respect tou(P),

and DP is the barycentric domain atP. The definitions ofKu
P and DP are as follows.

Upwind elementKu
P is an elementK ∈ Th such that

(i) P is a vertex ofK,
(ii) The vectoru(P)(̸= 0) with endpointP intersectsK\{P}.

In the case whenu(P) is parallel to an edge (or face) includingP, Ku
P is not uniquely

defined, but even in this case the definition (32) is well-defined. Barycentric domainDP

is defined by

DP =
∪
K

{DK
P; P is a vertex ofK ∈ Th},

DK
P =

∩
Q

{x∈ K; Q(̸= P) is a vertex ofK,λP(x) ≥ λQ(x)},

whereλR, R= P,Q, is the barycentric coordinate associated with vertexRof K.

13



(32) was presented in 1977 and it is one of the upwind finite element approximations
developed in the earliest stage. It has a similar property to the first-order upwind finite
difference approximation. When the meshTh is of weakly acute type, i.e., all angles of
triangles are less than or equal toπ/2 in d = 2, we can derive monotone finite element
schemes. The solution satisfies a discrete maximum principle when the original problem
has the maximum principle [10], [18]. Approximation (32) is not mass-conservative even
if the definition is extended appropriately toVh ⊂ H1(Ω). (32) is extended to second- and
third-order upwind approximations for high-Reynolds number flow problems [9], [19].

P

uHPL
K

P

u

P
Q

DP

GPQ

Figure 6: Upwind elementKu
P atP (left) and the barycentric domainDP (right).

A.2 The mass-conservative upwind approximation [2]

Let V = H1(Ω) anda1 be the bilinear form onV defined by (4),

a1(φ ,ψ; u) = −(φ ,u·∇ψ), φ ,ψ ∈V.

Let Vh ⊂V be the P1 finite element space. The mass-conservative upwind approximation
a1h to a1is defined by

a1h(φh,ψh; u) = ∑
P

ψh(P) ∑
Q∈ΛP

(
βPQ(u)+φh(P)−βPQ(u)−φh(Q)

)
, φh,ψh ∈Vh,

(33)

whereP runs over all the nodes in̄Ω,

ΛP = {Q∈ Ω̄; node Q is adjacent to P}, βPQ(u) =
∫

ΓPQ

u·n ds, (34)

ΓPQ = DP∩DQ, β+ = max(β ,0), β− = max(−β ,0),

14



and n is the outer normal toΓPQ from the barycentric domainDP. (33) is derived as
follows,

a1(φ ,ψ; u) = (∇ · (uφ),ψ)− [φu·n,ψ]

= ∑
P

∫
DP

∇ · (uφ)ψ dx− [φu·n,ψ]

= ∑
P

∫
∂DP

n·uφψ ds− [φu·n,ψ ]

≈ ∑
P

ψ(P)
∫

∂DP

n·uφ ds− [φu·n,ψ ]

≈ ∑
P

ψ(P)
∫

ΓPQ

n·uφ ds

≈ a1h(φ ,ψ; u),

where the relationβ = β+−β− is used at the last line. A mass-conservative finite element
scheme for (2) is to find{φn

h}
NT
n=1 ⊂Vh such that forn = 1, · · · ,NT ,(

φ̄n
h − φ̄n−1

h

∆t
, ψ̄h

)
+a1h(φn

h ,ψh; u)+ν(∇φn
h ,∇ψh) = ( f n,ψh)+ [gn,ψh], ∀ψh ∈Vh.

(35)

whereφ0
h ∈ Vh is an approximation toφ0 and− : Vh → L2(Ω) is a lumping operator

defined by

φ̄h = ∑
P

φh(P)χP, χP(x) =
{ 1, (x∈ Dp),

0, (x /∈ Dp).

Sincea1h can be written as

a1h(φh,ψh; u)= ∑
ΓPQ

(ψh(P)−ψh(Q))
(
βPQ(u)+φh(P)−βPQ(u)−φh(Q)

)
, φh,ψh∈Vh,

it holds thata1h(φh,1;u) = 0. Hence, substitutingφh = 1 in (35), we obtain form =
1, · · · ,NT ∫

Ω
φ̄m

h dx=
∫

Ω
φ̄0

h dx+∆t
m

∑
n=1

(∫
Ω

f n dx+
∫

Γ
gn ds

)
. (36)

Using the fact ∫
Ω

φ̄h dx=
∫

Ω
φh dx, φh ∈Vh,

(7) is derived from (36).
Nowadays,a1h can be regarded as a vertex-centered finite volume approximation with

DP as control volume. It is extended to various schemes for the computation of hyper-
bolic type equations as Euler equations on unstructured meshes [9], [14], [20]. It is not
necessary to takeβPQ exactly in (34), but is sufficient to satisfy

|βPQ−
∫

ΓPQ

u·n ds| ≤ c|PQ|d.

15



When∇ ·u= 0 in Ω andu·n= 0 onΓ, the solution of (2) satisfies the maximum principle.
This property is maintained by (35) with the choice (34) ofβPQ [2]. For the other choice
of the control volume in place ofDP we refer to [10], [12].
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