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Abstract

We develop a mass-conservative characteristic finite element scheme for convec-
tion diffusion problem. This scheme preserves the mass balance identity. Itis proved
that the scheme is unconditionally stable and convergent with first order in time in-
crement andk-th order in element size when tli& element is employed. Some
numerical examples are presented to show the efficiency of the present scheme.

1 Introduction

Convection-diffusion problems are solved in various fields of sciences and technologies,
e.g., transport problems of heat and solutes in moving fluids. In many applications the
Peclet number is high, so the problems become convection dominant. In such circum-
stances the Galerkin finite element scheme produces easily oscillation solutions. Hence,
elaborate numerical schemes based on new ideas such as upwind method, Petrov-Galerkin
methods and characteristic(-curve) methods have been developed to perform stable com-
putation. Among them the procedure of the characteristic method is natural from the
physical point of view since it approximates particle movements, and it is attractive from
the mathematical point of view since it symmetrizes the problem. Many authors have
contributed to develop, analyse and apply characteristic finite element schemes; see [1],
[4], [6], [7].[8], [13], [14], [15], [16], [21] and references therein.

An important property that the convection-diffusion problems possess is the mass bal-
ance; the mass should be preserved if there is no source. In the framework of characteristic
methods it it not trivial to maintain this property. Some schemes have been proposed and
studied from this point [1], [6], [8], [21].



In this paper we present a new characteristic finite element scheme which preserves the
mass balance. Our approach is different from those taken in the previous study. Usually
the characteristic method is used to approximate the material derivative term, i.e., the
time derivative term plus the convection term of non-divergence form. We do not assume
the velocity is incompressible. We use the divergence form and we approximate directly
the time derivative term plus the divergence term (Lemma 1). Thus, it is proved that the
mass balance is satisfied completely. When the equation is of divergence form like the
density equation in the compressible flow field, the mass balance remains true whether
the velocity is incompressible or not. Our result corresponds to it. We prove the stability
and convergence with first order in time increment &t order in element size when
the B element is employed.

We use the Sobolev spade¥ Q) andH™(Q), m> 1, with norms denoted by- || and
| - [|m, respectively. We also use the Sobolev spaE°(Q). We use the function spaces
H™M(X) = HM((0,T); X) andC™(X) = C™([0, T]; X) for positive numbef and Banach
spaceX, whose norms are denoted by||m(x) and|| - [|cm(x), respectively. We often omit
(0,T) andQ if there is no confusion, e.g., we wri@ (H™) in place ofCI ([0, T|;H™(Q)).

The symbol(-,-) is used for the inner products in batR(Q) andL?(Q)Y, d = 2,3. We
usec (with or without subscript) to denote a generic constant independent of discretization
parameters, At, and solutions, which can take different values at each occurrence.

The remainder of this paper is organized as follows. In Section 2 we present the mass-
conservative characteristic finite element scheme and show the mass balance identity. In
Section 3 we analyze the stability and prove the convergence. In Section 4 we give two
numerical examples. After stating the conclusion, in Appendix we review two upwind
finite element schemes referred in Section 2.

2 A mass-conservative characteristic finite element scheme

Let Q be a bounded domain iRY (d = 2, 3) with piecewise smooth boundaFy andT
be a positive constant. We consider the convection-diffusion operator
.,Sﬁpzaa—(erD-(U(p—vD(p)zi—(eru-D(er(D'u)qo—vA(p, (1)

wherev (> 0) is a diffusion coefficientand: Q x (0,T) — RY s a given velocity. We do
not assume that the velocityis incompressible. Let be a representative length of the
domain. When the Peclet number £éu|L/v is high, the conventional Galerkin finite
element does not work. For the remedy we focus on schemes based on the method of
characteristics.

An important property of the operatd?’ is the mass-conservation. To describe it we
consider the following initial boundary value problem; fipd Q x (0,T) — R such that

Zo=1f inQx(0,T), (2a)
vz—(g—(pu-n:g onl x (0,T), (2b)
9(-0=¢" InQ, (2¢)



wheref : Q x (0,T) =R, g:T x (0,T) — R, and¢® : Q — R are given functions. A
corresponding weak formulation to (2) is to figd [0, T] — V such that

((2_?“)"”) +aa(9(t), s u(t)) +ao(@(t), ¥) = (F(1). W) +[g(t). 4] (VY eV),
(3a)
¢(0) = ¢, (3b)
where

V= Hl(Q>7 al((pa lIJ; U) = ((pa u- DLIJ)a aO((p7 ll’) = V(D(pa DLIJ), (4)
[0, 0] = /r pyds

Substitutingy = 1 in (3a), we can easily derive the mass balance identity ¢of0, T]

/ng(x,t) dx:/ngo(x) dx+/otdt/Qf(x,t)dx+/otdt/rg(x,t)dx (5)

This property is preserved for the conventional Galerkin finite element method as follows.
Let Vi, be a finite dimensional subspace\bfandAt be a time increment. We sy =
|T/At]. Let @, be the solution of the problem; fin&qﬁ‘}ﬁil C VW such that forn =

17 e ) NTI

n__ n-1
<% A?j "l’h>+a1(‘ﬂ?a¢’h; u") +ao(@, Yn) = (f",n) + (9", Yh], Yih €W,

(6)

whereqq? € Vj is an approximation te® and the super-script of u, f andg means that
the functions are evaluatedtat nAt. Substitutingyy, = 1 in (6) and summing it up from
n=1untilm, we getform=1,--- Nt

/Q @ldx = /Q (qﬁ’derAtngl ( /Q fdx+ /r g”ds). 7)

This property, however, does not hold for upwind approximations which modify the
convection termu- g, e.g., the upwind element choice approximation (32), which cor-
responds to the upwind finite differencing on the triangular mesh. To realize (7) in the
framework of upwind approximations has been done by a mass-conservative upwind fi-
nite element method [2], where upwind modification is done for the tefg u- Oy). In
Appendix we review the ideas of these two approximations.

On the other hand, numerical schemes based on Petrov-Galerkin approximation sat-
isfy (7). In the streamline upwind Petrov-Galerkin method we substityte Tu(t) - Oy,
into Yy elementwise in (6) or a similar equation to it, wheres a positive parameter of
element size order [3], [11]. Therefore, by settiflg= 1, the identity (7) is obtained.

Characteristic methods are usually derived from the approximation of material deriva-
tive

29

L= ﬁqtu.qu. (8)
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They are applicable to convection-dominated, or even purely hyperbolic problems and
have an advantage that derived matrices are always symmetric. To the best of our knowl-
edge, however, there are no characteristic schemes which satisfy (7), a discrete version of
the mass balance identity (5). Our idea is to apply the characteristic approximation to the
term

0
$1¢Ed—(f+u-D¢+(D-u)¢, (9)

but not to the term (8). The present scheme we show below is proved to satisfy (7).

We assume that the velocityhas the following regularity and vanishes on the bound-
ary. The latter assumption leads to Proposition 1 below, which makes the argument simple
and clear.

Hypothesis 1 The velocityu satisfies

ueC?([0,TE;WH(Q)), u=0 ondQ.

LetX: (0,T) — RY be a solution of the ordinary differential equation,

dX

— =u(X,t).
S = U
Then, we can write (8) as

(o) (X(V).1) = OX(.D).

We set" = nAt for n € Z. Subject to an initial conditioX (t") = x we get an approximate
value ofX att"~1 by the Euler method,

X{'(x) = x—u"(x)At. (10)
The following result has been proved in [15].
Proposition 1 Under Hypothesis 1 antit < 1/||uf|cowi«), it holds
X1(Q)=Q.

Let %, = {K} be a partition ofQ by elementX, h be the maximum diameter, and
Vi € HY(Q) be a finite element space. In the sequel, we assume that the d@nigin
polygonal, which leads to){K; K € %} = Q.

The mass-conservative characteristic (MCC) finite element scheme we propose reads
as follows; find{ @} ", Vi, such that fon=1,--- ,Nr,

n__ nfloxn
<% %At lyn»¢h>+V(D(n2‘,th)=(f”,wh)+[g”,wh], Yih € Vh, (11)
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Whereqqff €V, is an approximation te°, (pr?—l o X{'is a composition defined by
(@ oX]) (9 =" (X)),

andy" is the Jacobian of the transformatiX(#,

B oX7\ o ouf
AR det( ax)_det(dj Ata—). (12)

X|

Theorem 1 (mass balance) et {c;ﬁ}r’\fil be the solution of (11). Under Hypothesis 1
andAt < 1/||uflcowrey it holds that form=1,---,Nr

/Q @Mdx— /Q qq?dx+At§l ( /Q fdx+ /r g”ds). (13)

Proof. Substituting 1€ V, into g, in (11) and multiplyingAt, we get

(1) = (@ oXgV, 1) = at{ (£7,1) + [d", 1]}
By the inverse transformation of' and Proposition 1, we have

/Q oo XDy dx = /Q o tdx (14)

which implies

(@, 1) — (@ 1) =at{(f", 1) +[g" 1}
Summing up the equations above fonma- 1 until m, we get (13) 1]

Remark 1 In the proof of Theorem 1 the numerical computation is assumed to be per-
formed exactly. Letg, be the base function at nod® In the real computation the
integration of composite term?‘lo X1'Y"@ni may cause numerical errors because the in-
tegrand is not smooth on eleméfitwhich the support of the integrand intersects with. If
we do not use the identity (14), the term

m—1

Ei= %(442‘— @ oX(y",1)

n=
should be added to the right-hand side of (13). More precisely the integration of composite
terms is carried out, small&; becomes.

Remark 2 The conventional characteristics/Galerkin finite element method which ap-
proximates the material derivative term (8) leads to the scheme

-4
At

Jllh) +v(Og!, Ogn) + ((O-uM @), wn) = (", ¢n) + (" Yh], Y € Vi
(15)

This scheme does not satisfy the mass balance even wheh €i®d. Comparing to (15),
the present MCC scheme (11) is simpler and of mass-conservative.
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Remark 3 Neglecting the term of second orderdhin (12), we can replacg’ by
o = 1— At div u".

When the fluid is incompressiblgy becomes identical. Although this replacement does
not affect the convergence rate shown later in Theorem 3, the quéntity Remark 1
may increase because the identity (14) holds no more.

3 Stability and convergence

In this section we present two main theorems. The former shows the stability of scheme
(11), and the latter gives error estimates.
For a set of functior{(p”}wio we define the following norms,

1/2

Nr Nr

[/l (12 —0313>N<T||(P I, [llliz2) <n;At||<P”I|2) ,prhz(Lz)E(n;At[(P”,fP”]) :
(16)

1/2

Theorem 2 (stability) Let {gﬁ‘},’}io be the solution of (11). Suppose Hypothesis 1 holds.
Then, there exists a positive constant= ¢1 (||uf|cow1«), V) independent o andAt such
that

1hlli=(2) + VAU Zinghll122) + VVIO@liz2) <ca(lgRlle + I Fllzz) +[8haw)),
(17)

where 1
n_ N— oxnw
.,flh(pﬂz(pn (pnAt 1r

Wheng = 0, ¢z is independent ob.

Proof. Substitutingy, = ¢ in (11), we have

1 _ At
e (G = 1= o XTVI1%) + S 1-2nhl1* + v D 1* = (17, ) + [0, )

(18)
Sincey" < 1+ cAt, the inverse transformation &f'(x) leads to
g o XqY2 < (1+cat) [ (g o Xq)?
= (1+can)|gh (19)

The right-hand side of (18) is estimated as

(f" @) < Hf”H2 H(ﬂ?H%



and

19" & < 119"l ez R llzry < gz | o)
Cz n2 v n 2
< EHQ HLZ(r)"’EHCPn”Hl(Q)-

Combining these estimates with (18), we obtain

1 N2 n-1,2\ , Ot 2, vV N2
SN (1 — [l =1%) + 5 L1 || <+ 2||D%H
_ 1 1
<clg} 1||2+§||‘ﬂ?\|2+§||fn||2+Cl(V)||gn||E2(r), (20)

which completes the proof by virtue of Gronwall’s inequalify.
In order to state error estimates we prepare the following hypothese§lLst the
Lagrange interpolation operator frof?(Q) into \, [5].

Hypothesis 2 There exists a positive integkisuch that forp € H¥t1NCO(Q)

IMh@— @ls < ch S| @llky1  (s=0,1).

Hypothesis 3 @ has the regularity,

@ € COH Y NCHH* NCA(L?).

Lemma 1 (consistency)Suppose functiong and¢ satisfy Hypotheses 1 and 3 foe= 1,
respectively. Then, it holds thatfor=1,--- Ny

§0n o (pnfl o xnyn
+0-(u"e") - A L || < eat]|@llcaz)ncrnncoma)-

17
ot

Proof. The left-hand side is written a1 + 12|/, where

(9(,0” (pn _ (pn—lo XN
n _ n. ny 1
1 = (dt +u Dgo) I ) (21)
13 = (0-u)e"— " Lo XD(1—y)/At. (22)

We can evaluaté] like [15] and get

71| < cAt]|@llcaq2)nct HryncoH2)- (23)

From (12) we have
1-y"

— L =0-u"+0(At
L —pato,

7



which leads to

N2l = 0-u"(¢"—@" Lo X[) +0(at) " o X 2
< At ollcornyncrLe)- (24)

Combining (23) with (24), we get the resulil
Now we show the error estimate.

Theorem 3 (error estimate) Let ¢ be the solutions of (2). Suppose Hypotheses 1, 2 and
3 hold for a positive integelt. Let ¢, be the solutions of scheme (11) subject to the initial
condition

(n? = I'Ih(po.

Then there exists a positive constapt= c(||uf|cowz=), V) independent oh, At and¢
such that

[ — @lli=(L2) + V|| L1 (o — @) lizz) +VVIO(@h — @) 12012
< C2(hk||(p||CO(Hk+1)mC1(Hk)+At||(pHCZ(LZ)ﬂcl(Hl)mCO(HZ))' (25)
Wheng = 0, ¢; is independent ob.

Proof. (2a) is equivalent to

2"

3t (O0-uMe"—vau" = f". (26)

From (26) it holds that for any € H1(Q)

n 1OX
(P25 0) +vEd 0w = (M) - 0+, @D

wherelf andl} are defined in (21) and (22). Sgt= ¢! — Ny andn" = ¢" — Mpe".
Substitutingyi, = € in (11) andy = €]} (27), and subtracting (27) from (11) , we have

ooz (112 = 16 XEYIP) + 5 | a2+ v e 2
_ (eg_egmoxfy”?e@ +v(0d), Od)

n_ pn-1,yn
— (lf+|2,$)+(n nAt lenﬂ)Jrv(Dn”,Deﬂ). (28)

From Lemma 1 the first term of the right-hand side is estimated as

2 2
(I1+12,€f) < cAt H§0”c2 L2)nCL(HY)NCO(H2) T qu”



Similarly to [15] we estimate the second term of the right-hand side to obtain
n"—n"toX]y" n" —n LoX] n"toX{(1-y")
(T ) - &)+ 10TV o
rl”—n toX _
< (u 2 el oxg ) el
nn ! n—1 n—1
|| [ +clin™ =l +cln™ | ) lehll

< C(hZKH(PHCo H*+1)NCL(Hk > ||92||2

The third term is easily evaluated as

v
(0", 0f) < cvht sy 0GR < 21102+ VP gl 20 v

Combining these estimates with (28), we get

2 2,V 2
ooz (112~ 16 X0V 1) + 5 | Zneh>+ 2 | el
< |l +c(At2||¢||C2(L2)mc1(Hlmo(Hz) + 0% )20 101, )
A similar estimate to (19), the discrete Gronwall inequality and Hypothesis 3 lead to

lenlljo L2y + VAL ZLinenllizz) + vV Denlliz 2
< c (thQDHCO(HkH)mcl(Hk) +AtH‘PHCZ(LZ)mcl(Hl)ch(HZ)) : (29)

Combining (29) with the estimate gf", we complete the proof]

4 Numerical examples

In this section we show some numerical results to observe the efficiency of the present
MCC finite element scheme. We compare numerical results of the MCC scheme (11)
with those of the mass-conservative upwind FEM (35) and the conventional characteris-
tics/Galerkin FEM (15).

In schemes (11) and (15) composite functions are integrated on elements. We approx-

imate the integray gq?*loxfwhy”dx by a numerical integration formula. We use the
K

same numerical integration method as the one in [15]. We divide the tri&gito 16
congruent small triangles. Approximatirzmj‘*loX{‘t.uhyn by the linear interpolation on
each small triangle and integrating the interpolated function, we get an approximate value
of the integral. In the following examples we use theslement. Hence, Hypothesis 2 is
satisfied fork = 1 [5], which implies the convergence order@gAt + h) by Theorem 3.

As we takeAt = O(h) in the examples, the final convergence order becddibs.



Figure 1: Figure 1: A triangl& divided into 16 congruent triangles.

Figure 2: A mesh(N=16) and the exact solutpof Example 1 at = 0.5.

Example 1 The data ang are as follows,
Q=(-11)x(-1,1), T=05,
u(x,t) = (14sin(t —x1),1+sin{t —x))", v =0.01,
ox1) = exp(— 1—coqt— xl)) exp(— 1—coqt— xz)) ' (30)

1% %

Then, the right-hand sidé in (2a) is identically equal to 0. The velocity is not incom-
pressible[]-u # 0. Although Hypothesis 1 is not satisfied, i.e# 0 on[l", the value of
@onT is almost equal to zero, les905< 10-6, we can neglect the effect of the flgu-n

on the boundary. Dividing each side of the square Mtgegments,

N = 16, 32, 64, 128, 256,

we make partitiong .7} consisting of non-uniform triangular elements; see Fig. 2. We
seth = 2/N andAt = h. Fig. 3 shows relative errors #¥ (L2)-norm, £2(H3)-seminorm,
and of mass af,

N
¢~ Mol o @ dx— o Mg x
IMhellx | Jo TTh"TdX
by the MCC FEM ¢), the conventional characteristics/Galerkin FEM &nd the mass-

conservative upwind FEM. The errors of mass by the mass-conservative upwind FEM
(35) are too small to be plotted in the graph. We can see good convergence results of the

(X=£2(L%), £3(Hg)),
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Log[Er_L7i(L 2)]
0 LoglEr_L"2(H"_0)] o
0|

< o

—4
Logih] - —— Logihl

2 =y Lodlhl ) o1

Figure 3: Errors vsh (Example 1). ¢*(L?)-norm (left),/2(H3)-seminorm (center), and
mass(right).

Table 1: The slopes of the graphs by the results on the finest two meshes (Example 1).

Scheme  symbol ¢*(L?) (?(H}) mass

(35) o 063 061 -
(15) o 1.02 119 1.02
MCC(11) e 084 111  0.90

MCC FEM in both norm and seminorm. Caused by numerical integration error, the mass
balance by MCC is not preserved exactly, but is much better than (15). The slopes of
the graphs obtained from the finest two mesi\es; 128 256, are listed in Table 1. The
theoretical convergence resuldsh) are reflected.

Example 2 The data an@ are as follows,

Q=(0,1)x(0,1), T =1,
u(x) —xzsinnxlsinnxz,xlsinnxlsinnx2)T, v=01,

=
O(X,t) = XpX2(1 — X2) coqt + X1 + X2).

The velocity is not incompressiblel- u £ 0. By substituting the abowg, u andv in (2a)
and (2b), respectivelyf, andg are obtained; they are not equal to zero. Dividing each side
of the square inttN segments,

N =8, 16, 32, 64,

we make partitiong 7} consisting of non-uniform triangular elements. Welset1/N
andAt = 0.8h. Fig. 5 shows relative errors iff*(L?)-norm, £2(H3)-seminorm, and of

11



mass afl by the MCC FEM ), the conventional characteristics/Galerkin FEM &nd

the mass-conservative upwind FEM).( The errors of mass by the mass-conservative
upwind FEM (35) are too small to be plotted in the graph. In this example the results
by (15) are slightly better than MCC in both norm and seminorm, but the mass balance
by MCC is much better than (15). The slopes of the graphs obtained from the finest two
meshesN = 32 64, are listed in Table 2. The theoretical convergence re€f$ are
reflected.

Figure 4: The exact solutiop of Example 2 at = 1.

Log|Er_mass|
LoglEr_LA(LA2)] Log[Er_L"2(H"1_0)] o

-1
* -1

o
[ol 1o
[¢]

[ ]

Log[h] Loglh]

Figure 5: Errors vsh (Example 2). ¢*(L?)-norm (left),2(H3)-seminorm (center), and
mass(right).

Table 2: The slopes of the graphs by the results on the finest two meshes (Example 2).

Scheme  symbol ¢*(L?) ¢2(H}) mass

(35) o 1.05 107 -
(15) o 094 106 101
MCC(11) e 096 1.02  0.97

12



5 Conclusions

We have presented a new mass-conservative characteristic finite element scheme of first
order in time increment. The modification from the conventional characteristics/Galerkin
method is very small, i.e., only the multiplication of the Jacobian to the composite term
and the elimination of the tertfil- u)@. The scheme is unconditionally stable. We have
proved the stability and convergence of ordér+ h¥ , which has been recognized by
numerical results fok = 1. In the forthcoming paper we will present a corresponding
scheme of second order in time incremAnt

Appendix

Here we review two kinds of upwind finite element approximations developed in the early
days. The one has monotone property and the other does mass-conservation property. The
ideas used for these approximations are simple and natural. From them many improved
upwind finite element/volume schemes have been developed/l-et{K} be a partition

of Q by simplices, i.e., trianglesl(= 2) or tetrahedrond = 3).

A.1 The upwind element choice approximation [17]

LetV = H}(Q) anda&“’) be the bilinear form oW defined by

a” (g u)=(u-Dp.y),  @YPeV. (31)
LetV,, C V be the P1 finite element space. The upwind element choice approximation
al®) to al™)is defined by
aly) (¢, Yh; U) = ZU(P) Oty Yn(P)meadp,  ¢h, Yh € Vh, (32)

whereP runs over all the nodes @, Kp is the upwind element & with respect tai(P),
and Dp is the barycentric domain &. The definitions ofKg and Dp are as follows.
Upwind elemenKg is an elemenk € %, such that

(i) Pis a vertex oK,
(i) The vectoru(P)(# 0) with endpointP intersectK\ {P}.

In the case whemi(P) is parallel to an edge (or face) includify Kg is not uniquely
defined, but even in this case the definition (32) is well-defined. Barycentric dddpain
is defined by

Dp = J{DF; Pis avertex oK € F},
K

DE = ("{x€ K; Q(# P) is a vertex o, Ap(x) > Aq(X)},
Q

whereAr, R=P,Q, is the barycentric coordinate associated with veRex K.

13



(32) was presented in 1977 and it is one of the upwind finite element approximations
developed in the earliest stage. It has a similar property to the first-order upwind finite
difference approximation. When the mesj is of weakly acute type, i.e., all angles of
triangles are less than or equalf®2 in d = 2, we can derive monotone finite element
schemes. The solution satisfies a discrete maximum principle when the original problem
has the maximum principle [10], [18]. Approximation (32) is not mass-conservative even
if the definition is extended appropriately\fp c H1(Q). (32) is extended to second- and
third-order upwind approximations for high-Reynolds number flow problems [9], [19].

=y

Figure 6: Upwind elemerg atP (left) and the barycentric domap (right).

A.2 The mass-conservative upwind approximation [2]
LetV = HY(Q) anda; be the bilinear form oW defined by (4),
a(@,y; u)=—(pu-0¢), @YeV.

LetV,, CV be the P1 finite element space. The mass-conservative upwind approximation
a1 to ais defined by

a1h(h, Yh; U) = th(P) Z\ (Bro(U) " h(P) — Bro(u) " @h(Q)), @, Yh € Vh,
QeNp
(33)

whereP runs over all the nodes 1,

Ap = {Q € Q; node Q is adjacent to}p Bro(u) = / u-nds (34)
pQ

rPQ:DPmDQ7 B+:maX(B,O), B_Zma)((—B,O>,

14



andn is the outer normal td pg from the barycentric domaibp. (33) is derived as
follows,

(@, ¢; u) = (0 (@), ¥) — [pu-n, Y]
=3 J,, 0o dx-[gun.y)

_ Z/(?Dpn-uqow ds— [gu-n, Y]

~SWP) [ nugds-gueny)

~ ZL,U(P)/rPQn-ucpds
%alh(@w; U),

where the relatio = B — B~ is used at the last line. A mass-conservative finite element
scheme for (2) is to findg?}N", Vi, such that fon=1,--- N,

B-d
(Ta‘-ﬂh) +an(@), Un w) +v(O@), Ogn) = (" ¢h) + (9" Uh], Yh € W

(35)
where @° € Vi is an approximation tap® and — : Vi, — L?(Q) is a lumping operator
defined by

m=3 8P x0={g (o))

Sinceays, can be written as

ah(h, Yh; U) = rz (Wh(P) — ¢h(Q)) (Bro(u)™ ¢h(P) — Bro(u)~@n(Q)), th, Uh € W,

PQ

it holds thatajn(g@h,1;u) = 0. Hence, substitutingy, = 1 in (35), we obtain fom =

1,--- Ny
/Q@mdx:/gan’dwmni (/Qf"dx+/rg“ds). (36)

/(EndXZ/%dx ¢h € Vh,
Q Q

Using the fact

(7) is derived from (36).

Nowadaysasn can be regarded as a vertex-centered finite volume approximation with
Dp as control volume. It is extended to various schemes for the computation of hyper-
bolic type equations as Euler equations on unstructured meshes [9], [14], [20]. It is not
necessary to takBpg exactly in (34), but is sufficient to satisfy

Beo— [ undg<cPQc
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Whend-u=0inQ andu-n= 0 onTl, the solution of (2) satisfies the maximum principle.
This property is maintained by (35) with the choice (343§ [2]. For the other choice
of the control volume in place ddp we refer to [10], [12].
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