
A MASSIVELY PARALLEL
ALGORITHM FOR NONLINEAR

STOCHASTIC NETWORK
PROBLEMS

by
S. S. Nielsen and S. A. Zenios

OR 237-90 November 1990

a

A Massively Parallel Algorithm for

Nonlinear Stochastic Network Problems

Soren S. Nielsen
Stavros A. Zenios

Decision Sciences Department
The Wharton School

University of Pennsylvania
Philadelphia, PA 19104.

October 1990

Abstract

We develop an algorithm for solving nonlinear two-stage stochastic problems with

network recourse. The algorithm is based on the framework of row-action methods.

The problem is formulated by replicating the first-stage variables and then adding non-

anticipativity side constraints. A series of (independent) deterministic network problems

are solved at each step of the algorithm, followed by an iterative step over the non-

anticipativity constraints. The solution point of the iterates over the non-anticipativity

constraints can be obtained analytically. The row-action nature of the algorithm makes

it suitable for parallel implementations.

A data representation of the problem is developed that permits the massively parallel

solution of all the scenario subproblems concurrently. The algorithm is implemented on

a Connection Machine CM-2 with up to 32K processing elements and achieves comput-

ing rates of 250 MFLOPS. Very large problems - 8192 scenarios with a deterministic

equivalent nonlinear program with 1,272,160 variables and 495,616 constraints - are

solved within a few minutes. We report extensive numerical results regarding the effects

of stochasticity on the efficiency of the algorithm.

i

.. .·I II~-~

Contents

1 Introduction

1.1 Problem Formulation
1.1.1 The Two-stage Stochastic Program
1.1.2 The Case of Network Problems.
1.1.3 Matrix Structure.
1.1.4 Algebraic Representation of Network Problem .

2 The Row-Action Algorithm

2.1 The General Row-Action Framework

2.2 Specialization to Quadratic Stochastic Networks

2.2.1 Projection on Flow Conservation Constraints

2.2.2 Projection on Simple Bound Constraints

2.2.3 Projections on Nonanticipativity Constraints

2.2.4 Closed Form Solution for Non-anticipativity Constraints

2.3 The Row-Action Algorithm for Quadratic Stochastic Networks.

2.4 Potential for Parallellism

3 Massively Parallel Implementation

3.1 The Connection Machine C1-2

3.1.1 Elements of the Parallel Instruction Set Paris

3.2 Data-level Parallel Representation of Sparse Stochastic Networks.

3.3 Projection on Non-anticipativity Constraints

4 Experiments and Numerical Results

4.1 Test Problems.

4.2 MFLOP rate on the Connection Machine CM-2

4.3 Effects of Stochasticity in Multipliers

4.4 Stochastic Right-hand Sides

4.5 Solving Large-Scale Problems

5 Conclusion

2

3

·. 7 5
. .·.1. 5

. 10

11

12

14

14

15

15

16

18

21

21

21

23

23

25

26

26

28

29

30

30

31

A

4

1 Introduction

It has long been recognized (Dantzig [1955]) that traditional deterministic mathematical

programs are not suitable for capturing the truly dynamic behavior of most real-world ap-

plications. A primary reason is that such applications involve data uncertainties. Data

uncertainties arise in a dynamic setting because information which will be needed in subse-

quent decision stages is not yet available to the decision maker or modeler. In applications

from financial planning such information would be future asset prices and returns, or un-

certain future liabilities in insurance and pension fund management. Applications from

logistics planning and utility service scheduling exhibit uncertain supplies or demands, as

well as uncertain transportation or construction costs.

Stochastic programming was first proposed (independently by Dantzig [1955 and Beale

[1955]) as a remedy for these problems. Although there has been significant progress in

the ability of researchers to solve general stochastic programs, these programs often turn

out to be very complex for practical applications. Their exact solution on the computer

often proves prohibitively expensive. Solving deterministic "mean value" or "worst case"

approximations may lead to solutions which are far from optimal, Birge [1982]. Reformulat-

ing the stochastic program into a large-scale deterministic equivalent taking uncertainties

explicitly into account is often possible. However, the deterministic program may again be

very expensive to solve. This is not only because of sheer size, but also because any special

structure exhibited by the stochastic program is largely lost in the deterministic equivalent.

Research over the last twenty years has largely concentrated on (i) devising efficient de-

composition methods for solving the deterministic equivalent program (Dantzig, Dempster

and Kallio [1981], Van Slyke and Wets [1966, 1969], Ruszczynski [1986], Infanger 1990]),

(ii) designing or exploiting parallel computing machinery to speed up the solution pro-

cess (Wets [1985], Ruszczynski [1988], Dantzig [1985]), and (iii) on retaining any special

structure present in the stochastic program, Qi [1985], Wallace [1984, 1986], Mulvey and

Vladimirou [1988, 19891.

The problem can be solved with methods based on Benders' decomposition (Infanger

[1990]). Van Slyke and Wets [1966, 1969] proposed an "L-shaped" decomposition proce-

dure based on adding feasibility and optimality cuts to a master problem until convergence.

Ruszczynski [1986] developed a regularized version of this algorithm. None of these de-

composition algorithms retain the structure of the original program during the solution

process.

More recently, Rockafellar and Wets [1987], (see also Wets [1988]) introduced the pro-

gressive hedging algorithm, a decomposition algorithm based on Augmented Lagrangean

theory. This algorithm retains any structure present in the sub-problems and furthermore

is suitable for coarse-grained parallel solution. Is was used by Mulvey and Vladimirou

[1989] as the basis for a distributed algorithm for solving stochastic programs with network

recourse.

Wets [1985] proposed the use of a large number of very simple processors to solve

(multistage) stochastic programs. Since then, multiprocessor systems have become widely

3

available, causing wide-spread interest in the development and implementation of paral-

lel algorithms for stochastic programs. Ruszczynski [1988] develops a new decomposition

method for (multistage) stochastic programs, which involves (possibly) parallel solution of

the subproblems. Ariyawansa and Hudson [1989] implement and test on a Sequent/Balance

multiprocessor a version of Van Slyke and Wets' [1969] algorithm. Dantzig and Glynn [1990]

demonstrate that the combination of nested decomposition, Monte Carlo importance sam-

pling and parallel programming can be combined to solve a class of multistage stochastic

programs.

In this paper we consider the application of the row-action algorithm of Censor and Lent

[1981] in the development of a fine-grain parallel algorithm for (strictly convex) stochastic

network problems. Our motivations'are the recognition that a great number of important

stochastic problems have an inherent network structure, Mulvey and Vladimirou [1988],

the existense of decomposition methods which retain the network structure in the resulting

subproblems (the progressive hedging algorithm of Rockafellar and Wets [1988] and the row-

action algorithm we propose in the present study), and the recent advances in employing

massively parallel computers to solve extermely large network problems, Zenios and Lasken

[1988] and Zenios and Nielsen [1990].

We employ a decomposition technique for two-stage generalized stochastic network prob-

lems by "splitting" (or replicating) first-stage decision variables. This reformulation pre-

serves the network structure. The subsequent application of a row-action algorithm results

in a decomposition scheme that is suitable for both coarse-grain and fine-grain parallel com-

puting. The algorithm is implemented on a massively parallel Connection Machine CM-2

with up to 32K processing elements. We extend the sparse data structure of Zenios and

Lasken [1988] to represent the stochastic networks and allow concurrent solution of all the

subproblems corresponding to individual scenarios. We report on the solution of medium-

sized applications in a few seconds, and on the solution of problems with 8192 scenarios

in a few minutes. We also report on the results of numerical experiments on the effect of

stochasticity on the performance of the algorithm.

This paper is the third in a series that deals with the massively parallel solution of

problems with network structures. Zenios and Censor [1989] studied the nonlinear trans-

portation problems, and algorithms for multi-commodity problems are studied in Zenios

[1990].
The rest of the paper is organized as follows: In Section 2 we present the row-action

algorithm and its specialization for stochastic, generalized network problems. Section 3

covers the Connection Machine CM-2 and the implementation of the algorithm, including

the concurrent solution of the scenario subproblems. Section 4 reports on numerical results

for a number of test problems. The experiments establish the suitability of the algorithm

for solving very large stochastic network problems, and also indicate conditions under which

the algorithm might exhibit poor convergence.

4

1.1 Problem Formulation

We now formally define the two-stage stochastic nonlinear problem with recourse. The

dynamics of the situation we are modeling are as follows:

A decision maker must make a decision regarding current actions, facing an

uncertain future. After these first-stage decisions are made, a realization of

the uncertain future is observed, and the decision maker determines an optimal

second-stage decision. The objective is to minimize the total expected cost or

to maximize expected final wealth or utility of final wealth.

This framework (and our algorithmic approach introduced next) can be generalized to

more than two stages. In this study, we concentrate on the two-stage variant.

1.1.1 The Two-stage Stochastic Program

Let < n > denote the set { 1,2, ..., n} and xT denote the transpose of the vector x. XTy de-

notes the inner product.of two real vectors x and y. Bold letters are used to denote stochas-

tic quantities, and the corresponding roman letters designate instances of the stochastic

quantities.

The two-stage nonlinear stochastic programming problem can be formulated as follows:

[SNLP] Minimize f(x) + Q(x) (1)

Subject to Ax = b (2)

0< < u (3)

where

Q(x)= E{Q(g,r,B,v x)}

and

Q(g,r,B,v 1 x)= Minimize g(y) (4)
yERn2

Subject to By = r- Cx (5)

0 <y < v (6)

If the second minimization problem is infeasible, we understand its value to be oo.

In this formulation, let nl and n2 denote the number of first-stage and second-stage

decision variables, respectively, and let m1 be the number of first-stage constraints (2), and

m 2 be the number of second-stage constraints (5). The first-stage decision variables are

x E n', and the objective function component of these variables is f : -2' ? R. The

ml x nl real matrix A and b E Rm specify constraints on the first-stage decision, and the

vector u E nI represents upper bounds on the first-stage variables.

5

The vector y E Rn2 represents the second-stage decisions. The m 2 x nl real matrix C

communicates information about the impact of the first-stage decision to the second-stage

problem. The uncertainties of the second-stage scenario are represented by a (possibly)

stochastic objective function g : "n2 , the (possibly) stochastic m 2 x n2 real constraint
matrix B, and the (possibly) stochastic resource vector, r E Rm2, and the vector v E ,n of
(possibly) stochastic upper bounds on the second-stage variables. Different instances of the

stochastic objective function g may have different forms, e.g., quadratic, entropy or utility.

In this paper, we consider the case where the stochastic quantities g, r, B and v have

a discrete and finite joint distribution, represented by the scenario set < S >. When this is
the case, we can write

Ss

(x) = pSQ(g, r.BS, vS x), (7)

s=1

where the probability of the realization of scenario s is

ps = P{(g,r.B,v) = (g, r,Bs, v)). for all s E <S>. (8)

It is assumed that p > 0 for all s E < S> and that $- s= p = 1.

Under the assumption of a finite, discrete event space, it is well known (Wets [1974]) that
the stochastic nonlinear program [SNLP] can be reformulated to the equivalent large-scale

deterministic nonlinear program:

S

[DNLP] Minimize f(x) + psgS(y
3

) (9)
=.1

Subject to Ax = b (10)

Bsy + cs = rs for allsE <S> (11)

O< < u' (12)

0o < y < vs for all s E <S> (13)

1.1.2 The Case of Network Problems

We now address the case where the problem constraint set ((2) and (5)) take the form of flow

conservation constraints for some network problem The problem can be pure or generalized

(i.e., it may have arc-multipliers). Specifically, we assume that the matrices

-"- i and B s

C s

are both node-arc incidence matrices for each scenario s E < S >. Even with this assump-

tion, the full problem [DNLP] is not a network problem due to the occurrence of Csx in

(11). The first-stage variables x are, in this context, complicating variables and solution

6

approaches based on Benders' (or Generalized Benders') decomposition suggest themselves.

An example of such an algorithm developed specifically for stochastic programs is the L-

shaped decomposition method of Van Slyke and Wets [1969] and its regularized version,

Ruszczynski [1986]. These methods, however, are based on cutting planes which destroy

any structure present in the problem. Furthermore, it is not clear how one could parallelize

these algorithms to any substantial degree. The progressive hedging algorithm of Rockafel-

lar and Wets [1987] and the Augmented Lagrangian decomposition method of Ruszczynski

[1989] seem to hold good promises for coarse-grain parallelization. First evidence for this

observation was provided in Mulvey and Vladimirou [1989].

The algorithm we are developing transforms the original network problem [DNLP] into

a large network with side-constraints which is also decomposable. This is achieved by

replicating the first-stage variables x into a set of variables x E snl, for s E < S >. Doing

this - and adding the requirement that xz = 2 = .. == xS - we obtain the equivalent

nonlinear program

S

[RNLP] Minimize ps(f(xs) + g(y)) ('14)
s=l

:E 3n]' yE3?n2

Subject to Axs = b for all s E < S> (15)
Bsys+ cSxS = rS for all s E < S> (16)

O<xs _ < u' for all s E <S> (17)

0<yS < V,s for alls E < S > (18)

xI = xS for all s E {2,...,S} (19)

By this reformulation, we have obtained a network with side-constraints. In the absense

of the side-constraints (19), the problem decomposes completely into S nonlinear network

problems. The algorithm we develop in the sequel capitalizes on this special structure

by decomposing the problem into S network problems, iteratively solving these and then

enforcing the side-constraints.

1.1.3 Matrix Structure

We show in Figure 1 the block matrix structure of [DNLP], excluding the simple bound

constraints. Figure 2 similarly shows the structure of [RNLP]. It is evident from this figure

that the problem decomposes by scenario if the non-anticipativity constraints are ignored.

Let M = S (mIn + m 2)+ (S- 1). m l , N = S (n 1 + n2) and let I denote the nl x nl

identity matrix. The block matrix for [RNLP] then has dimension M x N. We denote this

Fu-s-sage
determimstic

Second-stage
stochasuc

X Y1 Y2

Figure 1: Block matrix structure of the deterministic equivalent nonlinear program [DNLP].

Scenario
Subprobiems

Non-
anocipaiviy

xl Y1 X2 Y2 X3 Y3 · · · X, YS

First-stage decisions

Figure 2: Block matrix structure of the replicated nonlinear program [RNLP].

8

A

CI BI

C2 B2

0, 8,

C, B,

,L

Y,

!

matrix by , that is,

/

A
CI 31 I

i A
I C2

I

I

-I

We also denote by y E RM the right-hand side of [RNLP], i.e.,

I b
r

1

b
rS

0

0
7`

Similarly, we denote by z E '' set of decision variables,

/

XS

YS

and by u E N the upper bounds on

9

B 2

(20)

I A

I Cs B s

-1

(21)

!

X1

yl

/

(22)

I

!

!

r

1

/ ..X \

1

USVS

(23)

Finally, we let F(z) denote the objective function of [RNLP]:

S

F(z) = F(x,y.. .,xS yS)= ps(f(xS) +gS(y)) (24)
s=l

The replicated nonlinear program (14) - (19) can be written in compact form as

[RNLP] Minimize F(z) (25)
zE ?l1 +n2

Subject to. z = (26)

< z < u (27)

We will be using the compact matrix notation in developing the row-action algorithm.

However, the precise iterative steps of the algorithm depend on the network substructures

of the matrix . Hence, the algebraic formulation of the network substructures is given

next.

1.1.4 Algebraic Representation of Network Problem

We assume for the sake of synmmetry that the underlying network structure of all the scenario

problems is the same. We denote this by the graph 5 = (K, £), where J/ = < ml + m2 >

is the set of nodes, and £ C_ Ar x Af is the set of arcs. Let 6+ = {j i (i,j) e E} be the set of

nodes having an arc coming from node i, and b6 = i I (i,j) E E} be the set of nodes having

an arc going to node i. We partition the node set into two disjoint sets, 'f1 and AJ(. Af'

consists only of nodes incident to first-stage arcs, whereas nodes in A 2 may have incident

first- or second-stage arcs. We also partition the arc set E into two disjoint sets E1 and 2,

corresponding to (replicated) first-stage and second-stage decisions, respectively. Denote

by x, (i,j) E 1, and yt, (i,j) E £2, the flow on the arc leading from node i to node j

in scenario s E <S>. (As in Section 1.1.1 we use x for first-stage and y for second-stage

decisions). The upper bound of a (replicated) first-stage arc xif or a second-stage arc y is

denoted by mu and t,s respectively. The multiplier on arc (i,j) is denoted by m'.

The network formulation corresponding to a single scenario s E < S > is now given by:

10

11.

U ==

[NLP(s)] Minimize Z p'fij(xi) + Z psgi(yit)

(i,j) E£ (i,j)EE
2

X"ERnl ,ysERn2

Subject toE Zs _ mixJ = bi for
jest

+
kES7

Y.3- E m J2 +
JE6+nK' kEan '

Z Yi3- Z nJXj = ri for
3E6+nAr2 kE n k

2

0< X < u , for

o < ysJ < vs for

all i E A/

all i E A/2

all (i,j) E 1l

all (i,j) E &2

The complete stochastic network problem [RNLP] is obtained by replicating this prob-
lem for each scenario s E < S > and including the non-anticipativity side constraints:

xzlj = xzS for all s E {2,...,S} and (i,j) E El (33)

We have in this section been referring to quantities pertaining to an arc (i,j) E £ under
scenario s E <S> by using subscripts (i,j)" and superscipt "s". We need to establish
the correspondence between the vector notation of Section 1.1.3 and the algebraic notation
of this section. If (il ji) denotes the first arc in £ (see (22)), "zl" and "i,, refer to the
same quantity. The connection is made formal in an obvious way by defining a numbering
of the arcs in , e.g., the lexicographical ordering. Similar remarks apply for node-related
(rather than arc-related) quantities.

2 The Row-Action Algorithm

The idea of the row-action algorithm is. as the name implies, to operate on one constraint of
the problem at a time, simultaneously updating the primal variables occurring in the row,

and the dual price of the row. Dual feasibility is maintained throughout the algorithm. Upon

execution of a step, primal feasibility is obtained at the particular constraint. The algorithm
terminates when primal feasibility is obtained for all constraints. The order in which the

rows are operated on, the control sequence, is not formally important as long as no row
is ignored indefinitely (although the ordering may influence the algorithmic performance).

Such a control sequence is called almost cyclic, Censor and Lent [1981] and Censor [1981].
In this section we present the general algorithm and its specialization to stochastic

network problems of the form [RNLP]. We also demonstrate the potential for parallellism,
even massive parallellism, that results from the application of the algorithm.

11

(28)

(29)

(30)

(31)

(32)

2.1 The General Row-Action Framework

We now present, in a general form, the row-action algorithm. Let F: A C R'~ R and let
S 0 be an open convex set such that S E A. The set S is called the zone of F if F is
strictly convex and continuous on S and continuously differentiable on S.

Let D(x, y) = F(x) - F(y) - VF(y)T(x - y), and let H(a, b) be thp hyperplane H(a, b) =
{x E S'n aTx = b}. The D-projection (or Bregman projection) of a point y onto H(a, b) is
defined by

PH(a,b)= arg min D(x,y). (34)
zE H(a,b)nS

A function F which belongs to the family of Bregman's functions as characterized by
Censor and Lent [1981] has the zone consistency property with respect to the hyperplane
H(a, b) if the D-projection of every y E S onto H(a. b) is also in S. If a function is zone
consistent with respect to H(a, b) then it can be shown, Censor and Lent [1981, Lemma 3.1]
that the D-projection of y onto H(a, b) is the point x given by the unique solution of the
nonlinear equations in x and ,

VF(x) = VF(y) +3 .a (35)

aTx = b. (36)

The real number 3 is known as the Bregman parameter.
We are now in a position to present the row-action algorithm for the constraints specified

by the rows of) and the corresl)onding elements of) (26). and by the bound constraints

on , (27).

After initialization, the algorithm proceeds by projecting upon one constraint at a time,

updating the dual price of the constraint and the primal variables occurring in the constraint
in order to maintain dual feasibility. We express the order in which constraints are consid-

ered using a control sequence, (v), such that constraint (v) is considered at iteration v. If

1(v) E {1,...,M} the constraint considered is H(O("), 7I(,)). If (v) E {M + 1,...,M + N}

we consider the interval constraint on the ((v) - M)th variable, see (27). For clarity of

notation we will abbreviate (v) by .

Let Vt denote the th row of and let -yt denote the th element of . Assuming that
F(z) is a Bregman's function and has the strong zone consistency property with respect to
the hyperplanes H(4 . rye). we can state the general algorithm as follows:

12

[General Row-Action Algorithm I

Step 0: (Initialization) v - 0. Get ro and z° such that

V F(z) = T. (37)

Step 1: (Iterative step over equality constraints). For E {1,2,..., M} solve for z"+l

and 3L the equations

VF(zL+l) = VF(zL)+3LE , (38)

+ l E H(qt,7). (39)

Update the dual price:

7r
+ l = 7V -_3e, (40)

Step 2: (Iterative step over simple bound constraints). For E {M + 1,..., M + N}

project z'_ M upon its bounds:

If Ze-At < 0, let 3" and Z"+l be the solution of

VF(z"V+) = VF(z")+3"4~, (41)

- +f = 0 (42)

If 4_ eA > Ue-M, let ,j" and z" + l be the solution of

VF(z"+') = VF(z")+ B"V e, (43)

-E--at = he-As (44)

If 0 < z'_M < Ut-M, let B" and z" +l be the solution of

VF(z"+ ') = VF(z")+ "b ', (45)

/V = 7rV'. (46)

Update the dual price:
v +l = er - L3e t. (47)

Step 3 Set v v- + 1 and proceed from Step 1.

13

2.2 Specialization to Quadratic Stochastic Networks

In this section we specialize the row-action algorithm to the case of quadratic network flow
problems with the non-anticipativity constraints. We do not distinguish in this section
between first-stage and second-stage variables, but use xj." for both sets of variables. We
thus assume that F takes the form

F(x) = E ps(wij(wx)2 + qxij). (48)
(i,j)E ,sE <s>

for wi; > 0. Let M = S (mn' + m2). Then rows 1,...,M of the constraint matrix

are network flow conservation constraints, and rows M' + 1, ..., M for the nonanticipativity

constraints take the simple form
11 - Xz = 0

for some (il,jl),(i 2 ,j 2) E and s E <S>. We now proceed to develop the specific

projection formulae for use in Steps 1 and 2 of the general row-action algorithm. The

complete algorithm is summarized in Section 2.3.

2.2.1 Projection on Flow Conservation Constraints

First we derive the projection upon flow conservation constraints of a generalized network

((29) and (30)). We consider in this section a single node, i E A/, the incoming arcs, xiz for

j E 6, and the outgoing arcs, xj for j E + under some scenario s E < S >.
The Bregman projection x of the current iterate y upon the hyperplane H(b,yi)

determined by the flow conservation constraint on node i is the solution to

VF(.) = VF(ys)+ 3 4. (49)

:S E H(',0 'i). (50)

Of course, if yS E H((b,), then 3 = 0. If the current iterate does not satisfy flow

conservation, we define the node surplus si as

si = bi - j - mki Yk)- (51)

jES
+

kE,-

Writing out (49) in full, we obtain

xs = Yisj + for j E (52)
13

Xk = YiA -y *m ' for k E 5 (53)
wki

This solution must satisfy (50), i.e..

E (xI + *)-53 mMik(kt - *) bi (54)

jE6+ tj kEb,5 ki

14

From this and (51) we get

f= S(55)

ZE,, ,, + ; k,

Using this result in (52) and (53) gives us the desired formula for updating all primal

variables incident to node i. The dual variable for this node is updated by subtracting 0

from its current value. r,- ' - - .

2.2.2 Projection on Simple Bound Constraints

We now develop the specific projections on the simple bounds, (31) and (32) corresponding

to Step 2 of the general row-action algorithm. We consider a variable zxq and the upper

bound u.

Denote by yfi the value of the variable at the previous iteration, and by xfI the projected

value. If Yij < 0, we get from l41) and (42):

0 =
=

yS+ t P

13

The primal variable is thus set to 0. Solving, we get the Bregman parameter to be

= -WtJ YJ

The dual price of the constraint is updated by subtracting from its current valu4

7%* - 3.

If ye' > uj we similarly set the primal variable to the upper bound, u,

the Bregman paramleter to be

. = (X., - aij)us

and update the dual price of the bound constraint by subtracting / from it.

Finally, if 0 < y'j < u; we get

2S = Y + S

and then set the dual price ir, to 0.

2.2.3 Projections on Nonanticipativity Constraints

A non-anticipativity constraint (33) takes the form

1 s =0
Z i. Z-Xi3

(56)

(57)

e, 7rj -

and find

(58)

(59)

(60)

15

for some (i,j) E £ and some s E {2, ..., SI. If y is the current iterate, the Bregman projection
upon this constraint solves

VF(x) = VF(y) + d', (61)

1 = s, (62)

where d is the vector having a "1" in position 1 and a "-1" in position s, and x is the
projected point. This system can be written as

1 1 = Y + (63)
x.;= zi., · (63)SI 2 "3 p wq

Solving this, we get

s p WS Iy + s wijYij
X2j -- -Xs i3 s-- (64)

3pSwIj + psw3

i.e., the point (Yt,, yj) is projected upon the point with coordinates equal to the weighted
average of yI j and Y', where pvSuJ and pSw3 are the weights. In the next section, we will
provide a significant generalization of this result to the case of all S first-stage variables
rather than just a pair of them.

2.2.4 Closed Form Solution for Non-anticipativity Constraints

In this section we obtain a closed form solution for the projection on all S non-anticipativity
constraints. This result has important implications for the massively parallel implementa-
tion of the algorithm. We consider the effect of repeated projections on a subset of the
non-anticipativity constraints (33). In particular, consider the subset which, for a given arc
(i,j), enforces equality of the scenario replications, i.e., xzi = xj for all s, ' E < S >. The
almost cyclic control framework of the row-action algorithm allows repeated projections
upon only these constraints until convergence (within some tolerance) of the variables xj
to a common value, xij. We show that iij can be obtained analytically rather than using
the iterative scheme.

The non-anticipativity constraints for a first-stage variable xij take the form

xj = X,,

', = X,, (65)

1 -S
23 'j

By repeated projection upon these constraints, such that the vth projection is upon the
hyperplane H(4e(v), (v)) we obtain a sequence of points x E S satisfying

VF(xv) = VF(y) + E Akee(k) (66)
k=l

16

where A is the Bregman parameter corresponding to the vth projection, and y is the

starting point. The limiting point x satisfies

VF(x') = VF(y) + E Ake t
(k) (67)

k=l

and must, by (65), have all components identical, i.e., x = (j,... i:j)

Let

As= z
{kle(k)=s)

Ak

for k = 2, ... , S. Using the fact

(67) as the square system in S

that F(y) is a quadratic function,

variables, xij , ..., AS:

as given in (48), rewrite

1

= 2 1 A2
,, = Y2j - . V

S i Si, J Y3---A $.

In matrix form, this is

Ht = y

-1 -1
-I .= 1I-

p W P 'I,

12

-1

p3 W

1

1

1

1

and t = (itj, A 2, ... AS)T. By inverting H we can solve for t. Since we are only interested

in Z:, not A2.... ,A s , we need only calculate the first row of H -1 . denoted by h. Due to

the special structure of H, we easily get

h= (P1P 2
det(H) s=I P W w ...

pSwS)T,

where det(H) is the determinant of H. The inner product of the first column of H, which

consists of all ones. and the first row of H - I must equal 1, and therefore _sI hS = 1.

S

det(H) = H
s=1

1 S

sE p .
pSw~3I s=1

17

where
-1

pi '

1P .3
Iw

(68)

(69)

Hence

- -

Note that det(H) > 0, so system (68) has a unique solution. Solving for ij we get

'ij = hTy
=

s P tj (70)

S

2.3 The Row-Action Algorithm for Quadratic Stochastic Networks

We have now completed all the components required for the row-action algorithm applied

to the quadratic stochastic network. The complete algorithm proceeds as follows:

18

Row-Action Algorithm for Quadratic Stochastic Networks

Step O: (Initialization) v - 0. Get ro and z such that VF(z °) = _-Tr°. For example,

r° = 0 and

(x)o = (for all (ij) E £1 , s E < S >,
tWi 2

(S

LV

(72)

(73)all (i,j) £2 ,s E <S>,

Step 1: (Solve scenario subproblems). For all s E < S >:

Step 1.1: (Solve for flow conservation constraints) Let

; (ML,)2 for all i E A/" U A/2.

C3Eb 1 m~~~~;·JE+ I EE6 WIt

(74)

For all first-stage nodes i E A":

= (s) + (S) .

= (X)_ .

+l ''= L7r
i

- ('V.

For all second-stage nodes i E A 2 :

(yS)V+l

(YSi)L+

7rt

(yS)V + (SY,

= (y;)V (
3

S)V

= i -()"= r,

for all j E +

Ws
'ki

w1
s
.

1 for all j E b6+

Lk for all k E ?
Ws

ki

19

(XS)V+1

(Xs)/+1

(75)

(76)

(77)

(78)

(79)

(80)

Step 1.2: (Solve for the simple bounds).

For all first-stage variables (i,j) E £1:

if () > Uft3
if (iS) ' < 0,

if 0 < (xqi)" < uF.

and
7r - w,-j (% W ')

ij (, 3 - 13j)

t7r** = r 7r + US S)V

0

For all second-stage arcs (i,j) E c2.

(ySj)"+l =II{vo

0

7%

{ 7ri= - ((j))
7rj = 7i -tw (Yi

0

if ())> u2%,

if (xis)" 0,

if 0 < (zxq) < u14.

if (yis)" > vi,

if (yj) < 0,

if 0 < (yj)" < vj.

if (Y) > vi,

if (yj) < 0,
if 0 < (yiSi)" < vij.

Step 2: (Solve for non-anticipativity constraints):

For all first-stage arcs (i,j) E f 1:

S

3ij = Ep (z) %

s=1l

(2 i3)+l = i for all s E <S>.

Step 3: Let v - + 1 and return to Step 1.

20

0U 3
(Xs) + = O

1 7r v{1
(81)

(82)

and

(83)

(84)

(85)

(86)

2.4 Potential for Parallellism

The general row-action algorithm as specialized to the case of stochastic network problems

exhibits potential for parallel execution at several levels.

First, it is clear from Figure 2 that by ignoring the non-anticipativity constraints the

resulting problem decomposes by scenario. Assigning a processor to execute the row-action

iterates for each scenario allows for coarse-grained parallel execution. Projection on the

non-anticipativity constraints requires accumulation of the value of replicated variables from

all scenarios. This accumulation can be implemented very efficiently on most distributed

architectures (e.g., hypercubes) and(is of course trivial on shared memory architectures.

Second, the row-action projection can obviously be executed concurrently on rows which do

not have common variables, allowing for fine-grained parallellism. For the network parts of

the algorithm (i.e., for each scenario subproblem), this corresponds to concurrent execution

for sets of nodes which are disconnected. The problem of finding such sets of nodes for the

purpose of implementing parallel algorithms was recognized by Zenios and Mulvey [1988]

to be equivalent to the graph-coloring problem (Bertsekas and Tsitsiklis [1989]), and can

be solved very efficiently using a heuristic.

The opportunities for parallellism noted above do not destroy the convergence properties

of the row-action algorithm, since they correspond to a Gauss-Seidel type execution. By

relaxing the requirement that parallel execution be performed only on rows which do not

have common variables, one can obtain a Jacobi-type algorithm (Bertsekas and Tsitsiklis

[1989]), allowing for an even larger degree of parallellism. This idea forms the basis of

massively parallel algorithms for solving network problems (Zenios and Lasken [1988], Zenios

and Nielsen [1990]) and multicommodity network problems (Zenios [1990]) as well as for

the network solvers used in this study.

3 Massively Parallel Implementation

Our primary motivation in developing the row-action algorithm for stochastic network prob-

lems was the desire to exploit Imassively parallel computing for solving very large problems.

The algorithm naturally decomposes in a. way making it suitable for solution on a SIMD-

type (Single Instruction, Multiple Data) computer. This section discusses data-structures

for the massively parallel implementation of the algorithm on a Connection Machine CM-2.

First, we give a brief description of the CM-2.

3.1 The Connection Machine CM-2

In this section we introduce the characteristics of the Connection Machine (model CM-2)

that are relevant to the parallel implementations discussed in the sequel. Parts of this

description were included in earlier reports and are presented here to make the paper self

contained. Further details on the architecture of the CM can be found in Hillis [1985].

The Connection Machine is a fine grain SIMD - Single Instruction stream, Multiple

Data stream - system. Its basic hardware component is an integrated circuit with sixteen

21

processing elements (PEs) and a. router that handles general communication. A fully con-
figured CM has 4,096 chips for a total of 65,536 PEs. The 4,096 chips are interconnected as
a 12-dimensional hypercube. Each processor is equipped with local memory of 32Kbytes,

and for each cluster of 32 PEs afloating point accelerator handles floating point arithmetic.
Operations by the PEs are under the control of a microcontroller that broadcasts in-

structions from a front-end computer (FE) simultaneously to all the elements for execution.

A flag register at every PE allows for no-operations; i.e., an instruction received from the
microcontroller is executed if the flag is set, and ignored otherwise.

Parallel computations on the CM are in the form of a single operation executed on
multiple copies of the problem data. All processors execute identical operations, each one

operating on data stored in its local memory, accessing data residing in the memory of
other PEs, or receiving data from the front end. This mode of computation is termed data

level parallelism in contradistinction to control level parallelism whereby multiple processors

execute their own control sequence, operating either on local or shared data.

To achieve high performance with data level parallelism one needs a large number of
processors that could operate on multiple copies of the data concurrently. While the full

configuration of the CM has 65,536 PEs this number is not large enough for several appli-

cations. The CM provides the mechanism of virtual processors (VPs) that allows one PE to

operate in a serial fashion on multiple copies of data. VPs are specified by slicing the local

memory of each PE into equal segments and allowing the physical processor to loop over

all slices. The number of segments is called the VP ratio (i.e., ratio of virtual to physical

PEs). Looping by the PE over all the memory slices is executed, in the worst case, in linear
time. The set of virtual processors associated with each element of a data set is called a

VP set. VP sets are under the control of the software and are mapped onto the underlying

CM hardware in a way that is transparent to the user.

The CM supports two addressing mechanisms for communication. The send address is
used for general purpose communications via the routers. The NEWS address describes the

position of a VP in an n-dimensional grid that optimizes communication performance.

The send address indicates the location of the PE (hypercube address) that supports a

specific VP and the relative address of the VP in the VP set that is currently active. NEWS

address is an n-tuple of coordinates which specifies the relative position of a VP in an n-

dimensional Cartesian-grid geometry. A geometry (defined by the software) is an abstract

description of such an n-dimensional grid. Once a geometry is associated with the currently
active VP set a relative addressing mechanism is established among the processors in the VP

set. Each processor has a relative position in the n-dimensional geometry and NEWS allows

the communication across the North, East. West and South neighbors of each processor,

and enables the execution of operations along the axes of the geometry. Such operations are

efficient since the n-dimensional geometry can be mapped onto the underlying hypercube
in such a way that adjacent V'Ps are mapped onto vertices of the hypercube connected with

a direct link. This mapping of an n-dimensional mesh on a hypercube is achieved through

a Gray coding.

22

3.1.1 Elements of the Parallel Instruction Set Paris

Paris is the lowest level protocol by which the actions of the data processors of the CM are

controlled by the front end. Interfaces with languages like C, Fortran or Lisp allow users

to develop a program in a high-level language and then use Paris instructions to control
the execution of parallel operations. Paris supports operations on signed, unsigned and

floating-point numbers, message passing operations both along send and NEWS addresses
and mechanisms for transferring data between the host and the data processors.

Before invoking Paris instructions from a program the user has to specify the VP set,
create a geometry, and associate the VP set with the geometry. Thus a communications

mechanism is established (along both send and NEWS addresses). Paris instructions -

parallel primitives - call theln be invoked to execute operations along some axis of the ge-

ometry (using NEN;WS addresses). operate on an individual processor using send addresses,

or to translate NEWS to send addresses for general interprocessor communication or com-

munication with the front end. Parallel primitives that are relevant to our implementation

are the scans and spreads of Blelloch [1990].

Scan is also known in the literature as parallel prefix. The 0-scan primitive, for an

associative, binary operator , takes a sequence {xo,xl,...,,n} and produces another

sequence {yo, Yl, . . , yn} such that y = x0o x 0 ... 0 xi. On the Connection Machine, for
example, add-scan takes as an argument a parallel variable (i.e., a variable with its i - th

element residing in a memory field of the i - th VP) and returns at VP i the value of the

parallel variable summed over j = 0..., i. User options allow the scan to apply only to
preceding processors (e.g., sum over j = 0 ... , i - 1) or to perform the scan in reverse. The
0-spread primitive, for an associative, binary operator 0, takes a sequence {2o, 1,.. ., n}

and produces another sequence {Yo,YIl, . .,y,} such that yi = x0 X 1x 0 . .. xn. For

example, add-spread takes as an argument a parallel variable residing at the memory of n

active data processors and returns at VP i the value of the parallel variable summed over

j = 0,..., n. An add-spread is equivalent to an add-scan followed by a reverse-copy-scan

but is more efficient.

Another variation of the scan primitives allows their operation within segments of a

parallel variable or VP. These primitives are denoted as segmented-0-scan. They take as

arguments a parallel variable and a set of segment bits which specify a partitioning of the

VP set into contiguous segments. Segment bits have a 1 at the starting location of a new
segment and a 0 elsewhere. A segmented-®-scan operation restarts at the beginning of every

segment. When processors are configured as a NEWS grid, scans within rows or columns

are special cases of segmented scans called grid-scans.

3.2 Data-level Parallel Representation of Sparse Stochastic Networks

Solving sparse network optimization problems on the CM is particularly challenging. The
arbitrary network topology has to be mapped to the virtual processors in a way that is

efficient both for computations and communications. It appears that the data structures

introduced in Zenios and Lasken [1989] are at present the best known method to repre-

23

I axis
(Network)

NEWS address
of VP along axis 1

Network Structure
for scenario s

Data Fields in the s-th row corresponding to scenario s.

NEWS address
of VP along axis 1

Node

Segment bits

Supply/Demand

Capacity

Send address
in NEWS
coordinates
along axis I

Stage bit

0 1 2 3 4 5 6 7 8

1

Sk(1)

00

O

1 1

0 0

skl(1) Sk(l)

U(1,3)U(1,4)

6 10

2 2

I 0

Sk(2) Sk(
2)

oo U(2,3)

3 7

3

1

00

5

0 1 0 0 1 0 1

9

4

1

sk(
4
)

00

9

10 11 12 13 14

4 4

0 0

Sk(
4
) Sk(

4
)

U(1,4)U(4,S)

2 14

5

Sk(5)

00

12

5 5

0 0

sk(5) sk(5)

U(3,5)U(4.S)

8 11

1 0 0 0 0 0 0 0

Figure 3: Representing stochastic network problems on the CM.

24

3 3- 3

0 O 0

Sk(
3
) sk(

3
) Sk(

3
)

U(1,3)U(2,3)U(3,5)

1 4 13

sent sparse network problems. A comparison of alternative parallel implementations is

reported in Nielsen and Zenios [1990]. These data structures have been employed by Eck-

stein [1990] for the implementation of his alternating directions method of multipliers with

very encouraging results, and in the network optimization solver of Zenios and Nielsen

[1990]. The representation adopted in these studies uses a 1-dimensional geometry of size

[2(ml + m2) + nl + n21 2 (12 denotes rounding up to the nearest integer power of 2). It
assigns two VPs for each arc (i,j), one at the tail node i, and one at the head node j and

one VP for each node. VPs that correspond to the same node are grouped together into a

contiguous segment. In this way segmented-scan operations can be used for computing and

for communicating data among processors incident to a node. The general communication

of prices among nodes is a one-to-one send operation between the VPs at the head and tail
of each arc.

In order to implement a sparse, stochastic network solver, we use the nonlinear network

optimizer of Zenios and Nielsen [1990]. This solver is designed to handle sparse transhipment

problems. Interestingly, this solver can be easily extended to solve multiple independent

scenarios in parallel: The CM is configured as a two-dimensional NEWS geometry, of

dimensions S 2 X [2(ml +n 2)+nl +n 212. Each row of the O0-axis is used to represent'a'single

network problem as outlined above. Since the network problem has identical topology under

all the scenarios, the mapping of arcs into VPs and the partitioning of VPs into segments

will be identical for each row of the NEWS axis.

The control of the algorithm is identical for each row of the NEWS grid (i.e., for each

network problem). Row s of the 0-axis will store the data of the network problem for the

s-th scenario. This configuration is illustrated in Figure 3. The algorithm iterates along the

1-axis until some convergence criteria is satisfied for all the rows. Once the single scenario

networks are solved by iterations along the 1-axis, the algorithm executes the projection on

the non-anticipitativity constraints using scan operations along the 0-axis as explained in

the next section.

In the implementation we created the geometry by assigning virtual processors to phys-

ical processors in such a way that communication along the axis of the NEWS grid holding

individual networks (the dominant cummunication axis) was favored. Doing this rather than

relying on the default VP-assignment speeds up the algorithm by a factor of approximately

1.8 for a VP-ratio of 16, and approximately 1.4 for a VP-ratio of 4.

Each projection on the non-anticipativity constraints is called a major iteration. Itera-

tions for the solution of the scenario subproblems are called minor.

3.3 Projection on Non-anticipativity Constraints

The projection on the non-anticipativity constraints (85) is executed in parallel for all

first-stage (replicated) variables. Each first-stage variable (with replications) occupies two

columns of the two-dimensional NEWS grid representing the stochastic program (Figure 3).

Each processor holds the scenario probability p and the component xz of the current

iterate, and computes their product. The products are then added and distributed back to

each processor (using SPREAD-WITH-ADD) as the projected point, ij.

25

The network solver is essentially a "black box" which, given any dual starting point,

will return a dual and primal feasible solution. In contrast, the row-action algorithm pre-

scribes the use of projections, which are dependent on the starting point, on the network

flow-conservation constraints. To achieve compatibility between the network solver and

the row-action algorithm we perturb the objective function for the first-stage variables for

each scenario subproblem. This is done after every projection on the non-anticipativity

constraints, i.e., after every major iteration..

Let the objective function component for xi be

fig(z) psf('wu(X)2 + q sX).

Based on the projection point i, we perturb the objection function component to

ft. (J) =p (2 tUVj(X,)2 + 4i.Xs ,

where

qi3 = qi3 + wj(xj - ±ij). (87)

The equivalence of the updating formula (87) followed by the "black box" network algorithm

to the row-action type projections can be established by noting that the projected point iij

must still satisfy complementary slackness, i.e., solve

ps(woijxi + qij) = tS = pS(wijz. + qij),

where tS = -Tr is the tension on the arcs of scenario s (see Bertsekas and Tsitsiklis

[1989]).

4 Experiments and Numerical Results

The row-action algorithm for solving stochastic network problems was implemented on the

Connection Machine CM-2 The program was written in C/Paris, and was run using a VAX

8800 front-end at Nort-east Parallel Architectures Center (NPAC) under Wicrocode version

5211. In this section we report on the performance of the. algorithm on a number of test

problems from financial applications. We also investigate the effect of stochasticity in the

network parameters on the performance of the algorithm.

4.1 Test Problems

We use as primary test problems a set of asset allocation models from Mulvey and

Vladimirou [1989]. An investor distributes his wealth among a set of assets which have

uncertain returns. His goal is to maximize the expected utility of final wealth after the

end of the time horizon, which consists of a number of periods. He has the option to

redistribute investments among assets between time periods. The investment decisions in

26

Table 1: Characteristics of the test problems Deter 0 - Deter 8.

Problem Major Its. Minor Its. Time VP ratio

Deter 0 9 850 10.5 4

Deter 1 9 875 19.0 8

Deter 2 7 625 22.0 16

Deter 3 9 875 31.4 16

Deter 4 5 325 6.7 8

Deter 5 10 950 24.7 8

Deter 6 9 900 19.4 8

Deter 7 11 1025 22.3 8

Deter 8 11 1050 22.7 8

Table 2: Solution time of test problems on the CM-2 with 8K processing elements (in

seconds).

27

Problem Assets Horizon Scenarios Nodes Arcs Equivalent NLP size

Deter 0 15 8 18 121 334 2178 x 6012

Deter 1 15 6 52 121 335 6292 x 17420

Deter 2 15 8 80 91 249 7280 x 19920

Deter 3 15 8 72 121 335 8712 x 24120

Deter 4 15 4 70 61 163 4270 x 11410

Deter 5 15 8 48 121 335 5808 x 16080

Deter 6 15 8 40 121 335 4840 x 13400

Deter 7 15 8 60 121 335 7260 x 20100

Deter 8 15 8 36 121 335 4356 x 12060

CM-2 size VP-ratio 4 VP-ratio 8 VP-ratio 16
8K PEs 45.1 50.4 62.7
64K PEs 360.7 403.5 501.5

Table 3: MFLOP rate for different VP ratios and CM-2 sizes

period 1 are the first-stage variables. The multipliers (asset returns) are stochastic, in
the range 0.94 to 1.06. Due to the requirement that the objective must be quadratic, we
minimize (ij)ESES(t)2 . Table 1 list the characteristics of these test problems. The size
of the deterministic equivalent nonlinear program is also shown.

The problems were solved on an 8K PE CM-2. The algorithm was terminated when both
the absolute node surplus/deficit was below a small tolerance > 0 for each node, and each
non-anticipativity constraint was violated by less than , for = 10- 3 . Results are shown
in Table 2. We imposed a limit of 100 minor iterations between performing a projection
on the nonanticipativity constraints (constituting a major iteration). Convergence of the
network subproblems (to within the tolerance) was checked every 25 iterations.

The results show that all of these problems were solved in less than a half minute, and
required only up to 11 major iterations. We project that these problems could be solved in
under 5 seconds each on a full 64K CM-2. It is also interesting to observe that the solution
time does not depend on the number of scenarios, or the size of the equivalent nonlinear
program. For example, Deter4 solves in much less time than Deter6 although it has twice
as many scenarios.

For comparison, we solved the test problem deterO using GAMS/Minos 5.1 on a VAX
6000. Minos terminated with an optimal solution after 8.8 hours of computer time and
29153 iterations. Due to the overhead of the GAMS interpreter, a stand-alone version of
Minos 5.1 would solve this problem in about 4 hours. In comparison, Carpenter et al. [1990]
solve this problem in 506 seconds using the OBN code on an IRIS4D/70 workstation.

4.2 MFLOP rate on the Connection Machine CM-2

Based on the solution of large-scale problems (Table 4) we can calculate the computational
rate of the algorithm. Each VP performs 17 floating point operations per minor iteration.
The work involved in the major iterations is ignored since it is very little, and only performed
once every 100 minor iterations. For deterO, which ran at a VP-ratio of 4 on an 8K machine
and performed 850 iterations in 10.5 seconds, we thus obtained

8192· 17·4 ·850
8192 14 = 45.1 MFLOPS.
10.5

By scaling this result to a 64K CM-2, we obtain a computing rate of 360.7 MFLOPS.
The MFLOP rate is largely dependent on the network structure, which determines the

time to execute the general router communication, and the VP-ratio: The CM-2 performs

28

20000-

Minor Iterations

10000-

0'

Q

a

r

a

a

a

E
E

U

a

M

I r X U

10 0.9

Lower bound on
(Upper bound =

0.8

Multipliers
J(Lower bound))

Figure 4: Effect on the algorithm of range of multipliers.

slightly better at higher VP-ratios. We summarize in Table 3 the average MFLOP rates

obtained for the test problems deter0 - deterS. Due to the fact that the two-dimensional

NEWS-grid must have coordinate dimensions which are powers of two, the actual useful

MFLOP rate (i.e., contributing toward a problem solution) could be up to a factor four less

than shown in the table.

4.3 Effects of Stochasticity in Multipliers

The deterO - deter8 test problems all have multipliers in a fairly limited range, and all the

objective coefficients were the same. To investigate the behavior of the algorithm when the

multipliers vary more than in these problems, we generated a number of test problems with

random multipliers.

Figure 4 shows the number of minor iterations required to solve variants of deterO where

the multipliers were all randomly generated in the interval lb,l/lb], where lb is on the

ordinate axis. The algorithm behaves well for multipliers within the range [0.85, 1.18], but

then becomes unstable: For some problems. it still converges within a reasonable number of

iterations, but for some problems, convergence becomes very slow. Generally, the number

of iterations seems to increase exponentially with the range of the multipliers.

For some of the runs, the number of major iterations was quite high, whereas the net-

work subproblems converged fast. For other problems the reverse was true. This indicates

that the distribution of the random coefficients across the scenarios is significant: If each

29

g

0.7

_

Minor Iterations

1400

1200

1000

800

600

400

200

n
0.07 0.09 0.05 0.05 0.00 0.09 0.05 Lower Bound
0.10 0.10 0.10 0.08 0.10 0.12 0.15 Upper Bound

Figure 5: Effect on iterations of stochastic right-hand sides

scenario network is "easy" but the scenarios are significantly different, we expect many

major iterations relative to minor iterations. If the scenarios are similar, but each difficult,

we expect few major iterations relative to minor iterations.

4.4 Stochastic Right-hand Sides

To simulate the occurrence of stochastic right-hand sides throughout the planning horizon

of a dynamic problem. we modified the deter3 test problem to include stochastic demands

on one node at each time period. The demands were uniformly distributed on an interval.

Figure 5 summarizes the results for the range of bounds [L,U] shown.

The algorithm does not seem very sensitive to the occurrence of stochastic demands. It

solves all the test problems in about the same time as in the case with deterministic demands.

Only when the problems become close to being infeasible (i.e., demands being nearly as large

as the total supplies) does the solution time increase substantially. Conversely, the problems

are actually solved faster in cases with moderate stochastic demands than when no demands

are present.

4.5 Solving Large-Scale Problems

To test the algorithm on large-scale problems, we modified the largest problem, deter3, by

replicating the scenarios until there were 128, 512,1024 and 2048 scenarios, respectively.

The scenarios were thus not all different. There is no reason to believe that the problems

would have been substantially more difficult if this were the case.

The problems were run on an 8K and a 32K CM-2 with 32Kbytes of random-access

30

i

. .

I-

Scenarios Equivalent NLP size 8K PEs 32K PEs

(= 10- 3 10 - 4 = 10 - 3 = 10 -

128 15488 x 42880 30.1 46.2 10.4 16.2

512 61952 x 171520 108.2 155.4 30.7 46.3

1024 123904 x 343040 210.8 326.5 57.3 86.3

2048 247808 x 686080 407.5 623.1 113.1 163.6

Table 4: Solving large-scale problems (solution times in seconds)

memory per processing element. Results are shown in Table 4, with a final tolerance of

e = 10
- 3 and = 10

- 4 .

This experiment demonstrates the suitability of the algorithm for solving large-scale

stochastic problems. The largest problem. 2048 scenarios, having a deterministic nonlinear

equivalent of 247808 constraints and 686080 variables. was solved to the tightest tolerance

in less than 3 minutes on the 32K CMI-2. We also observe that the algorithm scales very

effectively for larger problems on bigger machine sizes. For example, 512 scenarios are

solved in 108 sec. on the 8K C1M-2. Using a system with 32K processing elements we solve

a problem with four times as many scenarios in almost the same time, 113 sec. On the

largest CM-2 we have access to (32K processors with 32Kbytes of memory per processor)

we can solve a problem with 8192 scenarios in approximately 11 minutes. On a maximally

configured 64K CM-2 with 128 IKbytes of memory per processor we could potentially solve

64K scenarios in 45 minutes. Although such systems are available we do not have access to

them.

5 Conclusion

We have in this study demonstrated te suitability of the row-action algorithm for solving

quadratic stochastic network problems. The algorithm is well suited for fine-grained parallel

implementations, making it ideal for implementation on massively parallel SIMD computers.

The algorithm solves a range of realistic problems efficiently, and performs well even for

very large-scale problems. However, we have identified cases involving extreme network

characteristics (widely varying objective function coefficients and/or arc gains) where the

algorithm's performance deteriorates.

The algorithm was implemented on a Connection Machine CM-2. The implementa-

tion can solve sparse problems, and still achieves a high computational rate, exceeding

0.5 GFLOPS on a 64K machine. It thus appears that row-action algorithms can be very

effective on massively parallel computers, even though they may be less so in a serial en-

vironment. This enforces our prior experiences with transportation and multicommodity

network problems.

The algorithm studied in this paper is restricted to solving quadratic problems. This is a

31

" --

rather severe limitation. Nevertheless the algorithm presented here is the building block for
solving general, linear programs. This can be achieved in the context of the proximal point
algorithm of Rockafellar [1976], the proximal minimization with D-functions of Censor and
Zenios [1989], or the nonlinear perturbations of Mangasarian and Meyer [1979]. This is the
subject of a current study.

Acknowledgements. The authors would like to acknowledge the many useful discussions
we have enjoyed with Professor Yair Censor during this project. We also thank J. Mesirov
for constant encouragement. J. NMulvey and H. Vladimirou deserve thanks for providing
us access to a number of their test problems. This project was completed while the au-
thors were visiting Thinking Machines Corporation and (one of the authors) the Operations

Research Center at MIT. Partial support has been provided by NSF grant CCR-8811135
and AFOSR grant 89-0145. Computing resources were made available by the North-east
Parallel Architectures Center (NPAC) of Syracuse University, NY.

32

References

[1] K.A. Ariyawansa and D. D. Hudson. Performance of a benchmark parallel implemen-

tation of the Van Slyke and Wets algorithm for two-stage stochastic programs on the

Sequent/Balance. Technical report. Department of Pure and Applied Mathematics,

Washington State University. Pullman, WA 99164-2930, 1989.

[2] K.A. Ariyawansa, D.C. Sorensen. and R.J. B. Wets. Parallel schemes to approxi-

mate values and subgradients of the resource function in certain stochastic programs.

Technical report, Department of Pure and Applied Mathematics, Washington State

University. Pullman. WA 99164-2930, 1990.

[3] E. M. L. Beale. On minimizing a convex function subject to linear inequalities. J. Roy.

Stat. Soc, 17b:173-184. 1955.

[4] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical

Methods. Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[5] J. R. Birge. The value of the stochastic solution in stochastic linear programs with

fixed recourse. Mathematical Programming. 24:314-325, 1982.

[6] G.E. Blelloch. Vector Alodels for Data-Parallel Computing. 'The MIT Press, Cambridge,

Massachusetts, 1990.

[7] Tamra J. Carpenter, rvin J. Lustig, John M. Mulvey, and David F. Shanno. A primal-

dual interior point method for convex separable nonlinear programs. Technical report

SOR90-2, School of Engineering and Applied Science, Princeston University, April

1990.

[8] Y. Censor. Row-action methods for huge and sparse systems and their applications.

SIAM Review, 23:444-464, 1981.

[9] Y. Censor and A. Lent. An iterative row-action method for interval convex program-

ming. Journal of Optimization Theory and Applications, 34:321-353, 1981.

[10] Y. Censor and S.A. Zenios. The proximal minimization algorithm with d-functions.

Report 89-12-17, Decision Sciences Department, The Wharton School, University of

Pennsylvania, Philadelphia. PA 19104, 1989.

[11] G. B. Dantzig. Linear programming under uncertainty. Management Science, 1:197-

206, 1955.

[12] G. B. Dantzig, Mh. A. H. Dempster, and M. J. Kallio (ed.). Large-scale linear pro-

gramming (volume 1). In IIASA Collaborative Proceedings Series. Laxenburg, Austria,

1981. CP-81-51.

33

dr

[13] G.B. Dantzig. Planning under uncertainty using parallel computing. In Annals of

Operations Research, volume 14, pages 1-17, 1985.

[14] George B. Dantzig and Peter W. Glynn. Parallel processors for planning under uncer-
tainty. Annals of Operations Research, 22:1-21, 1990.

[15] J. Eckstein. Implementing and running the alternating step method on the Connection

Machine CM-2. Working paper 91-005, Division of Research, Harvard Business School,

Boston, MA, 1990.

[16] W. D. Hillis. The Connection Machine. The MIT Press, Cambridge, Massachusetts,

1985.

[17] Gerd Infanger. Monte Carlo (importance) sampling within a Benders decomposition
algorithm for stochastic linear programs. Technical report SOL 89-13R, Systems Opti-

mization Laboratory, Department of Operations Research, Stanford University, Stan-

ford, California 94305-4022, August 1966.

[18] O. L. Mangasarian and R. R. Meyer. Nonlinear perturbations on linear programs.

SIAM Journal on Control and Optimization, 17:745-752, 1979.

[19] J.M. Mulvey and H. Vladimirou. Solving multistage stochastic networks: An applica-

tion of scenario aggregation. Networks, 1990 (to appear).

[20] J.M. Mulvey and H. Vladimirou. Evaluation of a parallel hedging algorithm for stochas-

tic network programming. In R. Sharda, B.L. Golden, E. Wasil, O. Balci, and W. Stew-

art, editors, 7Impact of Recent ('oilputer Advances on Operations Research, 1989.

[21] S. Nielsen and S.A. Zenios. Sparse vs dense implementations of network problems on

the Connection Machine. Working paper, Decision Sciences Department, The Wharton

School, University of Pennsylvania, Philadelphia, PA, 1990b.

[22] L. Qi. Forest iteration method for stochastic transportation problem. Mathematical

Programming Study 25, pages 142-163, 1985.

[23] R.- T. Rockafellar. Augmented lagrangians and applications to proximal point algo-

rithms in convex programming. Mathematics of Operations Research, 1:97-116, 1976.

[24] R.T. Rockafellar and R.J.-B. Wets. Scenarios and policy aggregation in optimization

under uncertainty. Working paper wp-87-119, IIASA, Dec. 1987.

[25] A. Ruszczynski. A regularized decomposition method for minimizing a sum of polyhe-
dral functions. Mathematical Programming, 35:309-333, 1986.

[26] A. Ruszczynski. Parallel decomposition of multistage stochastic programming prob-

lems. Working paper wp-88-094, IIASA, October. 1988.

34

[27] Andrzej Ruszczynski. Regularized decomposition and augmented Lagrangian decom-

position for angular linear programming problems. Aspiration Based Decision Support

Systems, 1989. A. Levandowski. A. P. Wierzbicki (Eds). Springer Verlag.

[28] R. Van Slyke and R. J. Wets. Programming under uncertainty and stochastic optimal

control. SIAM Journal on Control and Optimization, 4:179-193, 1966.

[29] R. Van Slyke and R. J. Wets. L-shaped linear programs with applications to optimal

control and stochastic programming. SIAM Journal of Applied Mathematics, 17:638-

663, 1969.

[30] S. W. Wallace. Solving stochastic programs with network recourse. Networks, 16:295-

317, 1986.

[31] S.W. Wallace. A two-stage stochastic facility location problem with time-dependent

supply. Working paper, department of science and technology, Christian Michelsen

Institute, Bergen, Norway, 1984.

[32] R. Wets. On parallel processor design for solving stochastic programs. Report wp-

85-67, International Institute for Applied Systems Analysis, Laxenburg, Austria, Oct.

1985.

[33] R. J. Wets. The aggregation principle in scenario analysis and stochastic optimization.

Working paper, Department of Mathematics, University of California, Davis, 1988.

[34] R. J. B. Wets. Stochastic programs with fixed resources: the equivalent deterministic

problem. SIAM Revieuw, 16:309-339, 1974.

[35] S. A. Zenios and R. A. Lasken. Nonlinear network optimization on a massively parallel

Connection Machine. Annals of Operations Research, 14:147-165, 1988.

[36] S.A. Zenios. On the fine-grain decomposition of multicommodity transportation prob-

lems. Technical report 90-09-07, Decision Sciences Department, The Wharton School,

University of Pennsylvania, Philadelphia, PA 19104; October 1990.

[37] S.A. Zenios and Y. Censor. Massively parallel row-action algorithms for some non-

linear transportation problems. Report 89-09-10, Decision Sciences Department, The

Wharton School, University of Pennsylvania, Philadelphia, PA 19104, 1989.

[38] S.A. Zenios and J.M. Mulvey. A distributed algorithm for convex network optimization

problems. Parallel Computing, 6:45-56, 1988.

[39] S.A. Zenios and S. Nielsen. Massively parallel algorithms for singly constrained nonlin-

ear programs. Report 90-03-01, Decision Sciences Department, The Wharton School,

University of Pennsylvania, Philadelphia. PA 19104, 1990.

35

