
Received May 15, 2019, accepted June 3, 2019, date of publication June 10, 2019, date of current version June 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2921936

A Massive Analysis of Ethereum Smart Contracts
Empirical Study and Code Metrics

ANDREA PINNA 1, SIMONA IBBA1, GAVINA BARALLA1, ROBERTO TONELLI2,
AND MICHELE MARCHESI2, (Member, IEEE)
1Department of Electric and Electronic Engineering (DIEE), University of Cagliari, 09123 Cagliari, Italy
2Department of Mathematics and Computer Science, University of Cagliari, 09124 Cagliari, Italy

Corresponding author: Andrea Pinna (a.pinna@diee.unica.it)

This work was supported in part by Regione Autonoma della Sardegna, under projects ‘‘EasyWallet’’-POR FESR Sardegna 2014–2020 and

‘‘CAFCha-Certification of AgriFood Chain’’-POR FESR Sardegna 2014–2020.

ABSTRACT In this work, we perform a comprehensive empirical study of smart contracts deployed on the

ethereum blockchain. The objective of the analysis is to provide empirical results on smart contracts features,

smart contract transactions within the blockchain, the role of the development community, and the source

code characteristics. We collected a set of more than 10 000 smart contracts source codes and a dataset of

meta-data regarding their interaction with the blockchain from etherscan.io. We examined the collected data

computing different statistics on naming policies, smart contract ether balance, number of smart contract

transactions, functions, and other quantities characterizing the use and purpose of smart contracts. We found

that the number of transactions and the balances follow power-law distributions and the software codemetrics

display, on average, values lower than corresponding metrics in standard software but have high variances.

Focusing the attention on the 20 smart contracts with the topmost number of transactions, we found that most

of them represent financial smart contracts and some of them have peculiar software development stories

behind them. The results show that blockchain software is rapidly changing and evolving and it is no longer

devoted only to cryptovalues applications but to general purpose computation.

INDEX TERMS Blockchain, code metrics, ethereum, smart contracts, solidity.

I. INTRODUCTION

The publication of the Ethereum white paper in 2014 [4]

and the implementation of the Ethereum platform moved the

blockchain technology [20] to the second generation. In fact,

what this platform for decentralized applications proposed,

was new and disruptive: a blockchain-based programmable

Turing complete virtual machine to run software code writ-

ten specifically for the blockchain environment [24]. Such

software was originally conceived to take advantage of the

blockchain features in order to automatically implement the

constraints two parties can agree upon when they sign a

contract in a trustless environment, so that the software code

was named ‘‘Smart Contract’’. Nowadays, the initial concept

has been largely extended so that Smart Contracts can be

considered as general purpose software programs, as we show

in our empirical analysis.

Smart Contracts (SCs for short) are small computer pro-

grams stored inside the Ethereum public ledger (or inside

The associate editor coordinating the review of this manuscript and
approving it for publication was Sun Junwei.

another blockchain) and associated to a particular blockchain

address which references the SC software code.

Ethereum Smart Contracts are mainly written in Solidity,

a programming language derived from Javascript, Python

and C++, which allows to run programs on the blockchain

infrastructure as decentralized applications. The Smart Con-

tracts code is compiled and the corresponding bytecode is

recorded into the blockchain and run by the Ethereum Vir-

tual Machine (EVM). Virtually, SCs can perform any com-

putational task standard programs can perform, but there

are specific constraints that must be respected due to the

decentralized structure of the blockchain and to the consensus

protocol adopted by Ethereum, so that SCs display specific

features and issues which are unknown in traditional soft-

ware development. A typical example is the extraction of a

pseudo-random number which should be replicated in all the

blockchain nodes in order to obtain the same result [13].

Due to these specific features, this technology is having

a great success and has paved the way for a new set of

applications, yet to be fully exploited. Ethereum is the most

important blockchain based platform in terms of number

78194
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-7530-0521

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

of transactions. At time of writing the number of accounts

stored in the blockchain is higher than sixty millions. The

number of contract created in the blockchain is over fourteen

million five hundred thousand1 Contract accounts are used

both to create decentralized applications and to create new

digital tokens, looking to new business opportunities and to an

easier way of funding (the ICO phenomenon [10], [11]). The

byte-codes of contracts are always available, because they

are recorded in the blockchain. However, byte-codes are not

intelligible; in order to increase the trust of users, developers

of decentralized applications may provide the source code

of their contracts. Third party websites, like Etherscan.io,

offer a verification service that makes Smart Contracts source

code public. The overall success of decentralized applications

presents practitioners and software engineers with new and

specific challenges. In the scenario of a wide diffusion of the

blockchain technology, Smart Contracts could represent the

backbone for several future decentralized applications [12],

[14], [15], [20].

Since blockchain is a newborn technology, the develop-

ment of new decentralized applications could take advan-

tage of a thorough analysis of what has been created up

to now, with the aim of analyzing errors of the past and

of improving software development best practices. By the

end of 2017 the amount of Smart Contract source code

freely available and the number of related transactions on the

Ethereum blockchain reached a size which allows a system-

atic empirical and statistical study.

In this study we analyze some source code features and

different Smart Contracts code measures, the evolution of

the Solidity language, and other features relating Smart

Contract source code to the transactions performed on the

Ethereum blockchain. Such an empirical analysis would

have been an impossible task just a few months before the

time of our study because of the scarcity of Smart Con-

tracts source code available deployed on the blockchain and

for the contemporary scarcity of statistics related to the

operations and interactions among Smart Contracts and the

blockchain.

The purpose of our work is to empirically analyze and

characterize the interaction between Smart Contracts and

blockchain, in terms of software measures, of EVM compiler

version, of developers practices, of Solidity language features

and other peculiarities of the blockchain environment and to

examine themain software characteristics of contracts written

in solidity as well as their purposes. Furthermore, thanks

to the availability of Smart Contracts written and deployed

at different times, we analyzed some of the evolutionary

features of the Solidity programming language and of the way

developers write Smart Contracts.

Our study aims at understanding software features and

metrics of Smart Contracts, in order to measure progress and

performance during the evolution of the Ethereum blockchain

technology in these first years.

1data from https://stat.bloxy.info.

To lead our research we performed an empirical study

collecting the dataset of all Smart Contracts source codes

available from Etherscan.io up to the beginning of 2018.

We computed several software metrics on the entire dataset

and identified the twenty most used Smart Contracts, in terms

of blockchain transactions, representing a reduced set on

which we performed a systematic and more detailed analy-

sis, in terms of both functionality and development history.

We identified some empirical indicators useful to characterize

Smart Contracts from a statistical point of view. By means of

these indicators we studied the usage of Smart Contracts in

the Ethereum blockchain and their evolution over time.

Results lead us to observe an active developer community

that constantly follows the evolution of the language that

develops more and more specialized Smart Contracts and

improves contracts already developed. In general code mea-

sures show that Smart Contracts have a limited number of

lines of code which are well commented and that implement

specific functionalities.

The remaining of the paper is organized as follows:

Section II provides a selection of related work in the field

of Smart Contract analysis and metrics applied to specific

software categories. Section III provides a description of

the Solidity language and of the Ethereum environment.

Section IV describes the dataset and the results of the analysis

in terms of contract name, compiler version, balance and

transactions, and of the measure of source codes, such as the

number of line of code, the number of contract declarations

and the related size of the bytecode. Section V analyzes

twenty Smart Contracts, selected from the dataset with the

highest number of transactions. First it provides a descrip-

tion of each contract, then it describes the interaction of

the development community in terms of number of versions

and of reuse of code. Finally the section reports the results

of the code analysis performed by means of volume and

complexity code metrics. Section VI discusses the findings of

this work, summarizing results and providing some consider-

ations derived from them. Section VII concludes the paper.

II. RELATED WORKS

Research literature on blockchain in general and on Smart

Contracts in particular, from a software development per-

spective is limited to the last few years. The development

and the diffusion of ‘‘Solidity’’ as programming language

for writing Smart Contracts on the Ethereum platform started

very recently and the definition and implementation of the

language and of its Virtual Machine on Ethereum (EVM) is

still ongoing.

In this section we provide an overview of the more recent

findings in the field with a glimpse to the specific domain

of Smart Contracts programming and related topics already

published in software literature.

Only very recently the research on software engineering

and computer science paid particular attention to the

blockchain technology and its specificities. In 2017,

Porru et al. [18] underline the need of a new branch

VOLUME 7, 2019 78195

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

of software engineering, and coined the term BOSE

(Blockchain-oriented software engineering) to deal with this

new technology. In this context, authors highlighted the need

of new professional roles, new specialized metrics and new

modeling languages in order to ensure security and reliability.

They designed possible solutions proposing the directions for

future specific steps of the BOSE.

Bartoletti and Pompianu [2] conducted a survey of Smart

Contracts by studying their usage, development platforms and

design patterns. Furthermore, they categorized the contracts

by their application domain in order to understand the best

convenient investment.

Tonelli et al. [22] analyzed more than 12000 certified

Smart Contracts provided by Etherscan, along with Bytecode

and ABI. Their results report that metrics are less variable

than in traditional software systems because of the domain

specificity. Furthermore in Smart Contract software metrics

there are no large variations from the mean. All values are

generally within a range of few standard deviations from the

mean.

In order to define a specific Blockchain Software Engi-

neering, Destefanis et al. [9] argue that Smart Contracts have

a non-standard software life-cycle and therefore applications

can hardly be updated or it is more difficult to release a new

version of the software.

Wan et al. [23], in order to design efficient tools to detect

and prevent bugs within the blockchain, performed an empir-

ical study to understand the blockchain bug characteristics.

They investigated the bugs frequency distribution manually

examining 1108 bugs in eight open source blockchain.

Bragagnolo et al. [3] presented SmartInspect, a tool able

to debug the code of a Smart Contract, addressing the lack

of inspectability of a deployed code. In fact, once a Smart

Contract is deployed, data are encoded and the source code

cannot be redeployed. Authors proposed a solution by ana-

lyzing the contract state through a decompilation techniques

and a mirror-based architecture without redeployed it.

Rocha et al. [8] implemented a tool to handle Smart Con-

tract written in Solidity language, the solution is specifically

designed for Pharo (a live programming environment based

on Smalltalk code language).

Norvill et al. [17] used Etherscan.io in order to explore

Smart Contracts and to analyze bytecode level metrics or to

identify similarities between compiled pieces of code. They

focused their attention on contracts compiled code, source

code, and metadata such as the contract name.

The Smart Contracts are the basis for Initial Coin Offer-

ings (ICO), the new means of crowdfunding centered around

cryptocurrency in the blockchain development area. In this

regard Fenu et al. [10] analyzed the quality and the soft-

ware development management of 1388 ICOs in the 2017.

Ibba et al. [11] they investigated on the ICO process analyzing

a dataset obtained collecting data from specialized websites.

They emphasized the advantages which Lean methodologies

could lead both to the team organization and to stakeholders

involvement.

In general the literature on Smart Contracts software fea-

tures and in particular on the Solidity programming language

is still limited and a comprehensive empirical analysis on

a dataset of thousands Smart Contracts source codes and

the metrics representing and characterizing their interaction

and usage within the Ethereum blockchain has not been

performed yet.

III. BACKGROUND

Our analysis takes into account a particular typology of

software programs called Smart Contracts, written in a pro-

gramming language specific for the EVM of the Ethereum

blockchain environment, called solidity. In this section we

provide a brief description of the Ethereum system and of

Smart Contracts.

A. THE ETHEREUM SYSTEM

Ethereum is a blockchain with an embedded Turing com-

plete computing machine. Thus computer programs can be

uploaded into the blockchain and executed on the nodes

implementing the blockchain network on a peer-to-peer com-

puter network. The nodes interact managing transactions

which are the core concept for obtaining a correct and val-

idated sequence of blocks recording and holding all the

information. Identities are associated to accounts/addresses

managed by a public-private key pair. A blockchain address

is associated with the pair. The blockchain has associated

a criptocurrency (the Ethers) in the network, which is used

as an incentive for miners and so that the accounts can

hold, send and receive criptovalue. Since the blockchain can

perform computation, the account can also contain code,

associated to a so called ‘‘smart contract’’ by means of the

blockchain address which is determined at the time the con-

tract is created. Transactions ensure that every change of state

is recorded into the public ledger representing the blocks

sequence. As a consequence accounts can be of two kinds:

External Accounts, managed by the public-private key pairs,

and Contracts Accounts, managed by the stored code. The

Ethereum Virtual Machine (EVM) deals with the two kinds

of account in the same way. Interactions among the parties

are allowed by means of transactions, made by messages sent

from one account to another and containing binary data (the

so called ‘‘payload’’), and a certain amount of cryptovalue

(Ethers). Transactions can be activated by the public-private

key pair, sending a request in broadcast to the network nodes,

or by Smart Contracts, within the same scheme, by executing

the code stored in them. This working scheme describes the

interactions affecting Smart Contracts within the blockchain

analyzed in the present work.

If the account receiving the message is a Smart Contract

then it executes the codewith the payload as input data. Trans-

actions can also create new contracts by means the operation

called Smart Contract deployment, represented in Fig. 1,

where the compiled code is passed in the payload of the

transaction and permanently stored in the blockchain,

78196 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

FIGURE 1. Deployment of an ethereum smart Contract in the blockchain.

Transactions require ‘‘Gas’’ consumption, to avoid infinite

amount of computational work to be executed and Gas is

payed in Ethers.

Other interactions may occur by Message Calls and Del-

egate Calls. These are messages sent by Smart Contracts

and have a source, a target, a payload, an amount of Ethers,

an amount of gas and return data. In Delegate Calls the code

at the target address is executed in the context of the calling

contract.

B. SOLIDITY SMART CONTRACTS

A Smart Contract is a computer program that aims to imple-

ment a logical sequence of steps according to some clauses

and rules. In a conceptual level, Smart Contracts consist of

three parts [21]:
• the code of a program that becomes the expression of a

contractual logic;

• the set of messages which the program can receive, and

which represent the events that activate the contract;

• the set of methods which activate the reactions foreseen

by the contractual logic.
Smart Contracts run in a blockchain where contract trans-

actions can be permanently recorded in a transparent envi-

ronment and are immutable. Once the Smart Contract is

deployed into the blockchain its code cannot be modified

and the clauses introduced by the parties in the contract will

obligatorily be respected because of the computational nature

of the system, as for the execution of any software program.

There are different blockchains able to run programs

implementing Smart Contracts. Even the Bitcoin blockchain

supports a limited amount of software code that can be

deployed using transaction in a blockchain address [1]. Other

examples are Hyperledger Fabric [5], the Qtum platform [7]

and the Achain platform [6].

Among all, the most popular is the Ethereum platform,

the first blockchain specifically conceived to run Smart Con-

tracts. The most popular programming language for Smart

Contracts in Ethereum is ‘‘Solidity’’. In this platform it is

possible to read some information that characterize each

Ethereum transaction. In particular, Smart Contracts are acti-

vated by messages, that are Ethereum transactions executed

by themessage sender. Currently the Ethereum platform hosts

the large majority of Smart Contracts.

As represented in Fig. 1, the process to deploy a Smart

Contract into the Ethereum blockchain is composed by three

phases. The first phase consists in the code writing in Solidity

language; the second consists in the code compiling, that can

be executed in a local environment (i.e. the remix environ-

ment2) to convert the script in the EVM bytecode [19]; and

finally the last phase consists in creating a transaction in the

blockchain, that actually deploys the contract. At the moment

of the deployment, the blockchain assigns an address to the

Smart Contract. Accessing to that address it is possible to

visualize some data of the Smart Contract like its address,

its balance, and its Application Binary Interface (ABI).

In order to avoid the possibility of EVM overload, the

execution of Smart Contract functions (when they involve

changes to blockchain records) lead to a cost in terms of

cryptocurrency. In particular, to each low level operation is

associated a computational cost (defined in units ofGas) [24].

The price in Ether of a unit of Gas is not fixed but follows the

free market rules.

Solidity is a contract-oriented, high-level language whose

definition was influenced by Object Oriented (OO) languages

like Python, C++, and especially by JavaScript.

It is a typed programming language and supports tradi-

tional types such as integer, string, array, as well as structures,

associative arrays, and enumerations.

Moreover Solidity has a specific type, the address, that

identifies users and other contracts. Each contract variable

can be interpreted as a record of a database which can be

queried and modified by calling functions of the code that

manages the database. The set of variables and their associ-

ated values represent the state of the contract. Smart Contracts

functions can be externally called by means of blockchain

transactions. In order tomake the developmentmoremodular,

specific function modifiers can be defined and associated

to different functions, for instance to perform checks in a

declarative way.

Recently different mainstream integrated development

environments (IDE’s) appeared for supporting solidity code

development, as for example IntelliJ IDEA, developed by

JetBrains and Visual Studio Code, developed by Microsoft.

We used the Intellij-Solidity plugin3 to read and compare

contracts source codes.

On the contrary there is still a lack of specific tools

for analyzing Solidity source code metrics, so that we

recurred to the similarity of Solidity with Javascript and C++

for the analysis of Solitidy source codes metrics. In fact,

an exploratory evaluation of the features of Smart Contracts

source codes can be performed using metrics and methodolo-

gies obtained adapting existing tools and designed for similar

languages.

IV. ANALYSIS OF THE SMART CONTRACTS DATASET

We performed an empirical study on 10174 Smart Contracts,

deployed in the Ethereum blockchain and validated using the

Etherscan validation service. Our dataset includes all Smart

2Available online at https://remix.ethereum.org/
3https://plugins.jetbrains.com/plugin/9475-intellij-solidity

VOLUME 7, 2019 78197

https://remix.ethereum.org/

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

Contracts uploaded until the beginning of 2018. The analysis

considers two information sets at different levels.

The first set characterizes the contract with respect to the

blockchain environment and to the interactions with it. It

is a set of parameters associated to, and defining the con-

tract state, which can be time varying. It consists of a list

containing descriptive information of each Smart Contract.

In particular, it contains the Ethereum address, the contract

name, the number of transactions performed up to data,

the compiler version and the balance of each Smart Con-

tract verified in Etherscan. We extracted all the information

from both the source code and by browsing the Ethereum

blockchain transactions related to each contract, starting from

the list of verified Smart Contract source codes provided by

etherscan.io.4

The second set characterizes software code, is fixed, and

can be viewed as independent from the blockchain envi-

ronment. It consists of a collection of 10174 ‘‘.sol’’ files

containing the contracts source code as extracted from the

Etherscan website. In fact, Etherscan provides a descriptive

page for each contract as well as the source code in sepa-

rated frames. We extracted the source code from the contract

page implementing an R script. Given a contract address,

the script loads the html of the contract page, recognizes

the start and the end of the source code, extracts and saves

it in plain text. The size of the source codes dataset is

about 100 MB.

Our empirical study first examines the two sets indepen-

dently, then compares the information collected on both.

We first analyzed the parameters that characterize the

Smart Contracts in the blockchain, aiming to provide statis-

tical information of features like the name usage, the com-

piler version, the number of transactions, and the balance of

contracts.

In the second part we characterized Smart Contracts source

codes, also by means of a statistical analysis. In particular,

we computed a set of code metrics for each Smart Contract in

the dataset and present the statistics characterizing the entire

dataset.

A. SMART CONTRACTS PARAMETERS: ANALYSIS

We evaluated the main parameters and metadata that describe

every Smart Contract in our dataset. Specifically, we focused

our attention on the contract name, the compiler version,

the number of transactions, and the contract balance in Ether.

We chose to analyze the list of contract names in order to

evaluate if the ethereum developers community uses specific

names for specific functionalities or whether the contract

name does not have particular meaning, since the contract

name is the analogous of the Class-Name in OOP.

The analysis of the compiler versions allow us to under-

stand if developers follow the continuous updating of the

language specifics, released in order to fix bugs and to provide

new and optimized functionalities.

4List available at https://etherscan.io/contractsVerified

The contract balances and the number of transactions are

two series of values characterizing contracts in terms of

usage, popularity, and in terms of funds inserted into ’that’

account. We obtained both a snapshot of the interaction of

each contract in the blockchain and an overall statistics on

their values. The number of transactions is the total num-

ber of transaction that a contract receives and sends from

normal accounts (owned by users). This number does not

include transactions sent between contracts (called internal

transactions).

All these data are public available for each Smart Con-

tract deployed in the Ethereum blockchain and verified by

Etherscan.

1) CONTRACT NAME

In the Etherscan platform, Smart Contracts are characterized

by a Contract Name. According to Etherscan specification,

the Contract Name must match the ContractName in the

source code that is deployed into the blockchain. See for

instance the contract Crowdsale inAppendixA or the contract

KittyCore in appendix C.

So we refer to Contract Name either as the name in Ether-

scan which identifies the solidity file containing the source

code or to the keyword inside the solidity file where, for

each file, there may be different contracts. In facts, according

to the language syntax, the keyword contract substitutes the

keyword class, but a contract has features similar to a class.

For example a contract can be represented as a structure

that includes a set of variables and a set of functions (these

can be public or private). But the similarity is far to be

complete: class code can be called from other classes in OOP

and methods can be called using methods and class names.

Classes can be statically coupled when a class resources to

code of another class in the system. Class names are also

chosen according to good programming practices where the

name reflects also class functionalities and purpose (eg. the

‘‘rectangle’’ class, the ‘‘point’’ class). On the contrary, some

of these features are lost in Solidity Smart Contracts and so

does the semantic of the name. The contract name looses

any ‘‘architectural compiling design’’ meaning and its meth-

ods or functions, its functionalities, are called by mean of

blockchain transactions.

As a consequence different Smart Contracts may hold the

same name and contain completely different code, or two

different Smart Contracts can be two slightly different ver-

sions of a same contract, or they may be the very same

contract deployed many times for testing purposes, or again

they can consist in part of code existing in one project and

reused in another (eg the ‘‘token’’ contract, ERC20 compliant

contracts) and so on. So it is of particular interest the analysis

of contract name occurrences to understand how Solidity

developers apply standard naming practices.

In our study we analyzed the collection of Contract Names

in our dataset and we found that among the 10174 contracts

(belonging to 10174 different addresses, only 6205 names

differ.

78198 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 1. The 10 most used contract names.

More specifically, we found that:

• 4980 Smart Contracts have a unique Contract Name and

are deployed only one time in the blockchain: there is no

other address that holds a contract with the same name.

Therefore there is no ambiguity, the contract is identified

by the name.

• 1225Contract Names are usedmore than once (from 2 to

213 times). So that there are very popular names where

different blockchain addresses register many contracts

with identical names, but also the same contract (with

the same solidity code) multiple times.

Tab. 1 reports the list of the ten most used contract names

and shows that some contract names (eg. crowdsale, token,

ECR20Token) occur more than one hundred times.

The occurrence of the same contract namemultiple times is

due to at least three possibilities: contracts codes are identical

and the very same contract is used many times in different

accounts; contracts codes are similar for functionalities and

code metrics, but the codes differ slightly, so these are a

modification or an adaptation of the other; contracts are

completely different in code and metrics and they only share

the same name, because semantic has still a limited role in

Smart Contracts software development.

A typical example of contracts sharing common names are

contracts associated to ICOs [10]. The contract ‘‘Crowdsale’’,

(see Appendix A) belongs to this category, since its code

manages token crowdsales with different purposes and may

be easily reused in different ICOs.

In general Smart Contracts with the same contract name,

although belonging to different projects, have very similar

functionalities and metrics.

Among the 213 Smart Contracts called Crowdsale,

we found that six source codes are deployed at least twice.

One of these codes5 has 4 duplicates. This is a Smart Con-

tract with the same bytecode and identical metrics that were

subsequently memorized in the blockchain in four different

addresses.

2) COMPILER VERSION

According to [8] any Smart Contract written in Solidity has

a grammar that starts with the SourceUnit rule which con-

tains instances of a pragma directive that declares the source

5See for instance the source code of the address 0xa1877c745628
21ff59ffc0bc999e6a2e164f4d87

FIGURE 2. Example of definition of the pragma version. In the first row is
specified that in the following will be used the version 0.4.18 of solidity.

FIGURE 3. Histogram of the number of verified contracts per compiler
version.

file compiler version. It starts with the keyword ‘‘pragma’’

followed by an identifier, and then any combination of one

or more characters until a semicolon terminates the row

(see Fig. 2).

This declaration ensures that the contract does not sud-

denly behave differently with a new compiler version. In our

dataset, the latest version of the compiler is the v0.4.20 and

the most used version is the v0.4.18.

In fact Solidity is fast evolving and new features or func-

tionalities of the language are introduced from time to time,

rendering unstable the behavior of the code under different

versions. Versions may be updated when a bug is discovered

or new language constructs are needed and so on.

Fig. 3 reports the histogram of the number of verified

contracts per compiler version. There are some specific cases

that we consider useful to mention for our analysis. The only

Smart Contract with compiler v0.1.6 is developed by Piper

Merriam, the creator of Ethereum Alarm Clock (ECM) that

allows users to schedule a contract call for a specified future

block.6

There is only one contract7 that uses the version v0.1.7.

It is a Smart Contract developed by Gavin Wood, one

of the Ethereum founders and the inventor of Solidity.

V0.1.6 and v0.1.7 have been introduced in October and

November 2015 respectively. Five versions have the first

transaction verified on 24.03.2016, when the Etherscan ser-

vice was launched.

In order to understand how fast the developers acknowl-

edge the updating of the language, we collected the date of

release of the documentation (generally available on Github)

related to a new version of the pragma and compared it with

6with address 0x07307d0b136a79bac718f43388aed706389c4588
7with address 0xbF35fAA9C265bAf50C9CFF8c389C363B05753275 and

contract name wallet

VOLUME 7, 2019 78199

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

FIGURE 4. Date of release of compiler versions and the date of the first
contract activation per compiler version.

the date of the first transaction that involves a contract with

the same version of pragma. In most cases, given a compiler

version, the first transaction related to a Smart Contract pre-

senting that pragma (or the first activation) has been executed

the same day or a few days after the release of that version in

Github (23 out of 34).

In the remaining cases, on the contrary, the documentation

of the pragma version has been made available after the date

of the first usage.

Figure 4 shows the history of compiler versions and the

dates of the releases of new versions of the compiler (red dots)

and of the first transaction to a Smart Contract characterized

by the same compiler version. The Fig. 3 shows a net growth

reflecting the growth in use of Smart Contracts in 2016 and

2017.

3) BALANCES AND TRANSACTIONS

Focusing on the Smart Contract balance, we found that a

very few Smart Contracts collect the majority of the total

balance of all Smart Contracts. In fact, the total balance of

the 10175 Smart Contracts is about 4.64 millions Ether, but

80% of the total balance belongs to 10 Smart Contract alone,

namely to less then 0.1% of the contracts accounts. In general

Smart Contracts do not collect Ethers, except in the case

they are wallets. A wallet is a Smart Contract realized to

securely collect Ethers and could implements some functions

such as the ‘‘multiple ownership’’ or the ‘‘escrow’’. Tab. 2

summarizes the information about these contracts.

Considering contract names in this table, most of them

can be recognized as wallets. In order to investigate on

the distribution of the wealth, we represented in Fig. 5 the

distribution of the balance of the contracts in our dataset.

The figure shows the Complementary Cumulative Distribu-

tion Function (CCDF) of the balance. The plot is in log-log

scale and axes tags are in normal scale. The figure suggests

a power-law distribution of wealth among the contracts so

that most of the total wealth is held by a small fraction of

contracts and conversely most of the contracts hold a very

small balance.

FIGURE 5. CCDF of the balance in Ethereum per contract.

FIGURE 6. CCDF of the number of transactions per contract.

Fig. 6 shows the CCDF of the total number of Smart

Contracts transactions. Also this second distribution follows

a power-law-like behavior until the values around 104 trans-

actions.

Given the similarity of the two distributions, we computed

the correlation among the two datasets. The resulting corre-

lation coefficient is 0.026 stating that there is no correlation

between the number of transaction of a Smart Contract and its

balance. Despite the two distributions display similar features

and show a tail, there is no simple general relationship among

Smart Contract balance and number of transactions. In facts,

as reported in Tab. 2, Smart Contracts with high balance may

use a low number of transactions and vice-versa.

B. MEASURES ON SMART CONTRACTS SOURCE CODES

In this paragraph we describe the analysis performed on the

contracts source codes, discuss the parameters under investi-

gation and provide the results of the source code analysis. In

order to analyze the contracts source code, we computed the

values of the following code metrics, that can be divided in

two groups. The first group represents the Volume metrics.

The second group includesContract orientedmetricswhich

describe the logical size of the source code.

1) VOLUME METRICS

M1, Lines of Code (LoC) is the number of line of code exclud-

ing comments and blank lines. For comparison, we computed

78200 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 2. Smart Contract balance.

TABLE 3. Statistics on code metrics computed among 10174 contract source codes.

FIGURE 7. Contracts declaration in solidity.

also the total number of code lines (including blanks and

comments).

M2, Comments per line (CpL) is the ratio between lines of

comment and lines of code.

2) CONTRACT ORIENTED METRICS

M3, Number of Declared Contract (NDC) is the number

of contracts (the equivalent of classes in OO languages)

declared in the source code. In solidity the declaration of a

contract type is definedwith the keyword contract. A contract

can inherit from other contracts declared in the source code

and can instantiate contracts, as described in Appendix A.

Fig.7 shows the declaration of two contracts. The contract

Derived inherits functions and variables from the contract

Base. A solidity source code can contain several contract

declarations and a contract implementation can use or inherit

the other contracts in the source code. The deployment of a

Smart Contract involves one contract definition at time.

M4, Number of Declared Functions (NDF) is the number

of functions declared in the source code.

Furthermore, we measure the size of the bytecode of each

contract. The bytecode is the result of the compiling oper-

ation and its length depends on the content of the source

code, on the version of the compiler and on the compiling

optimizations.

Table 3 reports different statistics: the averages, variances,

standard deviations, medians, minima, andmaxima values for

each metric.

FIGURE 8. Histogram of the number of lines of code per source code.

The table shows that all the metrics display features typical

of a tail distribution. They have high dispersion around the

mean, with values of standard deviation comparable or even

higher than the median. Such phenomenon is typically related

to the presence of statistical units with very large values of

the metric which contribute to rise the value of the average

with respect to the median. The maximum values are an order

of magnitude larger than the average, indicating the presence

of outliers. The shortest bytecode has a length of 57 bytes.

Considering the maximum values, the longest source code

has a length 10 times longer that the average value in the

dataset. The same can be said for metrics M1 (LoC) and M3

(NDC). The largest Bytecode is about five times the average.

Max values ofM2 (CpL) andM4 (NDF) aremuch higher than

the average value.

In order to represent the distribution of metrics values in

the dataset we plot the histograms for the numbers of lines of

code, of the number of contract declarations per file (NDC)

and of the size of the bytecode. Fig. 8 shows the histogram

of the number of lines of code. Each bin is large one hun-

dred units. The mode of the distribution is between 100 and

200 lines of code.

VOLUME 7, 2019 78201

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 4. Matrix of the cross-correlation coefficients between metrics and indicators computed among 10174 contracts.

FIGURE 9. Histogram of the number of contract declaration per source
code.

FIGURE 10. Histogram of the length of bytecodes in byte.

Fig. 9 shows the number of occurrences of the discrete

values of the NDC, i.e the number of contract declarations

per source code file. In this case the bin size is set to one.

The mode of the number of contract declarations per file is

1 since source codes with more than 15 contract declarations

are rare. These two graphs show a fast decreasing of values,

characterized by a long tail.

Fig. 10 provides the histogram of the size of contracts

bytecodes. Each bin is large 1000 bytes. This graph presents

a normal-like distribution. The mode is between 6000 and

7000 byte.

In order to investigate if and how code metrics influ-

ence each other, we computed the cross correlation matrix.

Tab 4 reports the results of the cross correlation coefficients

between code metrics, including the length of the bytecode

and the number of transactions of each contract, that will be

discussed later. The highest correlation coefficient, which is

trivial, is between the metric M1 (LoC) and the total number

of lines. Also theM4 (NDF) has a high correlation coefficient

with the LoC and the total number of lines. The M2 (CpL)

is not correlated with the length of the code or with the M4

(NDF). This means that the number of comments on the

code is heterogeneous and, in general, not proportional to the

length of the source code.

The length of the bytecode is only moderately correlated

both with the code length and with the number of declared

functions. In addition, the number of transaction that involve

a Smart Contract is not correlated with any code metric. This

means that, for instance, highly used Smart Contracts have

very different source codes lengths. In the following we will

confirm this results with a further analysis.

V. DETAILED ANALYSIS OF THE TOP 20 USED

SMART CONTRACTS

In this section, we present a detailed analysis of the twenty

Smart Contracts with the largest number of transactions (Tx

count). Tab. 5 lists these contracts. That can be classified

according to their typology [2] in five categories: Wallet,

Financial, Game, Library, and Notary. Wallet contracts are

characterized to be deposits of ether and they usually have

a high balance. Financial contracts aim to provide functions

useful to manage financial goods such as tokens. Game

contracts implement lotteries and digital collections. Library

contracts are developed and deployed to provide functionality

useful for other contracts (i.e maths libraries). Finally, Notary

contracts take advantage on the blockchain characteristics to

record agreements between parts.

In the following we provide a short description for each of

the 20 most used Smart Contracts.

A. SMART CONTRACTS DESCRIPTION

1) ETHERDELTA

It is tagged as etherdelta_2 on Etherscan and is the

Smart Contract executed to store and transfer tokens

with Ethereum wallets, in the cryptocurrency exchange

EtherDelta.8 EtherDelta is in fact one of the most used

decentralized trading platform for Ethereum and manages

ERC20 compatible tokens. In order to trade on EtherDelta

a user must create a wallet or use an existing wallet which

interacts with this Smart Contract.

8https://etherdelta.com

78202 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 5. List of the twenty smart contracts under examination.

Bitcoinereum9 is the fist Bitcoin-like mineable Ethereum

ERC20 Token and, through the Bitcoin Supply mechanism,

enables a bitcoin-like currency to run on the ethereum

blockchain. To bring the Bitcoin supply mechanism into

Ethereum, Bitcoins enter the Ethereum blockchain in form

of ERC20 tokens.

KittyCore and SaleClockAuction are two Smart Con-

tracts belonging to one of the most popular applications of

Ethereum blockchain, CryptoKitties, the game in which users

can buy, sell, and breed cartoon kittens. The application was

launched on November 28th 2017, and in a little more than

a month these two contracts (out of a total of 17 Smart

Contracts developed in this project) have been responsible for

the 6,2% of all transactions on the ethereum network.

2) REPLAYSAFESPLIT

In the set of 20 top used Smart Contracts, the contract

name ReplaySafeSplit appears three times. The functional-

ity of these three Smart Contracts are very similar: they

are used to split Ether funds in several addresses and pro-

tect against replay attacks between Ethereum Classic (ETC)

and Ethereum (ETH). As a result of the hard fork of the

Ethereum network (on July 20th, 2016), holders of an ETH

fund prior to the 1920000 block ended up with two funds

on the same address and therefore found themselves having

ETH and ETC in equal quantities: the ETHs on the support-

dao-fork network and ETC on the oppose-dao-fork network.

The two coins are still linked to each other: a move of

ETHs moves also ETC and vice versa. ReplaySafeSplit is

used to separate ETH pre-forks on two new and different

addresses, one specific for ETH post-fork and another one

specific for ETC. ReplaySafeSplit recalls the fork oracle

Smart Contract.10 A specific version (labeled Bittrex_211 on

9http://www.bitcoinereum.com/
10Having address 0x2bd2326c993dfaef84f696526064ff22eba5b362
11Having address 0xE94b04a0FeD112f3664e45adb2B8915693dD5FF3

Etherscan) is used on the Digital Currency Exchange Bittrex

(https://bittrex.com/) with the same capabilities.

3) REGISTRAR

It is one of two Smart Contracts that compose the core of

the Ethereum Name Service12(ENS), an extensible naming

system based on the Ethereum blockchain. Registrar owns

a domain and, according to the rules written in the con-

tract, issues subdomains of that domain to users. For each

domain and subdomain Registrar memorizes the owner (an

external account, typically a user or another Smart Contract),

the resolver and the time-to-live for all records.

DSToken (labeled EOSTokenContract) and EOSSale

(labeled EOSCrowdsale) are Smart Contracts of the famous

Infrastructure for Decentralized Applications EOS13 that

introduces a blockchain architecture designed to allow the

vertical and horizontal scaling of decentralized applications.

EOSTokenContract is in fact the token of the EOS ICO

that aims to finance block.one, the platform that, based on

scalability, flexibility and usability criteria, intends to make

the blockchain technology accessible to businesses which,

in this way, can memorize Smart Contracts on blockchain.

EOS tokens are ERC-20 compatible tokens distributed on the

Ethereum blockchain under a related ERC-20 Smart Con-

tract. EOSTokenContract handles all the logic of ownership

and transfers; Instead, EOSCrowdsale manages all the logic

of contributions, periods and claiming.

4) CONTROLLER

It is one of the two Smart Contracts that implements the core

of Bittrex (the other one is ReplaySafeSplit, as previously

described) and manages the exchange of cryptocurrency. The

main function of Controller is MakeWallet that is used to

create ETH wallets and has control functions of owner and

destination.

12https://ens.domains/
13https://eos.io/

VOLUME 7, 2019 78203

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

OMGToken (labeled OmiseGoToken). It is the token

of OmiseGO (OMG),14 currently one of the most famous

cryptocurrencies of the ICO market which aims to simplify

and make cryptocurrency transactions almost instantaneous.

OMG is a public Ethereum-based financial technology for

use in mainstream digital wallets. At the same time it is

an e-wallet and payment platform acting through assets and

crypotocurrencies. The advisors of OMG are almost all from

the Ethereum foundation. OMGToken is an ERC20 basic

token on Ethereum. Once the OMG blockchain is created,

the OMG tokens are transferred to this new blockchain.

TronToken (TRX) is the token of the TRON ecosystem.15

It is the blockchain-based decentralized protocol and open-

source platform that aims to construct a global free content

entertainment system and provides functions of credit sharing

and payment for many services such as online casinos, mobile

games, live shows, social networks. It is based on an ICO

and is a ERC20 standard Ethereum token. Starting from

December 2017 it is the second most used token with market

capitalization that rose from $477 million to $3 billion just

within 5 days (from December 13 to December 18).

MCAP16 uses the ERC 20 protocol for peer-to-peer trans-

actions and is the token of MCAP Labs ecosystem. Its ICO

was launched by BitcoinGrowthFund (BGF) with the aim to

invest in the mining of cryptocurrencies, especially Bitcoin.

The algorithms developed by BGF identifies which cryp-

tocurrency must be mined at any time to maximize profit. The

Smart Contract has five functions:mcap to initialize contracts

with initial supply tokens to the creator of the contract; trans-

fert that sends coins; approve which allows another contract

to spend some tokens in the owner behalf; approveAndCall

that in a single transaction approves and communicates the

approved contract and finally transfer, called from a contract

that attempts to obtain the coins.

5) GOLEM NETWORK TOKEN (GNT)

It is the token of the Golem Network project,17 a decentral-

ized distributed network of computers in which users can

sell and buy computing power. Through Golem Network

users can decentralize all the tasks thanks to the computer of

another user connected to the network, or sell the computing

power of their own computer to help those who need it.

The GNT Token is partially-ERC20-compliant because it

does not implement the approve, allowance, and transfer-

From functions, and the Approval event. On the Ethereum

blockchain, the crowdfunding start block is 2607800 and it

was launched in the 11thNovember 2016. Themain functions

of this Smart Contract are: management of payments for

resource usage and remuneration for software developers;

submitting of deposits by providers and software developers

14https://omisego.network/
15https://tronlab.com/en.html
16https://bitcoingrowthfund.com/mcap)
17https://golem.network/

and participation in the process of software validation and

certification.

SNT (labeled StatusTokenContract) is the token of Status

Network,18 an open source messaging platform that includes

a DApps browser, a messenger, a wallet, and can be described

as a mobile operating system to access Ethereum from any-

where. It is therefore a peer-to-peer messaging app without

central server to store private data or conversation. Status

Network aims, through the use of blockchain technology,

to remove centralized third-party applications or middlemen

in the people communications. The entire project combines

10 Smart Contracts. SNT is a ERC20-compliant token and

derives from the MiniMe Token19 that allows for token

cloning (forking). SNT has a modular architecture and is

used to power the Status Client, including some fundamental

utilities such as a Decentralized Push Notification Market,

the Governance of the Status client, Username Registration

using ENS, and so on.

HumanStandardToken (labeled QtumTokenContract) is

the token of the Qtum project,20 a Value Transfer Proto-

col (VTP) blockchain. Qtum is therefore a Smart Contract

ecosystem for businesses that want to run decentalized apps

blockchain-based, executable on mobile devices. The aims is

to turn any human-readable agreements into a Smart Con-

tract. Qtum uses Bitcoin’s UTXO model in order to allow the

contact execution also on mobile devices.

HumanStandardToken is a ERC20-compliant and includes

3 contracts called Token, StandardToken and HumanStan-

dardToken. The contract Token modifies ERC20 base stan-

dard in the totalSupply function because a getter function for

the totalSupply is automatically created.

PayToken (labeled TenXContract) is the token of the

TenXPay (TENX)21 project that aims to solve one of the

major problems of the cryptocurrencymarket: how you spend

cryptocurrencies in the real world. It is a portfolio-bank based

on cryptographic assets with a debit card.With an encryption-

protected off-line multi-asset instant transaction network,

the service supports unlimited cryptographic assets (initially

only supports ETH, ERC20, DASH and BTC). Users can

choose which cryptographic asset to use for payment by debit

card and ATM withdrawals. The contract calls a function

named MakeWallet. PayToken is a ERC20-compliant token.

Users can store PayToken in any ERC20-enabled wallet.

Etheroll (labeled Etheroll_old_3) is a Smart Contract of

the Ethereum Dice game project and is used to place bets

on dice games using Ethers with no deposits or sign-ups.

The dice rolls are random and cryptographied in a secure

way, thanks to the Ethereum blockchain. In order to obtain

the final results of dices, the Etheroll smart-contract invokes

the API of Random.org,22 performs sha3() encryption on its

result and on IPFS address of the TLSNotary proof. In the

18https://blog.status.im
19https://github.com/Giveth/minime
20https://qtum.org/
21https://www.tenx.tech/
22https://api.random.org/json-rpc/1/invoke

78204 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

following we will provide more detailed information of this

Smart Contract.

BAToken (labeled BatTokenContract - BAT) is the token

of the newBrave browser, created by Brendan Eich, creator of

Javascript and cofounder of Mozilla. Users are paid in digital

currency to view advertising or to click on the advertising

banners. BAT is ERC20-compliant.

Most of the smart contracts listed in Tab.5 are financial

contracts, and the description highlight the economic interest

behind the contract.We found that the several of the described

projects makes use of an ICO to fund, and consequently pro-

mote, the business idea. These projects are Etherdelta, EOS,

OmiseGo, TRON, MCAP, Golem, Status, Qtum, TENX,

Etheroll, and Brave Browser. One of the success factors of

an ICO is the team size and its composition [10], [11]. So,

projects which resort to an ICO are more likely supported by

a convincing and well-formed development team.

B. SMART CONTRACTS USAGE INDICATORS

In this section we define empirical indicators useful to

describe Smart Contracts usage from a statistical point of

view. We identified various usage indicators characterizing

how and to which extent Smart Contracts code is called or

used in the applications of the Ethereum blockchain. We

divided the usage indicators in two groups. A first group,

characterizing blockchain interaction, describes the occur-

rences in the blockchain of contract-related operations. It

contains the following indicators.

I1, Number of transactions (Tx Count): the overall number

of transactions (both in input and in output) involving the

contract.

I2, Transactions per day (Tx/day): the number of transac-

tions normalized with respect to the days of activity (DoA

namely the elapsed time in days between the contract creation

and its last transaction).

The selected indicators can be easily extracted from the

blockchain data and offer a snapshot of the impact that the

contract had on the blockchain.

A second group, developers’ interaction, includes indica-

tors describing the evolution of a contract in terms of its

development history and of its reuse to create new contracts.

It contains the following indicators.

I3, Number of Deployments: counts the total number of

contract versions deployed in the Ethereum blockchain and

verified using the etherscan service (consider that each deploy

involves a cost in Ether). We compared this indicator with the

total number of contracts having the same name.

I4, Number of versions: counts the number of versions of

a Smart Contract which are used within the same project.

This indicator consider only versions of the contract that have

been active in a certain period of time and it does not count

contracts with a low number of transactions (less than 100).

It indicates a continuous activity of development.

I5, Number of code reuse: counts the number of new con-

tracts created reusing another Smart Contract source code

belonging to a different project. As the previous indicator,

we excluded from this analysis contracts having a low number

of transactions (less than 100).

We also take into account the balance of the Smart Con-

tracts (i.e. the amount in Ether associated to the contract

address), but we don’t consider it as a good usage indicator

because it increases and decreases over time, and, further-

more, only few contracts are used as a deposit of Ether (see

subsection IV-A.3).

Tab 6 reports the values of the usage indicators for the

twenty Smart Contracts analyzed together with the compiler

version. Results show that these contracts are involved every

day in a large number of transactions and have a null balance

in most of the cases. On the other hand, the indicator value

describe the heterogeneity in the usage of these Smart Con-

tracts in terms developers’ interactions.

1) BLOCKCHAIN INTERACTION

The twenty Smart Contracts chosen have the highest value

of I1 (TxCount), namely the total number of transactions.

A transaction that involves a Smart Contract is also called

message and contains the instructions needed to execute a

function of the contract. It involves a change of blockchain

data (i.e its state). Consider that every blockchain change has

a cost, that accounts for the computational effort needed to

execute the transaction. These selected contracts are those

that have involved many changes of state of the Ethereum

blockchain.

On Tab 6 the contract BAToken, in position twenty,has a

number of transactions over seventy times higher than the

average value of the complete dataset which is 3019. The

first contract, Etherdelta, has been involved in a transaction

twenty thousand times more than the average usage. In total,

these contracts are about 0.2% of the total set but are involved

in about 61.3% of the total number of transactions. These

numbers are in line with the distribution of the number of

transaction previously reported in Fig 6. The enormously

larger usage of this subset of Smart Contracts, explains the

presence of a strong tail in the statistical distribution reported

in Fig 6 and justifies our choice of examining in detail the

most used Smart Contracts.

The values of I2 (Tx/day) are a normalization of the values

of the indicator I1, obtained dividing it by the effective usage

time. This allows us to compare Smart Contracts in terms of

frequency of interactions, evenwhen they have been deployed

in the blockchain at different times.

The number of usage days is the number of days between

the first and the last transaction of the contract. All the con-

tracts under examination are characterized by a high value of

I2, from aminimumof 479.32 up to 42130.33 transactions per

day. Contracts with a high value of I2 can be considered either

needful contracts in the Ethereum ecosystem, or contracts that

have had a extraordinary popularity in their activity period.

It is relevant the case of the contract KittyCore, that,

as described before, is a decentralized game. Considering the

value of the indicator I2 of that contract, that is the highest

value of transaction rate among the twenty selected contracts,

VOLUME 7, 2019 78205

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 6. Contract usage indicators.

we found that this contract is involved in about 30 transactions

per minute. It is associated to the contract SaleClockAuction

that also has a very high value of I2.

In Tab. 6 we reported the Days of activity (DoA) for each

contract. The contract KittyCore counts only 33 DoA. The

longest-running contracts are the ReplaySafeSplit family (all

exist and have been used for more than a year), followed by

Etherdelta and Registrar.

For what concerns the balances, only five out of twenty

Smart Contracts have non null balances and only two

have significantly high balances. Etherdelta and Dstoken,

as already described, the former is a popular wallet, the latter

is a financial token born to fund a nascent blockchain. The

analysis shows that most of the twenty Smart Contracts do

not collect ether inside.

2) DEVELOPERS’ INTERACTIONS: VERSIONS AND REUSE OF

CODE

We examined the interaction of developers with Smart Con-

tracts through the blockchain. According to the indica-

tors defined, we analyze the number of deployments (I3),

the number of versions (I4) and the number of times of code

reuse (I5) for each Smart Contract.

One of the objectives of our empirical study is to inves-

tigate if Smart Contracts have been implemented thorough

a code development process. For this reason, we checked

the history of each contract, examining the presence of past

versions and if improved versions have been deployed into

the Ethereum blockchain.

We started our investigation filtering the dataset by the

contract name, and then, since different Smart Contracts can

have the same name, by means of an accurate analysis of the

lines of code, we extracted the set of contracts referable to the

same development history. The analysis of the source code

allows to identify different contracts holding the same name.

These contracts have been analyzed as different contracts.

For computing the indicator I3 (Number of Deployments),

we consider the number of contracts referable to the same

source code. In Tab 6 we reported the I3 indicator (NoD)

together with the number of contracts with the same name

(Tot). We defined as a ‘‘new version’’ of a previous Smart

Contract each new Smart Contract that once uploaded in the

blockchain replaces the previous one in terms of blockchain

interactions. The new version could contain code changes.

We reported the values of the usage indicator I4 (Number of

Version) in Tab 6 as NoV.

Finally, for the indicator of Reuse of Code (I5) we consid-

ered as reuse of the code of a Smart Contract the cases where

the source code of the contract is used to implement a very

similar contract that has the same name but is referable to

a different project (for instance to implement a new token).

The number of reuse of code is reported in Tab 6 as RoC.

Evaluating version or reuse of code we did not consider those

Smart Contracts which have a low number of transactions

(less than one hundred), because they are rarely operational

and could be only tests. So, they do not represents properly

a new version or a reuse. In the following we analyze some

contracts, focusing on the developers interaction, namely in

terms of versions and reuse of code.

EtherDelta has eight contracts with the same name. It has

five different versions, and the last one created is the most

active. Two of the old versions are still used but they have a

low number of transactions, about one per week. We notice

that both of them have a lower amount of Ethers than the

first one, therefore we can suppose that these Smart Contracts

were used only by the contract developers and not by final

users.

ReplaySafeSplit has three different Smart Contracts in the

top twenty and all of them are active and are involved, on aver-

age, in a transaction every five minutes. By analyzing the

78206 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 7. Code metrics results in the twenty selected source codes.

code and the project’s history, we found that they have a

different usage for different projects, as explained in subsec-

tion V. We classified them as reuse of Smart Contract code,

as reported in row 19 in Table 7. The other two (rows 4 and 13)

are the examples of the reuse of code of the aforementioned

Smart Contract and they do not have new versions and are not

reused.

We found eleven contracts named Registrar. Analyzing

these contracts we found that only 3 source codes can be

evaluated in terms of the indicator I3, and the remaining have

a completely different code. In addition, the discarded Smart

Contracts have been involved in less than 10 transaction and

these were probably tests. Only one out of three is active and

belongs to the top twenty. We found one old version of this

contract, and no reuse of code.

DSToken has ten records and we found six reuse of code,

each of which derives from the Smart Contract in table 5, line

6. To confirm this, we checked on Etherscan that different

labels are associated to these (still active) six addresses.

By considering a transaction number higher than one hun-

dred and with reference to Etherscan, we found for Human-

StandardToken 11 documented reuse of code. The remaining

contracts are not evaluated in terms of reuse or new version

of code, given the low number of transactions (in the order

of units). However the code in these contracts has the same

functionalities. We can state that, among those investigated,

these two Smart Contracts are undoubtedly the most popular

in terms of reuse of code because they were used as a refer-

ence for different projects.

The Controller has two versions related to the project

Bittrex, as mentioned in subsection V.We detected a situation

similar for Registrar : only 4 Smart Contracts belong to the

project analyzed, the remaining 12 have a number of trans-

actions in the order of units and a source code completely

different. To be more precise we respectively found three

couples of Smart Contracts and 6 Smart Contracts with the

same source code or a different version of this.

Considering the records ofMCAPwe did not find different

versions or reuse of code. One of the records has a different

code and the other two are probably tests because of the

low number of transactions (in the order of units). Similarly,

GolemNetworkToken has no new versions or reuse of code.

Finally, all but one of the Smart Contracts named Etheroll

found in the dataset are related to the same project. We con-

sidered four of these as different versions and the remaining

as tests because of the low number of transactions. Actually,

the previous versions are not used. Anymore this phenom-

ena, in terms of source code improvement, is similar to the

EtherDelta case. Referring to Table 6 the Etheroll Smart

Contract in line 18 is no longer used and it has been replaced

by the current active version.23

We also analyzed the declared pragma version. We found

that in cases of different versions of the same Smart Contract,

the pragma version of newer versions is generally updated

with respect to the previous one, but not always corresponds

to the most updated version of the language. There is only

one case, the Etheroll Smart Contract,24 that does not update

the pragma version with respect to the previous one (v04.10)

even if the next version (v04.11) has already been released.

23Having address 0xD91E45416bfbBEc6e2D1ae4aC83b788A21Acf583
24Having address 0xece701c76bd00d1c3f96410a0c69ea8dfcf5f34e

VOLUME 7, 2019 78207

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

In all cases of Smart Contract updating, the developers have

deployed the new version in the blockchain, supporting the

related costs.

C. CODE METRICS

For every Smart Contract source code listed in Tab. 5 we

computed the code metrics described in Section III and the

following additional code metrics.

M5, Lines of code per Function (LpF): it is the average

number of lines of code written to implement a function.

M6,Max cyclomatic complexity (MCC): it is the max value

of the McCabe cyclomatic complexity among the cyclomatic

complexities of all functions in the contract.

M7, Sum of cyclomatic complexities (SCC): it is the sum of

the McCabe complexity of each function in the source code.

That value depends on the number of function in the con-

tract. The average cyclomatic complexity in a Smart Contract

source code is equal to the division between the values of

M7 and M4.

The last two metrics are Complexity Metrics. In par-

ticular, the cyclomatic complexity measures the number of

linearly independent paths through a function in the source

code. We computed the cyclomatic complexity according to

McCabe definition [16] and using a commercial software.25

We report in Tab. 7 the resulting values for the metrics from

M1 to M7 computed for each Smart Contract source code

belonging to the selected set.

Results in Tab. 7 allow us to compare the value of metrics

from M1 to M4 for the overall set of contracts presented in

Tab. 3 with those of the top twenty contracts having the higher

number of transactions and representing the contracts having

the larger interactions in the blockchain.

We found that the source codes of the top twenty contracts

have, on average, a value of M1 (LoC) equal to 305.35, that

is well higher, on average, than the value of M1 computed

on the full dataset (180.01 lines). In particular, exactly half of

the source codes have a value of M1 higher than 180. Results

confirm that the number of transactions and the number of

lines of code are not correlated.

Analyzing M2 in Tab 7, namely the number of comments

per line of code, we can observe a high variability of the

results. Values ranges from one line of comment every one

hundred lines of code to about one line of comment per one

line of code. On average, there are 0.41 comments per line of

code and this number is a little lower than the average value

of the full dataset (0.49).

Considering the number of declared contracts measured by

M3, and the number of declared functions measured by M4,

we can observe, on average, higher values of declarations in

comparison with the global results. In particular the average

value of M3 is 5.90 (the average value of the full dataset

is equal to 4.39) and M3 values range between a minimum

25We computed the cyclomatic metrics using Understand, that
is a scitools software. These cyclomatic metrics are described in
https://scitools.com/support/cyclomatic-complexity/

of 1 to a maximum of 16, and half of the twenty Smart

Contracts have M3 greater than 4. High values of M3 means

that source codes of Smart Contracts are written exploiting

the inheritance mechanism. The source code of KittyCore

(having the maximum number of declared contracts) is a

typical example of systematic use of the inheritance. The

structure of this contract is reported in Appendix C.

The average value of M4 is 26.70, and it is about five times

the average value of the full dataset (that is equal to 5.30).

This means that, on average, the twenty selected contracts

implement a higher number of functions. In facts, 17 out

of 20 declare more than 5 functions. Values of M4 have

minimum 1 and maximum 69. The highest values of dec-

larations is related to the contract in third position, namely

KittyCore that implements a large number of functionalities.

High values of declarations characterize also some tokens

(i.e Dstoken, EOSSale, SNT). These contracts improve the

functionalities defined in the ERC-20 standard, by adding

specific and customized features.

Analyzing the results of the metric M5 (Number of lines

per function), computed only for the set of twenty con-

tracts, we can observe that the functions have, on average,

6.30 lines. The contract GolemNetworkToken has the largest

value. Considering the ERC-20 compliant contracts, the vari-

ability of the functions length suggests that tokens are not all

implemented in the same way.

Considering the cyclomatic complexity metrics, M6 and

M7,we can observe that the majority of the source codes has a

maximum complexity (M6,MCC) lower than four (or in other

words, it is hard to find functions with cyclomatic complexity

greater than 4). Both the source code of KittyCore and the

source code of BAToken have a function characterized by

the highest value of cyclomatic complexity equal to seven.

See Appendix C for the function of KttyCore which has

the maximum cyclomatic complexity. The lower value of

M6 is equal to 2 and characterizes the contracts OMGToken,

SaleClockAuction and HumanStandardToken.

Finally, considering M7, namely the sum of the cyclomatic

complexity of each function declared in the source code,

the three most complex contracts belong to SNT, EOSSale,

and KittyCore. The three versions of ReplaySafeSplit are

characterized by a very low value of M7 because of the

low number of functions. The codes reported in Appendix B

shows that this contract has only two functions.

D. ANALYSIS OF RESULTS

Tab 8 shows the correlationmatrix betweenmetrics computed

among the twenty selected contracts. As we can expect, met-

rics values of M1, M3, M4 and M7 are mutually correlated

and this means that the longer is the code, the more complex

is the program. In particular, the sum of the cyclomatic com-

plexity (M7) and the number of declared functions (M4) have

a correlation factor that represent a strong linear relationship

of the ratio between the two metrics. The values of M5 and

M6 have a average-high value of the correlation coefficient.

78208 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 8. Cross Correlation Matrix of source code metrics.

TABLE 9. Correlation coefficients between usage indicators and code
metrics.

The metric M2 does not present particular correlations coef-

ficient.

In order to analyze the relationship between source codes

and the use of the contracts, we analyzed if results of the

applied metrics are correlated with the usage indicators.

We studied if and how the two analysis are correlated com-

puting the correlation matrix in Tab. 9 that reports correlation

coefficients computed for the twenty selected contract.

We discovered that the there is no particular connection

between these analysis. In particular, the indicator I1 (Tx

count) is weakly correlated with all the other metrics. The

indicator I2 (Tx/day) shows a interesting moderate correla-

tion with the metrics that describe size and complexity of the

source code (M1, M3, M4, M6 and M7).

VI. DISCUSSION AND RESULTS

Results of this empirical study provide a global overview of

the world of Smart Contracts. This world can be described

as very active in the usage of the blockchain, heterogeneous

in the typologies and in the code features, and supported

by an interactive and reactive development community. Our

research leads to several outstanding findings we summarize

below.

Result 1 (Impact of Solidity Language Evolution on Smart

Contracts Development): We found that the Smart Contract

developers’ community follows and constantly adhere to

the evolution of the Smart Contract programming language,

Solidity. The reasons are probably found in the need to

develop, already from the beginning, efficient and secure

Smart Contracts. In fact, the update of a Smart Contract for

bug fixing or for adding new functionalities consists in the

deployment of a new Smart Contract in the blockchain and,

in parallel, on the disposal of the old one, since there is

not possibility to update or modify the source code once the

contract is deployed on the Blockchain, as instead occurs for

traditional software. The creation of a Smart Contract leads to

a cost in Ether that depends on the dimension of its bytecode.

Result 2 (Smart Contracts Purposes): By analyzing the

purposes of various Smart Contracts we found that devel-

opers have overtaken the concept of ‘‘parties’ agreements’’

that characterizes the first era of Smart Contracts. In facts

they created several typologies of decentralized applications,

ranging from games to utility tokens. We also found that just

a few percent of the total Smart Contracts are used to deposit

ether.

Result 3 (Reuse of Code): We found strong evidences

on the practice and importance of code reuse. Thanks to

the availability of thousands Smart Contracts source codes,

developers start from already implemented contracts to create

new and more efficient applications, or updated and cus-

tomized versions of former Smart Contracts. In addition,

source codes are generally well commented, and this helps

new developers to understand their contents.

Result 4 (Contract Name Relevance): The ‘‘contract

name’’ of a deployed Smart Contract could cause some mis-

understanding. We discover that some specific names are

commonly used even if in general are associated to very

different source codes with different purposes. We can con-

clude that contract name is not representative of the contract’s

purpose and code.

Result 5 (Interaction of Deployed Smart Contracts With the

Blockchain):We analyzed the interaction of deployed Smart

Contracts with the blockchain by means of usage indicators

and we discovered that the number of transactions follow a

power-law distribution. Since we found that the balances of

the corresponding addresses follow a power-law distribution

too, we computed the correlation among the two datasets

finding no relationship between them. Indeed, Smart Con-

tracts with high balancemay use a low number of transactions

and conversely Smart Contracts with very many transactions

may have a low balance.

Result 6 (Balance and security connection): As stated

before, we found that the distribution of the wealth overtakes

the Pareto law because the wealth is strongly centralized on

very few contracts (about the 90% belongs to twenty out of

over ten thousands deployed Smart Contracts). This is related

to the variety of typologies of Smart Contracts. In particular,

most of the wealth belongs to contracts of the type wallet,

which are responsible of the management and protection

VOLUME 7, 2019 78209

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

of high amounts of cryptocurrency and consequently are

more security critical. Our analysis thus suggests that a great

advance in security with respect to cryptocurrency manage-

ment and storage can be achieved focusing on the code quality

or vulnerability analysis of just a reduced fraction of the total

number of Smart contracts deployed on Ethereum, since only

a little fraction of them holds and manages the largest part of

cryptovalues.

Result 7 (Source code analysis and code metrics): The

results of the analysis of the Source Codes give us a picture of

a collection of Smart Contracts with heterogeneous features.

These are characterized by code metrics that on average do

not assume high values (for instance, the average number of

lines of code is about one hundred and eighty lines), but have

relatively high variances. This reveals that software develop-

ment for Smart Contracts is highly heterogeneous reflecting

the fact that many deployed contracts are probably only proto-

types or trials or that many inexperienced developers deploy

contracts on Ethereum without the adoption of a structured

programming approach.

Source codes present, on average, four contract declara-

tion, revealing the use of the inheritance or the recursion

to already deployed contracts. The cross correlation analysis

shows us that the Smart Contract bytecode (that can be seen as

the payload of the transaction with which the Smart Contract

is deployed) is mildly correlated to the number of lines of

code and to the number of declared functions. We also found

that the number of transactions is not correlated with source

code features. This means that the most used Smart Contracts

are not necessarily those well or better written. This renders

even more critical the analysis of metrics and vulnerabilities

of Solidity since it may easily occur that low quality or

vulnerable code may be repeatedly and frequently used in

exchanging goods or wealth across the Blockchain addresses

or that such vulnerable code may be reused many times.

Result 8 (Detailed Analysis of Features in the Most Used

Smart Contracts): We analyzed in detail a subset of twenty

Smart Contracts, namely those involved in the highest num-

ber of transactions.

Result 8.1. Smart Contract Purposes: We discover that

they are mainly financial Smart Contracts (that implement a

token compatible with the standard ERC20). We found also

wallet, library, notary, and game Contracts. The majority of

the contracts in this subset belongs to projects funded using

an ICO, fact that emphasize the role of the development team

and justifies the use of ERC20 tokens.

Result 8.2. Definition of Empirical Usage Indicators to

Analyze Smart Contract Activity: To characterize the activity

behind these twenty Smart Contracts we define five usage

indicators. These characterize both the interaction with the

blockchain in terms of number of transaction and number of

transaction per day, and the activity of the development com-

munity in terms of number of uploads, number of versions

and number of reuse of code. We discovered that the game

contract ‘‘KittyCore’’ has had, from the beginning, a high

interaction with the blockchain. We also found that some

contracts are still active in the blockchain after years, as it is

the case of the contracts called ReplaySafeSplit. Regarding

the number of uploads and the number of ‘‘reuses of code’’,

we discovered that eleven contracts have a development

story behind it. In facts, these contracts are the results of

a continuous improvement and of the related replacement

of the old versions. In four cases we can report the release

of a new version of the contract. We found that the source

code of four contracts was reused to develop new Smart

Contracts.

Result 8.3. Source Code Metrics: Our empirical analysis

shows that the statistics of the subset of the twenty most used

Smart Contracts differ from the statistics computed on the

total set. In particular, these contracts are, on average, longer

(about three hundred lines of code) and define and contain

five times more functions than average. In addition, we dis-

cover that these two metrics are strongly correlated with the

sum of the McCabe cyclomatic complexity computed for the

functions in the source codes, namely they are more complex

than average contracts. Finally, we computed the correlation

coefficient between source codemetrics and usage indicators.

Our results reveal that the number of transactions per day

(that represents the frequency of usage of a Smart Contract) is

moderately correlated with the number of lines of code, with

the number of declared functions, and with the cyclomatic

complexity of the source code.

VII. CONCLUSION

This work presents the setup, the analysis and the results of

an empirical study on a set of Ethereum Smart Contracts and

on their source code. We acquired a dataset of 10174 source

codes, published by the beginning of 2018, and we sta-

tistically analyzed and characterized the overall dataset by

mean of different software measures. Our empirical study

examined the dataset from several points of view, like the

use and the evolution of the Solidity compiler version and

the related Solidity constructs, the number of interactions

and transactions among Smart Contracts and Blockchain,

the purpose and the naming practices for the Smart Contracts,

the code reuse. Our empirical study is devoted to a complete

characterization of the body of information available from

metadata recovered by the analysis of Smart Contracts source

code and by various information related to the Blockchain

environment. The study contributes to understanding the

interaction between Smart Contract and Blockchain and to

the knowledge of the main characteristics of contracts written

in Solidity. It also provides a description of the Ethereum

Smart Contracts as elements of a system that is very active in

the usage of the Blockchain, heterogeneous in the typologies

and in the code features, and supported by an interacting and

reactive development community.

We enrich the research providing more explicit knowledge

about the Ethereum Smart Contract domain gathering eight

relevant empirical results.

Future works should consider to analyze a higher number

of Smart Contracts (taking into account the set of Smart

78210 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

Contracts without available source code), further and specific

code metrics (i.e to evaluate eventual code optimization in

order to limit the Ethereum gas consumption or to measure

the use of libraries and the interaction with already deployed

contracts), other usage indicators (such us the internal trans-

actions and the interaction between deployed contracts) and

a wider analysis of correlation.

APPENDIX

SAMPLE OF SMART CONTRACTS SOURCE CODES

A. CROWDSALE

A portion of the source code of the contract Crowdsale

deployed at the address:

0xa1877c74562821ff59ffc0bc999e6a2e164f4d87. This

Smart Contract is named ‘‘Crowdsale’’.

The source code includes two contract definition. The first

contract is token and the second is Crowdsale. The con-

tract token is an interface. In a interface, all functions are

only declared but not implemented. The contract Crowdsale

declare an ‘‘instance’’ of the contract token called tokenRe-

ward and assign to it the contents of an already deployed

Smart Contract. In the source code, the instance of a contract

can be used to execute its functionalities.

B. REPLAYSAFESPLIT

The original source code of ReplaySafeSplit. This code has

the lowest sum of cyclomatic complexity belong the set of the

twenty most used Smart Contracts.

Its source code is available on etherscan.io at the address:

0xE94b04a0FeD112f3664e45adb2B8915693dD5FF3

C. KITTYCORE

Contract declaration and the listing of the function isValid-

MatingPair. This function has the higher cyclomatic com-

plexity. The contract name of the deployed contract corre-

sponds with the name of the last contract declaration. The

last contract inherits most of the contracts declared above.

The function isValidMatingPair is the function which has the

highest cyclomatic complexity among the contract. The com-

plete source code is available on etherscan.io at the address:

0x06012c8cf97BEaD5deAe237070F9587f8E7A266d

VOLUME 7, 2019 78211

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

ACKNOWLEDGMENTS

The authors would like to thank the team ofetherscan.io

from which the authors extracted our source code dataset.

REFERENCES

[1] M. Bartoletti, T. Cimoli, and R. Zunino, ‘‘Fun with bitcoin smart con-

tracts,’’ in Proc. Int. Symp. Leveraging Appl. Formal Methods, Oct. 2018,

pp. 432–449.

[2] M. Bartoletti and L. Pompianu, ‘‘An empirical analysis of smart con-

tracts: Platforms, applications, and design patterns,’’ in Proc. Int. Conf.

Financial Cryptogr. Data Secur. Cham, Switzerland: Springer, Nov. 2017,

pp. 494–509.

[3] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, ‘‘Smartinspect:

Smart contract inspection technical report,’’ Inria, Lille, France, Tech.

Rep., Dec. 2017. [Online]. Available: https://hal.inria.fr/hal-01671196

[4] V. Buterin, ‘‘Ethereum white paper,’’ Ethereum.org, Tech. Rep., 2014.

[Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper

[5] C. Cachin, ‘‘Architecture of the hyperledger blockchain fabric,’’ in

Proc. Workshop Distrib. Cryptocurrencies Consensus Ledgers, Jul. 2016,

pp. 1–4.

[6] T. Cui et al., ‘‘Achain blockchain whitepaper,’’ Achain, China, Tech.

Rep., 2017. [Online]. Available: https://www.achain.com/documents/

Whitepaper.pdf

[7] P. Dai, N. Mahi, J. Earls, and A. Norta. (2017). Smart-Contract Value-

Transfer Protocols on a Distributed Mobile Application Platform.

[Online]. Available: https://qtum.org/uploads/files/cf6d69348ca50dd

985b60425ccf282f3.pdf

[8] H. Rocha, S. Ducasse, M. Denker, and J. Lecerf, ‘‘Solidity parsing

using SmaCC: Challenges and irregularities,’’ in Proc. 12th Int. Workshop

Smalltalk Technol. (IWST), Sep. 2017, Art. no. 2.

[9] G. Destefanis, A. Bracciali, M. Marchesi, M. Ortu, R. Tonelli, and

R. Hierons, ‘‘Smart contracts vulnerabilities: A call for blockchain soft-

ware engineering?’’ in Proc. Int. Workshop Blockchain Oriented Softw.

Eng. (IWBOSE), Mar. 2018, pp. 19–25.

[10] G. Fenu, L.Marchesi,M.Marchesi, andR. Tonelli, ‘‘The ICO phenomenon

and its relationships with ethereum smart contract environment,’’ 2018,

arXiv:1803.01394. [Online]. Available: https://arxiv.org/abs/1803.01394

[11] S. Ibba, A. Pinna, G. Baralla, and M. Marchesi, ‘‘ICOs overview: Should

investors choose an ICO developed with the lean startup methodology?’’

in Proc. Int. Conf. Agile Softw. Develop. Cham, Switzerland: Springer,

May 2018, pp. 293–308.

[12] S. Ibba, A. Pinna, M. Seu, and F. E. Pani, ‘‘CitySense: Blockchain-oriented

smart cities,’’ Proc. Sci. Workshops, New York, NY, USA, May 2017,

Art. no. 12.

[13] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making smart

contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur.,

Oct. 2016, pp. 254–269.

[14] K. Mannaro, A. Pinna, and M. Marchesi, ‘‘Crypto-trading: Blockchain-

oriented energy market,’’ in Proc. AEIT Int. Annu. Conf., Sep. 2017,

pp. 1–5.

[15] K. Mannaro, G. Baralla, A. Pinna, and S. Ibba, ‘‘A blockchain approach

applied to a teledermatology platform in the sardinian region (italy),’’

Information, vol. 9, no. 2, p. 44, Feb. 2018.

[16] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng., vol. SE-

2, no. 4, pp. 308–320, Dec. 1976.

[17] R. Norvill, B. B. F. Pontiveros, R. State, I. Awan, and A. Cullen, ‘‘Auto-

mated labeling of unknown contracts in ethereum,’’ in Proc. 26th Int. Conf.

Comput. Commun. Netw. (ICCCN), Jul./Aug. 2017, pp. 1–6

[18] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, ‘‘Blockchain-oriented

software engineering: Challenges and new directions,’’ inProc. IEEE/ACM

39th Int. Conf. Softw. Eng. Companion (ICSE-C), Piscataway, NJ, USA,

May 2017. pp. 169–171.

[19] M. Suiche, ‘‘Porosity: A decompiler for blockchain-based smart contracts

bytecode,’’ DEF CON, vol. 25, p. 11, Jul. 2017.

[20] M. Swan, Blockchain: Blueprint for a New Economy. Newton, MA, USA:

O’Reilly Media, 2015.

[21] N. Szabo, ‘‘The idea of smart contracts,’’ Satoshi Nakamoto Institutue,

Tech. Rep., 1997. [Online]. Available: https://nakamotoinstitute.org/the-

idea-of-smart-contracts/

[22] R. Tonelli, G. Destefanis, M. Marchesi, and M. Ortu, ‘‘Smart Contracts

Software Metrics: A First Study,’’ Feb. 2018, arXiv:1802.01517. [Online].

Available: https://arxiv.org/abs/1802.01517

[23] Z. Wan, D. Lo, X. Xia, and L. Cai, ‘‘Bug characteristics in blockchain

systems: A large-scale empirical study,’’ in Proc. IEEE/ACM 14th Int.

Conf. Mining Softw. Repositories (MSR), May 2017, pp. 413–424.

[24] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction

ledger,’’ Ethereum project yellow paper, vol. 151, pp. 1–32, Apr. 2014.

ANDREA PINNA received the B.S. and M.S.

degrees in electronic engineering and the Ph.D.

degree in computer engineering from the Univer-

sity of Cagliari, in 2012 and 2018, respectively,

where he has been a Research Fellow, since 2018.

His research interest concerns the study of

blockchain technology and its applications. His

topics of interest include the study of smart con-

tracts, the engineering aspects in the development

of decentralized applications, and the enhance-

ment of the software sustainability thanks to the blockchain technology.

He also dealt with the study of data stored inside blockchain of network

features and users’ behaviors.

SIMONA IBBA received the B.S. and M.S.

degrees in electronic engineering and the Ph.D.

degree in computer engineering from the Univer-

sity of Cagliari, in 2019.

Her scientific research activities are focused

on the study of blockchain-based software and in

particular on the application of the agile method-

ologies in blockchain software development. Her

interests also include the knowledge management

development and in particular the knowledge rep-

resentation design, strategies for knowledge management, and the study of

taxonomies, folksonomies, digital libraries, and scholarly literature.

GAVINA BARALLA received the master’s degree

in electronic engineering from the University of

Cagliari, in 2012, where she is currently pursuing

the Ph.D. degree in electronic and computer engi-

neering.

Her research interests include knowledge

management referred to semantic web, use of

taxonomies, ontologies, linked data, blockchain

technology, and smart contracts.

78212 VOLUME 7, 2019

etherscan.io

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

ROBERTO TONELLI received the Ph.D. degrees

in physics and in computer engineering, in 2000

and 2012, respectively.

He is currently a Temporary Researcher and a

Professor with the University of Cagliari, Italy.

The main topic of his research has been the study

of power laws in software systems within the

perspective of describing software quality. Since

2014, he has been extended his research interest to

the blockchain technology. His research interests

are widespread and multidisciplinary.

MICHELE MARCHESI received the degree in

Electronic engineering from the University of

Genova, in 1975. He has been a Full Professor with

the Faculty of Engineering, University of Cagliari,

since 1994. Since 2016, he has been a Full Pro-

fessor with the Department of Mathematics and

Computer Science, University of Cagliari, where

he teaches software engineering course.

He has authored over 200 international publica-

tions, including over 70 in the magazine. He has

been one of the first in Italy to deal with OOP, since 1986. He was a Founding

Member of TABOO, the Italian association on object-oriented techniques.

He has also worked on object analysis and design, UML language and

metrics for object-oriented systems since the introduction of these research

themes. In 1998, he was the first in Italy to deal with Extreme Program-

ming (XP) and agile methodologies for software production. He organized

the first andmost important world conferences on Extreme Programming and

Agile Processes in Software Engineering, Sardinia, from 2000 to 2002. Since

2014, being among the first in Italy, he has extended his research interest

to blockchain technologies, obtaining significant results in the scientific

community.

VOLUME 7, 2019 78213

	INTRODUCTION
	RELATED WORKS
	BACKGROUND
	THE ETHEREUM SYSTEM
	SOLIDITY SMART CONTRACTS

	ANALYSIS OF THE SMART CONTRACTS DATASET
	SMART CONTRACTS PARAMETERS: ANALYSIS
	CONTRACT NAME
	COMPILER VERSION
	BALANCES AND TRANSACTIONS

	MEASURES ON SMART CONTRACTS SOURCE CODES
	VOLUME METRICS
	CONTRACT ORIENTED METRICS

	DETAILED ANALYSIS OF THE TOP 20 USED SMART CONTRACTS
	SMART CONTRACTS DESCRIPTION
	ETHERDELTA
	REPLAYSAFESPLIT
	REGISTRAR
	CONTROLLER
	GOLEM NETWORK TOKEN (GNT)

	SMART CONTRACTS USAGE INDICATORS
	BLOCKCHAIN INTERACTION
	DEVELOPERS' INTERACTIONS: VERSIONS AND REUSE OF CODE

	CODE METRICS
	ANALYSIS OF RESULTS

	DISCUSSION AND RESULTS
	CONCLUSION
	CROWDSALE
	REPLAYSAFESPLIT
	KITTYCORE

	REFERENCES
	Biographies
	ANDREA PINNA
	SIMONA IBBA
	GAVINA BARALLA
	ROBERTO TONELLI
	MICHELE MARCHESI

