
ILLII,o.°°,,+m°,,,2-.-5,+.,+Lml_IIIII_
,:.+LIItI_

IIIII'• J I.- i,++

+'8
IIIIIN11111'----4+"----+

\

t o lsga

A Nlassi,'ely Parallel Adaptive Finite Elenieiit Method with I)yiianlic I,oad ilalailcing O _ T I

Karcn I]). l)evine 1"2and Joseph E. Flaherty I Stephen R. Wheat2 Arthur B. Maccabe2'3
Departnaenl of Computer Science MP Computing Research Laboratory Department of Computer Science
Rensselaer Polytechnic Institute Department 1424 The University of New Mexico

Troy, NY 12!80 Sandia National Laboratories Albuquerque, NM 8713 i
kddevin@cs.sandia.gov Albuquerque, NM 87185-5800 maccabe@cs.unm.edu

flaherje@cs.rpi.edu srwheat@cs.sandia.gov

Abstract: We construct massively parallel, adaptive finite element methods for the solution of hyperbolic conservation

laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method

using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative

fluxes and projection limiting prevent oscillations near solution discontinuities. The resulting method is of high order

and may be parallelized efficiently on MIMD computers. We demonstrate parallel efficiency through computations on

a 1024-processor nCUBE/2 hypercube. We also present results using adaptive p-refinement to reduce the

computational cost of the method. We describe tiling, a dynamic, element-based data migration system. Tiling

dynamically maintains global load balance in the adaptive method by overlapping neighborhoods of processors, where

each neighborhood performs local load balancing. We demonstrate the effectiveness of the dynamic load balancing

with adaptive p-refinement examples.

1. Introduction

We are studying massively parallel, adaptive finite element methods for the solution of systems of

d-dimensional hyperbolic conservation laws of the form

d

ut + Z fi (u) Xi -- 0, X E _'-_,t > 0, (la)
i=1

subject to the initial conditions

u(x, 0) = u°(x), x _ D u aD, (lb)

and appropriate well-posed boundary conditions on af_. High-order methods and the combination of mesh

refinement and order variation (hp-refinement) have been shown to produce effective solution techniques

for elliptic [16] and parabolic [1, 2, 3] problems, lt is, thus, natural to determine whether or not they will be

as efficient when applied to hyperbolic systems. To achieve high-order accuracy, finite difference schemes

for (1), such as Total Variation Diminishing (TVD) [21, 23] and Essentially Non-Oscillatory (ENO) [19]

schemes, use a computational stencil that enlarges with order. The wide stencil makes the methods difficult

to implement near irregular boundaries, and limits efficient implementation on massively parallel

computers, since data may have to be passed between non-adjacent processors. Finite element methods,

! This work was partially supported by Sandia National Laboratories under Research Agreement #67-8709.

2 This work was performed at Sandia National Laboratories, operated for the U.S. Department of Energy under
contract #DE-AC04-76DP00789.

3 On Faculty Sabbatical to Sandia National I.,aboratories. I_ __ T £ O

IllnlJ I L
DISTI_BUTION t::IESTRICT_EI TO U.S. ONLY _.(/_

I!

I

however, can easily model problems having complicated geometries and have stencils that arc invariant

with method order.

With a motivation to explore adaptive high-order parallel methods, we abandon the traditional finite

element formulation in favor of a local discontinuous Galerkin method of Cockburn and Shu [7, 8, 9, 18].

Spatially, the solution is approximated by a basis of piecewise Legendre polynomials that are continuous on

an element, but may have discontinuities at interelement boundaries. By not enforcing global continuity, we

hope to approximate discontinuous solutions of (1) more accurately. Fluxes at element boundaries are

computed by solving an approximate Riemann problem with a projection limiter applied to keep the average

solution monotone near discontinuities [23]. An adaptive limiting procedure maintains high-order accuracy

near smooth extrema while improving global monotonicity near discontinuities relative to other techniques

[9]. Time discretization is performed by an explicit Runge-Kutta method.

Parallel performance in one and two dimensions has nearly perfect scaled speed-up [10] when the

local Galerkin method is implemented on an NCUBF__J2hypercube computer. When adaptive p-refinement

is incorporated into the method, parallel performance substantially degrades due to processor load

imbalance. To determine an efficient domain decomposition and processor mapping, many massively

parallel finite element methods use static load balancing [11, 12, 13] as a preprocessor to the finite element

calculation. Adaptive methods, however, require dynamic load balancing to adjust changing processor loads

as the computation proceeds. We have developed a dynamic, fine-grained, element-based data migration

algorithm called tiling that maintains global load balance by overlapping neighborhoods of processors,

where each neighborhood performs local load balancing. The tiling system supports a large class of finite

element and finite difference applications, lt provides an automatic element management system library to

which a programmer integrates the application by providing subroutines for the application's data exchange

pattern, element processing, and boundary processing. Dynamic migration of elements from processor to

processor is automatically performed by the run-time system.

The effectiveness of the tiling system has been demonstrated for non-adaptive finite difference and

finite element methods whose geometries and boundary conditions create load imbalance [24]. We

incorporate the adaptive p-refinement method into the tiling system to recover the parallel efficiency lost

to load imbalance in the adaptive method, and demonstrate the tiling system's effectiveness on problems

with changing worL loads with several experiments on the nCUBE/2.

....

2

p,

w

2. The Discontinuous Galerkin Method in One Dimension

To simplify the presentation, consider a one-dimensional (d = I) system of conservation laws (1),

and partition rf2 into subintervals (xj_ 1, xj), j = I, 2.... , J. Construct a weak form of the problem by

multiplying (la) by a test function v e L2(Xj_l,Xj) and integrating the result on (Xj_l,. _) while

integrating the flux term by parts to obtain

,,-j xj

f xj 1 f vTf(u)dx 0, for alive L 2d vTudx + vTf (U) Ixjdt _ - = (xi_ i. xi). (2)
x__l xj_l

Use a linear' transformation to map (xj_ 1, xi) onto a "canonical element" -1 < _ < 1 and obtain

i 1

AXj d
(vTud_+vTf(u) ll_l - j'v_'f(u)d_ = 0, forall ve L2(-1 1) (3a)2 dt _ _- ' '
-I -1

where

Axj = xj-xj_l, j = 1,2 J. (3b)

Approximate u(_, t) e L2(-I, 1) by the pth degree polynomial Uj(_, t) expressed in terms of a basis of

Legendre polynomials as

p

p "
u(_, t) = Uj(_, t) = Z Cjk(t) k(_), _ e (-1, 1) (4)

k=0

Substituting the polynomial approximation (4) into (3), selecting v to be proportional to Pk (_) '

and using the orthogonality properties of Legendre polynomials [22], we determine cjk, j = 1, 2, ..., J,

k=O,l p,

1

zXxj .
2k + l eJk + f(Uj(l, t))- (-1)kf(uj(-l,t)) - f Pk'(_)f(Uj)d_ = 0. (5a)

-I

The ejk are initialized by L2 projection of the initial data (1) onto the space of Legendre

polynomials, i.e.,

1

fPk(_)[Uj(_'O)-uO(x(_))]d_ = O,j = 1,2,...,J,k = O, l ,p. (5b)
-I

Integral terms in (5a) arc cvaluatcd exactly for linear problems, using lhc properties of l_cgcndrc

polynomials [22], oi llumcrically cising (K + I)/2-point Gauss-Legendrcquadrature. The boundary flux

f (Uj (1, t)) is approxiulated by a numerical flux function li (Uj(I, t), Uj+ i(-1, t)) . Presently, we use a

Lax-Friedrichs numerical flux

1

h(UL,UR) = [f(U/) +f(U R)-17<1(UR- UL)], (5c)

where E is the maximum eigenvalue of the Jacobian fu(U) on UL < U < UR. Other numerical flux
la,t

functions [9, 19] may improve performance and we shall investigate this possibility. Runge-Kutta

integration of order p is used for temporal integration.

In regions where the solution of (1) is smooth, the scheme (4, 5) produces the O(Axp + 1),

Ax = max Axj,
j = 1,2.....] (6)

convergence expected for a pth-degree approximation [9]. When p > 0, projection limiting is needed to

prevent spurious oscil!atio,ls near solution discontinuities. With projection limiting, the solution Uj(_, t),

j = 1, 2.... , J, is restricted after each Runge-Kutta stage to eliminate oscillations. Cockburn and Shu [9]

describe a procedure for ihe projection limiting of scalar problems that prevents the approximate solution

on an element from taking values outside of the range spanned by the neighboring solution averages by

comparing deviations at element endpoints with differences of neighboring elements' average values. While

preserving monotonicity of the average numerical solution, this limiting scheme flattens solutions near

smooth extrema so that first-order accuracy is obtained there. To overcome this deficiency, we developed a

limiting scheme that maintains monotonicity of solution moments on neighboring elements. (For

comparisons of the two limiting schemes, see [6].) Using orthogonality properties of Legendre polynomials

and (4), solution moments of a scalar problem are given by

I

l._Pk (_)d_ - 2k+ lCj k' k = 0, 1, ...,p - 1. (7a)
-I

Thus, to keep the k ttr moment monotone, we must keep cj_ monotone on neighboring elements.

Differentiating (4),

Ok _ t:+! P k

{)_-_-Uj(_,t) = H (2m- l)cjk + H (2m- l)cj._:+,_ + Z cj,,,(t)d_-P,,,(_)" (7b)m = I m = 1 m = k + 2
....

u

Then, to keep c k, k - 0, 1..... p- I, monotone, we limit Cj,k + I a._

(2k+ I)Cj, k+ 1 = mi,,,,,od((2k + I)C),k+l, Cj.4.l,k-_j,k, Cj,k-_j_l,k). (7c)

where

minmod(a,b,c) = _ sgn(a) min(lal,[b],]cl), if sgn(a) =sgn(b)=sgn(c) (7d)
[0, otherwise.

The limiter (7) is applied adaptively. First, the highest-order coefficient is limited. Then the limiter is

applied to successively lower-order coefficients when the next higher coefficient on the interval has been

changed by the limiting. In this way, the limiting is applied only where it is needed, and accuracy is retained

in smooth regions.

For vector systems, the scalar limiting function can be applied component-wise; however,

Cockburn, et al. [8] showed that this simple extension of the limiting does not have a Total Variational

Bounded (TVB) theory even for linear systems. Indeed, they observed small oscillations in their

computational examples. To improve accuracy at the price of additional computation, we apply the limiter

to the characteristic fields of the system [8, 14]. The diagonalizing matrices T (u) and T-I (u) (consisting

of the right and left eigenvectors of the Jacobian fu) are evaluated using the average values of Uj,

j = 1, 2, ..., J. The scalar projeo'.ion limiter is applied to each field of the characteristic vector. The re._ult

is then projected back to the physical space by post-multiplication by T -1 (Uj).

Example I. Consider the linear scalar problem

ut+u x = 0,-_<x<_,t>0, (8a)

u(x,O) = sin(x),-_<x<_, (Sb)

with periodic boundary data.

We verify the convergence rate of the one-dimensional method by solving (8) using (5) with no

limiting. In Figure I, we show the global L l -error

L

II. - u Ii,- fI,, -.
-L

versus the number of elements for p = 0, 1..... 4. The slope of the lines indicates that the order of the

method is O (Ax l' + 1)

5

Ix i() I

i x I ()() _"_'_ _

lxl() -I

I x 10 .2

1
ix !0 "3

lxlO "4
0

_-l ix 10_5 "-- 2

IxlO "6

I x 1(])-7

--3
lxlO -8

lxlO -9

Ix lO -10 I I "' ' ' ' ' ' """"

i x 10 0 1x ! 0 ! 1 x 10 2 1 x 1():_

Number of Elements

Fig.re !. LI-error vs. the number of elements for Example I with p = 0 to 4.

Example 2. Consider the periodic initial value problem for Burgers' equation

2
u

(-_-) = O,t>O, (lOa)HI4-
X

1 1

uO(x) = _+_sin(xx). (lOb)

Solutions of (10) at time t = 1.1, obtained on a 32-element mesh for p = O, 1, and 2 using an upwind

numerical flux

f(UL), if f'(u) >0
h (UL,

UR) = f(UR), if f'(u) <0

with moment limiting (7), are shown in Figure 2. The improved solution accuracy when p is increased f,onl

0 to 2 can easily be seen. With p = 2, the limiter (7) maintained third-order accuracy in smooth regions of

the solution (see 'Fable I), produced a sharp shock, and preserved average as well as global monotonicity

on ali but one subinterval.

6

i

I I I---

u
m

m

0.8 -- 0.8- 0.8-
i

0.6 0.6 - 0.6 -

0.4 0.4- 0.4

0.2 0.2 - 0.2

Ol''''i I I 0 i I I Ol I I I
- 1 -0.5 0 0.5 1 -0.5 0 0.5 - I -0.5 0 0.5

Figure 2. Exact (line) and numerical (o) solutionsof Example 2for p=O, 1, and 2 using the moment limiter (7).
The improved solution accuracy for p=2 is clearly seen. (Finite element solutions are shown at eleven points per

element.)

Number of Elements Error in L 1Norm Order

32 2.39585e-05

64 1.64509e-06 3.86

128 1.68787e-07 3.28

256 1.79387e-08 3.23

512 1.90090e-09 3.23
I

Table 1. Convergence of(5) withp = 2 and limiter(7) in smoothregionsof Example 2. Error was measured in smooth
region x _ (-!,-0.5675) t.) (-0.375, 1) using (9).

Example 3. The one-dimensional Euler equations of gas dynamics can be written in the form (1),

withu(x,t) = [p,m,e]7",andf(u(x,t)) = [pq, mq+ P, eq+ Pq]T, where p, P, m, q,and e arethe

density, pressure, momentum (m = pq), velocity, and energy, respectively. The system is completed with

the ideal equation of state

1

P = (T-I) (e-_pq2)

where T is the ratio of specific heats, taken here as !.4. We consider Sod's shock tube Riemann problem [20]

[pO, qO, pOlT` = { [1,0,117", if x_<0.5[0.125,0,0.117", if x>0.5

The problem is solved using a piecewise quadratic approximation (p = 2) on a 64-element mesh.

In Figure 3, we show the density, pressure, and velocity at time t = 0.1 using limiter (7). The solution

7

method sharply captures both shocks and contact discontinuities, and the high-order coefficients are

determined to preserve average and, to a large extent, global monotonicity.

density] pressure

' _ I 1

0.8 0,8-

0.6. 0.6-

0,4. 0.4-

0.2, 0.2

0 '' ' ' a ' , . , ,]0 , , , , i
05

.. , velocity
0 I ,i,,i

0 0.5

Figure 3. Density, pressure, and velocity at t--O.I for Example 3 with p =2 using the moment limiter. (Solutions
are shown at eleven points per element.)

3. The Discontinuous Galerkin Method in Two Dimensions

The two-dimensional method is a direct extension of the one-dimensional method. For simplicity,

let us write (1) as "

8

.g(u) - O, (x,y) c -Q., t>(), (lla)ti I + f (u) ._ . _,

u (x, y, O) - u°(x, y), (x, y) _ _2 u _-2. (1 lb)

Restricting _,2to be rectangular, partition it into rectangular elements

czO.= {(x,y)lxi_i<x<xi, Yj_l<_y<_yj},i= 1,2,...,l,j = 1,2 ,J.

Representing u(x, y, t) on _q by a basis of tensor products of Legendre polynomials on the canonical

element_c = { (_'q)l-l<_'q<l}

p p

u (_, q, t) -- Uij(_, q, t) = Z Z cijkmPk(_)Pm(q)' (_' q) _ _C' (12)
k=Om=O

and constructing a weak form of (11) as in Section 2, we find

(2k+ 1) (2m+ 1)

(zijk,,, = 2AxiAY j (I i +I2+13), k,m = O, !, ...,p, (13a)

where

I I

I i : - j" _ [AyjP k' (_) Pm(rl)f(Uij) + AxiPk(_)Pm'(rl)g (U/j)]d_drl, (13b)
-1-1

!

12 = Ayj _ [Pm(rl)f(U/j(1, rl, t)) - (-1)kpm(n)f(U_i(-1, rl, t))]dri, (13c)
-I

1

13 : Axi _ [Pk(_)g (U/j(_, 1, t)) - (-l)'nPk(_)g (U/j(_,-1, t))] d_. (13d)
-1

The boundary fluxes f (Uij(+I, rl, t)) and g (Uij(_, +1, t)), and initial data cijkm(0) are approximated by

the Lax-Friedrichs numerical flux (5), and L2-projection respectively.

Following Biswas [5], we apply the one-dimensional projection limiter (7) along each of the two

spatial directions. Thus, for a pth degree approximation (p > 1), we first limit the coefficients cijpO and

Cijop. If further limiting is necessary and ifp > 2, we also lirnit the coefficients cij ' p-l, 0 and cij ' O,p-I' and

continue as in the one-dimensional case. "Cross-product" coefficients, Cijpp , Cijkp, and cijpk, k ¢: p > 1, are

not limited. Biswas [5] conjectured that these coefficients have a lesser effect ota the numerical solution than

• ..

either Cijl, 0 Of CijOp ,_illCC tl_cy arc at least ono ordor higher. Our experimental results and those of Biswas

[5] indicate this to bc true; however, a more rigorous analysis is necessary.

4. Adaptive p-Relinement

We have begun experiments with an adaptive p-refinement version of the two-dimensional method

(13) using a method-of-lines approach. A spatial error estimate is used to control order variation procedures

that attempt to keep the global L l -error (9) less than a specified tolerance TOL by maintaining

TOL

Eij (t)<TOLL- IJ ,i = 1,2,...,/,j = 1,2,...,J, (14)

where Eij is the maximum local L 1-error estimate of the solution vector on element f_7. For these initial

experiments, we use a p-refinement spatial error estimate:

1 1

Eij(t) = j" ,)'[UP+ 1(_, 11, t)- UP(G, 11, t)ld_d11 (15)
-i -1

where UO is the pth_degree approximation of u. While this estimate is computationaily expensive, it is still

less expensive than mesh-refinement estimates such as Richardson's extrapolation [17] and can be used to

reduce the effort involved in recomputing Uij and its error estimate when enrichment is needed. Instead of

recomputing Uij (t + At) when a higher-order approximation is needed, set

Uij (t + At) = U p+ t (t + At). Initialize the new error estimate at time t

p+2

UP+2(t) = UPj+l(t)+ Z [cij, p+2, mPp+2(_)Pm(11)+cij, m,p+2Pm(_)Pp +2(11)] (16)
m = 0

with cij ' p + 2, m = cij, ,,, p + 2 = 0, m = 0, 1, ..., p + 2, and recompute only U p+ 2 over the time step.

We initialize Uij, i = 1, 2.... , I, j = 1, 2, ..., J, to the lowest-degree polynomial satisfying

xi 3)

f j" lu0(x, y)- Uij(_(x), 11(y), 0) Idydx <_TOL L" (17)

xi-lYj-I oo

After each time step, we compute Eij, i = 1,2,...,I, j = 1,2 J. If E/j>TOL L , we increase the

polynomial degree of U0. The soltttion U/j and the error estimate are recomputed on enriched elements

until F 0 < TOL L on ali elements when the time step is accepted.

..

10

Addition_LI c_mputation_ll savings are pos,_iblc, by prcxticting the degree c_t the _ll_l_mxim;ttiotl

needed to s_ltisty the _cct_racy requirements during the next time step. After a time step i._ accepted, if

Eij > It "I'OI_ for i-tmc._._ (0, 1] increase the degree of Uij(t + At) by settingIll(I._." t

p +

Uij(t+At) = U o l(t+At), and define U/'+2(t+At)0 according to (16). If Eij<llmitTOLt. for

Hmi_z _. [0, 1), decrease the degree of Uij (t + At) by setting cop m = Cijmp = 0, m = 0, 1, ..., p, and of

JP+ = = 0, m = 0, 1 p + I.
t ij I(t + At) by setting cii ' I_+ I, m c0, m, 1'+ I

Example 4. We solve

ut+2Ux+2Uy = 0,0<x,y<l,t>0, (18a)

by both fixed-order and adaptive-order methods on 0< t<0.1 with initial and Dirichlet boundary

conditions specified so that the exact solution is

1

u(x,y,t) -- _(1-tanh(20x-10y-20t+5)),0<x,y<l. (18b)

In Figure 4, we show the exact solution of (18) at time t = 0 and the adaptive 16 x 16-element mesh

generated to satisfy the initial data for TOL L = 1.0 x 10-5.

I I
I I I

I I

Vl p=o Mp=/

Nip=2 Nip=3

Figure 4. Exact sohaion of(18) at time t=O and adaptive p-@nement mesh generated for local error tolerance
0.00001.

In Figure 5, we show the global L i -error versus the CPU time tbr the fixed-order method with

p = 0, i, and 2 on 8 x 8, 16 x 16, 32 x 32, and 64 x 64-element meshes, and the p-adaptive method,

Hma x = 0.9, ttmio_ = 0.1, and local error tolerances TOL L ranging from 5 x 10-9 to 5 x 10-4 on a

!1

16 x !6-element mesh. The p-adaptive method requires more computation than the fixed-order methods for

large error tolerances, but because of its faster convergence rate, it requires less work than the fixed-order

methods to obtain small errors.

lxlO o

lxlO-'

p=O

lxlO -2

lxlO -4

p=2

1 x 10 -5 Adaptive 17 -refinement

IxlO -6 i i i l

lxlO 0 1 xlO ! lxlO 2 lxlO 3 lxlO 4 1 xlO 5

CPU Time

Figure 5. Convergence of the p-adaptive method compared with fixed-order methods for Example 4.

" 5. Parallel Implementation of the One- and 'l_vo-Dimensionai Methods

Both the one- and two-dimensional methods are well suited to parallelization on massively parallel

computers. The computational stencil involves only nearest-neighbor communication regardless of the

degree of the piecewise polynomial approximation and the spatial dimension (see Figure 6). Additional

storage is needed for only one row of "ghost" elements (elements whose values must be obtained from a

neighboring processor) along each edge of the processor's uniform subdomain. Thus, the size of the

problems solved can be scaled easily with the number of processors.

12

I

I

= :. :,;! I :! •

:::I:#I"I :I ::| ?I l
I I ! ! :) I-I | :1 :.)::::.',:.:>i .,-. • ,. :::::::::::::::::::::::

| I I 1 I | [! I I I I I I | I | | I I I I I ! I I I i I |
I I :| I :1"::1 i:t I :l I::l::l":]:::.:|::.l:l I | I I..:1:.! I ! I:::i:i:::._l:':l":l.L:|:::::li::t::l I

I i: I I '1.1 il.::'.:]i:]: I::-:1_?1:'_:i-:1:!::::1 I [[::1:::1 I I ::I[l: 1 i ::+:!:;4:::l::!:["l : I:::::1+:ili':::l::¢l:i:';I:i::| I _ I I""1":/::1 I ! :-'I I

' : :: :_ I I.l:l:::! I I:li:l:::l::l:.::l:::l::_'i:-l:'..l I

I I :.I .:1 ::I I I ?! ::I

! :_l:_::t::Ii ::I I I: I .:1.: I I I :i::;::_1::':::i::t :1 :::l:::::l:.:::ll.'t]

i:| ,::I|:.:I I ::::::::::::::::::::::::::::::::::I _ I !] "1 I I '1::_:1::::il::::i-::1:':i::!:'!.::::!'::'! II I I I "1"I ::1::1:::1:1::1:::::::::::::::::::::::::::I [._.LI '1:::1 I I :::::::::::::::::::::::::::::: ::1 ::1 I
•I i..l ,:._J:..! __..:._l._']:i..J] ITI :l::l i ! :.1:::!::!1:: ,. I:.::i::::I--L:, ,

I I I I.'i i 1.1:1:1.t:.!::4::1 ":t.1_.]
_111 I I I i I I I I I I I

Figure 6. Communication pattetT_sfor the two-dimensional method on a parallel distributed memory computer:
7"/tc"small ste,cil tvquirrs only ,earest-neighbor communication atm only one row of "ghost" cells on each edge

of the processors' subdomains.

We measure the performance of our method on an NCUBE/2 hypercube computer by considering

the method's scaled parallel e[ficiency, tlm ratio of uniprocessor execution time for a problem of size W to

execution tirne on N processors for a problem of size NW [10]. Thus, the amount of work per processor is

kept constant as more processors are used, and we expect the solution time to be constant for each trial.

Problem size is determined by the number of elements, number of processors, and degree of the

approximating polynomials. In two dimensions,

W = number of elements x number of timesteps x (K+ !) 2 (19)

E.rample 5. In Table 2, we show the execution time for the two-dinlensional spatially periodic

l_roblem

"t + u._+ u v = 0, t > 0, (20a)

u (x, y, O) = sin (mr) sin (roy), (2Ob)

using various numbers of processors with p = 2 fixed. Each proccssor's subdomain contained 128

elements, and the problem was solved for 46 time steps. As indicated, the solution times increase only

slightly with the dimensioxl of the hypercube, demonstrating the high parallel efficiency of the method. We

alSO .n.......s,,t,,_, lhc ratio of lhc a,,cra_c execution time on ali the procc:;sors to the maximttm cxect-,ion time

13

among the processors. An average/nlaxinlum processor work ratio equal to one indicates perfect processor

load balance. Tile average/ma×inlum processor work ratio is above 0.98 for ali hypercube dimensions clue

to the natural load balance of the non-adaptive method.

Number of Work (IV) Execution Parallel Avg/Max Processor
Processors Time (secs.) Efficiency Work Ratio

.....

1 588,800 268.96 !.000

2 1,177,600 276.39 97.3% .998

4 2,355,200 276.77 97.2% .992

8 4,710,400 276.79 97.2% .998

16 9,420,800 276.80 97.2% .997

32 18,841,600 276.80 97.2% .996

64 37,683,200 276.80 97.2% .988

128 75,366,400 276.84 97.2% .995

256 !50,732,800 276.80 97.2% .995

512 301,465,600 276.80 97.2% .993 ,

1024 602,931,200 276.80 97.2% .995

Table2. Scaled parallel efficiencyfor Example 5. Timeswere measured on the NCUBE/2.

6. A Tiling Approach to Dynamic Load Balancing

While the non-adaptive method exhibits near-perfect scaled parallel efficiency, processor load

imbalances degrade the parallel performance of the adaptive p-refinement method. Non-uniform and

changing processor work loads make dynamic load balancing _lecessary. Tiling is a modified version of the

global load balancing technique developed by Leiss and Reddy [15]. The Leiss/Reddy load balancing

technique uses local balancing performed within overlapping processor neighborhoods to achieve global

load balance. A neighborhood is defined as a processor at the center of a circle of some predefined radius

and ali other processors within the circle. Each processor can be a neighborhood center. An example,

showing 25 processors in 10 neighborhoods, is shown in Figure 7. Processors within a given neighborhood

are balanced with respect to each other using local (as opposed to global) performance measurements.

Individual processors may belong to several neighborhoods. In the Leiss/Reddy technique, work can be

rnigrated from a processor to any other processor within the same neighborhood. Our technique restricts

work migration so that elements are migrated only to neighboring processors following the element

inter-connections.

In tiling, a processor's load depends on the number of elements that are assigned to its local mesh

and the per-element processing cost. When each processor has the same number of elements and ali element
.,.

14

t

Figure 7. Neighborhoodexample: 25 processors in 10neighborhoods

costs are equal, as in Example 5, global load balance results. When one processor is assigned elements

having higher per-element processing costs than the elements assigned to another processor, as in the

adaptive p-refinement method, processing imbalance is created.

Figure 8 illustrates the dynamic balancing provided by tiling. Without a priori knowledge, the dam

set is divided evenly among 16 tiles. After some period of processing where processors (0,1) and (3,2) were

more utilized than their neighbors, processor (0,0) receives some of the data originally allocated to processor

(0,1), and processor (3,2) gives processor (3,3) some of its data, as shown in Step 1. Processors (0,0) and

(0,1) are now equally balanced yet out of balance with other processors. Thus, in Step 2, some data is

migrated from processor (0,1) to processor (1,1). The ripple effect continues to move through processors

(2,1) and (3,1) during subsequent balancing steps.

7. Tiling Algorithm Overview

To be integrated into the tiling environment, application programs are partitioned into two phases:

a computation phase and a balancing phase. The computation phase corresponds to the application's

implementation without load balancing. Each processor operates on its local data, exchanges inter-processor

boundary data via ghost cells, and then processes the inter-processor boundary data. These actions are

repeated until the application meets its termination condition.

15

9 9

C " C [
!

1

Initial 1
2 2 _tep

3 _ F1

c-l_ L__
i Step2 2_ Step3

- F- I--

c-l c

2__1 Step 4 __--_7 Step 5

_ FI

Figure 8. Migration Example

The tiling algorithm introduces dynamic load balancing in the inter-processor boundary data

exchange operation. Some number of complete computation phases are performed followed by the

balancing phase. Once the b_ilancing phase has completed, another set of computation phases is performed.

Each balancing phase consists of the following operations:

Determine work loads. Each processor determines its work load, the accumulated time taken to

process its own local element data. This time is the time since the previous balancing phase less

the time taken to exchange the inter-processor boundary data during the computation phase.

Neighborhood average work loads are also calculated.

Determine from which processor to request work. Each processor compares its own work load

to the work load of the other processors in its neighborhood. It looks for processors that have

greater work loads than its own. If any are found, it selects the one with the greatest work load (ties
t

....

16

are brokea arbitrarily) alld sends a request for work to that processoE Each processor may send

only one work request, yet a single processor may receive several work requests.

Determine which processor(s) to grant work to. Each processor prioritizes the work requests it

receives in order of size. Requests are satisfied until the processor's work load equals the

neighborhood average.

Select export elements. Each exporting processor determines which elements to export to the

processors that it has determined should receive work. Each element is assigned an exporting

priority, initially zero. The priority is increased by 1 for each neighboring element in the element's

processor, increased by 2 for each neighboring element in the importing processor, and decreased

by 2 for each neighboring element in a foreign processor other than the importing processor. In this

way, elements are "peeled" off the processor boundary in an attempt to prevent the creation of

narrow, deep holes in the tile. This scheme determines an element's priority in a completely local

manner, by examining pointers within the element's data structure to neighbors and ghost cells.

Notification and transfer of elements. Once the elements to be exported have been selected, the

importing processors and those processors with ghost cells for the elements being migrated are

notified. Importing processors then allocate space for the incoming elements, and the elements are

transferred.

Each processor knows how many computation phases to perform before entering the balancing

phase. Furthermore, the synchronous nature of the applications guarantees that each processor will enter the

balancing phase at the same iteration as the other processors.
:.

8. Tiling Application Interface

The tiling system is designed to be independent of the application. As shown in Figure 9, the

Element Management System (EMS) uses three application interface routines: App_preproc(),

App_compute(), and App_postprocO. The application programmer provides these routines, using the data

structures for the element mesh provided by the EMS.

App__preproc() is called to create elements and assign them initial values. The EMS provides three

major routines to the application pre-processing code: create_ghost element(), create_local_element(), and

convert links(). The two element creation routines allocate element control structures and insert them into

17

App_preproc()

CompletionH App_compute()
Flag

l App_postproc0

Element Management Application

System

Figllre 9. Application interface to the Element Management System

the appropriate element management trees. During element creation, element pointers are initialized to the

neighboring elements' identification numbers, since the addresses of the elements may not be known yet.

However, once ali of the local and ghost elements have been created, the application code calls the

convert_linksO routine to replace the element numbers with actual pointers. App__preprocO also initializes

application specific parameters and element data. The element trees are visible to the application

programmer for this purpose.

The processing performed by App_.preprocO is expected to be quite unbalanced. For example,

typically only one processor accesses host files to get run-time initialization information and broadcasts the

information to the rest of the processor array. Therefore, migration processing is not performed during the

application initialization stage.

App_computeO performs the application's computations. App_compute() is called iteratively until

it returns a completion flag indicating application termination. The application programmer can schedule

any processing desired in App_computeO; however, any communication done during App_compute() will

affect the processor load calculation. The App_computeO processing time determines the processors' loads

for the balancing phase. •.

18

p,

i

Apl__postproc() is provided to separate the application's computation from the application's

post-processing. Using this routine, tile application may perform operations, such as transferring results to

the host processor, without interference from the migration processing. Once App_postprocO returns, the

application is terminated.

For our adaptive p-refinement finite element method, App_preprocO reads the input parameters

file, broadcasts the input to the processor array, allocates memory for the elements, and calculates the initial

values using (5b). App_computeO performs the Runge-Kutta integration of (5) and the adaptive

p-refinement procedures. App_postprocO writes the solution at time tfinal to the host processor.

Example 6. We solve (18) using the adaptive p-refinement method and tiling on 32 x 32-mesh on

16 processors of the nCUBE/2 hypercube. In Figure 10, we show the processor domain decomposition with

and without balancing after 10 time steps. The shaded elements have higher-degree approximations and

thus, higher work loads. The tiling algorithm redistributes the work so that processors with high-order

• elements have fewer elements than those processors with low-order elements. The total processing time was

reduced 25.9% from 29.49 seconds to 21.86 seconds by balancing once each time step. The

average/maximum processor work ratio without balancing is 0.353; with balancing, it is 0.609.

i ii

I

i 11 I I

i !
I J : , _'

: r-

! I
, [

II : !

!

,,

lE i i

iiFi _ iI !] j
__q_ !] i

I
J m.

I "11

' I I]

[-] p = O [] p = 2 [] p = 3 _ p = 4

Figure 10. Processor domain decomposition after 10 time steps for Example 6 using adaptive p-refinement on 16

processotw without load balancing (left) and with load balancing (right). Shaded squares are high-order elements,
and dark lines represent processor subdon_in boundaries.

19

Etample 7. We solve (I 8) for 229 time steps on 1024 processors ofthe nCUBE/2 without balancing

and with balancing once each time step. With balancing, the maximum computation time (not including

communication or balancing time) was reduced by 56.2% (see Table 3). The irregular subdomain

boundaries created by the tiling algorithm increased the average communication time by 39%. Despite the

extra communication time and the load balancing time, however, we see a 25.1% improvement in the total

execution time.

Without Balancing With Balancing

Maximum Execution Time 596.56 secs. 446.60 secs.

Maximum Computation Time 544.37 secs. 238.27 secs.

Average Communication Time 80.99 sees. 112.65 secs.

Maximum Balancing Time 0.0 secs. 39.99 sees.

Average/Maximum Work Ratio 0.405 0.929
,,,

Table 3. Performance comparisonfor Example 7 withoutand with load balancingonce each time step.

In Figures 11-14, we show the convergence of the processor work loads from uniform domain

decomposition toward global balance. In Figure 11, we divide the difference of the maximum and minimum

processor work loads at time t = 0 into 32 bins. As time progresses and the processors approach global

balance, the processor distribu!ion should converge toward one bin. The dashed line represents the number

of processors in each bin at time t = O. The solid line represents the number of processors in each bin after

20 balancing steps. At time t = 0, the maximum number of processors in a single bin is 904. After 20 time

steps, the maximum number of processors in a single bin drops to 854 as work from more heavily loaded

processors is migrated to the less heavily loaded processors. After 160 time steps, 847 processors have

converged to a single bin with fewer processors in the heavily loaded bins, as shown by the dashed line of

Figure 12. Twenty time steps later, the processors have converged even further toward global balance, with

853 processors in a single bin and almost no processors in the heavily loaded bins, as shown by the solid line.

In Figure 13, we show the +l and -1 standard deviation curves of the maximum computation time

'" for each time step. Initially, the deviation is large, indicating the processors are far from global balance. The

deviations quickly become smaller, indicating the processors rapidly approach global balance. In Figure 14,

we show the 5th, 35th, median, 65th, and 95th-percentile processor loads. The steep downward slope of the

95th-percentile curve indicates significant improvement in the load balance early in the program's

execution.

20

i00 • - ,

lLta , Initially goes to 904.

O 8 0 " At 20th time step goes to 854.

ta
(1)

": O
o 60-

i _ j 20th Time step

q--I

o 40?

lR | Initial Time step

!ii
2O;

i Iii /\
0 ' ''_+'"_ •

5 i0 15 20 25 30

Bins

Figure 11. Processor :york load dist,'ibutions initially (dashed line) and after 20 time steps (solid line).

In Figure 15, we show the maximum processing costs per time step, including the computation time

and the balancing time. The dashed line represents the maximum cost per time step without balancing; the

solid line represents the maximum cost with balancing. Even including the load balancing time, the balanced

computation's maximum cost per time step is significantly lower than without balancing. The spikes in both

lines occur when the adaptive p-method's error tolerance was not satisfied in the time step, and the

application "backed up" to recompute a higher-order approximation on the high error elements. Since

relatively few elements are recomputed when the adaptive method backs up, the back-up time is extremely

unbalanced. The tiling algorithm, however, does not use the back-up time to determine load balance.

Balancing immediately after a back-up phase would move too much work away from the processors that

needed to back up; some of the work would be migrated back to the processors in the next balancing phase.

By disregarding the back-up time, the tiling algorithm avoids introducing such oscillations in the work load

distribution.

In Figure 15, we show the cumulative maximum processing times with and without balancing. Tile

immediate and sustained improvement of the application performance is shown.
....

21

i00 , , , • , •

' lto At 160th time step, goes to 847.
h At 180th time step goes to 853.
o 80-
to
to
(li
0
o 60-

lle

q-I

o 40-

¢} . ! 80th Time step

20"
i " 160th Time step

ni ` , ,IbJ i , , , , -

5 i0 15 20 25 30

Bins

Figure 12. Processor work distributions after 160 time steps (dashed line) and after 180 time steps (solid line).

9. Conclusion

We have shown the viability of the discontinuous finite element method for solving systems of

hyperbolic conservation laws in one and two dimensions on massively parallel computers. By not enforcing

continuity at inter-element boundaries, we can accurately model problems with discontinuities. A projection

limiter based on limiting the moments of the numerical solution eliminates oscillations near solution

discontinuities while maintaining high-order accuracy near smooth extrema. Because of the compact

stencil, the method (5, 18) can be parallelized on MIMD computers with scaled parallel efficiencies

exceeding 90% and can model problems in complicated geometries more easily than traditional finite

difference schemes. Adaptive p-refinement is used to solve problems to a user-specified accuracy with less

computational expense than fixed-order computations. Using tiling to migrate data between processors, we

can parallelize the adaptive p-refinement method with over 70% efficiency. Higher efficiency can be

expected for longer runs, as the initial imbalance will be factored out.

In our future work, we will implement adaptive mesh (h-) refinement and combine the adaptive h-

and p- techniques to obtain an adaptive hp-method that can optimize computational effort in bgth smooth

22

#

Mean+SD
1.1

0]

Mean

Mean-SD

0.8

I i i i i | i i i i I i I i i I , i i i I ' •

0 50 I00 150 200

Time Steps

Figure 13. Processor work load mean and standard deviation for each time step.

1.1 i\1

I I /" _ 95th percentile

o
O 1 Median I, "M _/ .% '_ ,,,,. -__

35th \ I %4 _& _,O)

tn Sth _ \ T -.,......_. .._ _..

0.95

, ,..,.,..._.,,_,,,_,_.;,_%_]._,i,.,-__,_.d_., ,_ ",
0.9

i i , , , , I i i , i I J , i i I

0 50 i00 150 200

Time Steps

Figure 14. Sampled processor loads for each time step. The steep descent of the 95th-pe,'ce,ttile cu,'ve indicates
the processors are approaching global balance rapidl3:

23

3"5 I-_..... , , ,
I I
! I
I I
ii II

{
ii II I

3 - | l _ . ,
II II I

1

II ii II I
II II . II I J IrJ_ II II II

-- II I I i-j I ' li.,, I

::"'" - :.,, ,,, ",• /'i2. m ," _; -, • ;', I' ,r,,j, ,. ,, ; ,,,o ,. . ., ;_,,__,_,'. ,_,___o I_, "J II "-- "- --. .(1)
rf]

2-

i

i , i i i I i i i i I i i i i I i i i i, I i i i

0 50 100 150 200

Time Steps

Figure 15. Maximum work load in each time step with balancing (solid line) and withot,t balancing (dashed litre).

-i "__ . • i , i • • 1 • .
s

s

J

5 0 0 Cumulative Maximum •••

Load -- without balancing _ • •"
j,

400 •"

_300 -"
0 ' s SS

(1)

m 200 _ •.••"

.-" / _ Cumulative Maximum

100..Iii_ Load-- with balancing
U_-, J t i ,

0 50 i00 150 200

Time Steps

Figure 16. Cumulative maximum loads with and without balancing.
..

24

"%,,.]

and discontinuous solution regions. The/_l_-method will present a serious challenge to the tiling algorithnl,

as the processor work loads and communication patterns become more complex.

As seen in Example 7, backing up when a time step is unacceptable in the adaptive method is very

expensive and unbalanced. To reduce the amount of backing up necessary, we will use the pattern matching

ideas of Bieterman, et al. [4] to predict which areas of the mesh should be refined in the next time step. We

can also use the predicted mesh to estimate processor work loads in the next time step, and detect potential

load imbalance. The tiling algorithm can then be used to migrate data before the time step computation

begins, preventi_g the load imbalance.

10. References

[1] Adjerid, S., and J. E. Flaherty. "Second-Order Finite Element Approximations and a posteriori Error Estimation

for Two-Dimensional Parabolic Systems." Numer. Math., 53 (1988), 183-198.

[2] Adjerid, S., J. E. Flaherty, P. K. Moo_'., and Y. Wang. "High-Order Adaptive Methods for Parabolic Systems."

Physica-D (1992) to appear.

[3] Arney, D.C. and J. E. Flaherty. "An Adaptive Local Mesh Refinement Method for Time-Dependent Partial

Differential Equations?' App. Num. Math., 5 (1989), 257-274.

[4] Bietern:an, M.. J. Flaherty, and P. Moore. "Adaptive Refinement Methods for Non-Linear Parabolic Partial

Differential Equations." Accuracy Estimates and Adaptive Refinements in Finite Element Computations. I.

Babuska, et ai., Eds. Wiley & Sons, (1986) 339-358.

[5] Biswas, R. "Parallel and Adaptive Methods for Hyperbolic Partial Differential Systems/' Ph.D. dissertation.

Rensselaer Polytechnic Institute, August, 1991.

[6] Biswas, R., K. Devine, and J. Flaherty, "Parallel, Adaptive Finite Element Methods for Conservation Laws."

Applied Numerical Mathematics, to appear.

[7] Cockburn, B., S. Hou, and C.-W. Shu. "The Runge-Kutta Local Projection Discontinuous Galerkin Finite

Element Method for Conservation Laws IV: The Multidimensional Case." Math. Comp., 54 (1990), 545-581.

[8] Cockburn, B., S.-Y. Lin, and C.-W. Shu. "TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite

Element Method for Conservation Laws III: One.Dimensional Systems." Jrnl. of Comp. Phys., 84 (1989),

90-113.

[9] Cockburn, B., and C.-W. Shu. "TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element
Method for Conservation Laws II: General Framework." Math. Comp., 52 (1989), 411-435.

[10] Gustafson, J., G. Montry, and R. Benner. "Dc.velopment of Parallel Methods for a 1024-Processor Hypercube."

SlAM Jrnl. Sci. Stat. Comp. 9 (1988), 609-638.

[11] Hammond, S. Mapping Unstructured Grid Computations to Massively Parallel Computers. Ph.D. thesis,

Rensselaer Polytechnic Institute, Dept. of Computer SciencE, Troy, NY, 1992.

[12] Hendrickson, B., and R. Leland. "Multidimensional Spectral Load Balancing." Sandia National Laboratories

Tech. Rep. SAND93-0074.

[13] Kernighan, B. and S. Lin, "An Efficient Heuristic Procedure for Partitioning Graphs." Bell Systems Tech. Jrnl.,

29 (i970), 291-307.

[14] I.afon, F. and S. Osher. "High-Order Filtering Methods for Approximating l-typerbolic Systems of Conservation

I.aws." ICASE Report No. 90-25, March 1990.

[15] Leiss, E., and H. Reddy. "Distributed Load Balancing: Design and Performance Analysis." W.M. Keck Research

Computation l.aboratory. S (1989)205-270.

25

,I, ,, • 0

116] Rauk, I'_. and I. llabuska. "An l:.xperl System for the Ol_timal Mesh l)eslgn in Ihe hp-Version _)1lhc I:inlle

[:.lement Metht_d." I,il. Jrlll. Num. Meth. i, F.ng,,_:.. 24 (1987), 2087-2 I()(_.

[171 Richtmycr, R.I)., and K W. Morton. Differe,ce MethodsfiJr Initial Value Problems. intcrscicncc, New York.

1967.

118] Shu, C.-W. '"FVB Boundary Treatment for Numerical Solutions of Conservative Laws." Math. Comp., 49

(1987), ! 23- i 34.

[19] Shu, C.-W., and S. Osher. "Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes,

II." Jrnl. of Comp. Phys., 83 (1989), 32-78..

[20] Sod, G. "A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation

Laws" Jrnl. of Comp. Phys., 27 (1978), !-31.

[211 Sweby, P.K. "High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws." SIAM J.

Numer. Anal., 21 (1984), 995-1011.

[22] Szabo, B. and I. Babuska. Introduction to ,F"lite Element Analysis, Wiley, New York, 1990.

[23] Vat, Leer, B. "Towards the Ultimate Cot servative Difference Scheme. IV. A New Approach to Numerical

Convection." Jrnl. of Comp. Phys., 23 (! c)77), 276-299.

[24] Wheat, S. A i:7ne Grained Data Migration Approach to Application Load Balancing on MP MIMD Machines.

Ph.D. Thesis. Univ. of New Mexico, Dept. of Computer Science, Albuquerque, NM, 1992.

26

j,

/0 1:3

¢

