

A Match-Making System for Learners and Learning Objects

H. Boley1, V.C. Bhavsar2, D. Hirtle2, A. Singh2, Z. Sun2, and L. Yang2

1 Institute for Information Technology e-Business, National Research Council of Canada

2 Faculty of Computer Science, University of New Brunswick

Fredericton, New Brunswick, Canada

Abstract

The AgentMatcher architecture is developed for Canadian Learning Object Metadata
(CanLOM) of the eduSource e-Learning project. The LOMGen indexer, described in a
companion paper, extracts CanLOM metadata from HTML learning objects (LOs).
LOMGen-extracted terms can be selected from the query interface, permitting convenient
entry of relevant tree parts and weights. Web-based prefiltering is then performed over
the CanLOM metadata kept in the relational database of the KnowledgeAgora e-Learning
repository. The prefiltering result is transformed to Weighted Object-Oriented (WOO)
RuleML via an XSLT translator, and compared to the WOO RuleML-serialised tree
obtained from the query interface. Finally, our similarity algorithm, described in an
earlier paper, computes a percentage-ranked LO list, which is presented to the learner.

1. Introduction

We have developed the AgentMatcher system [2] for match-making between buyer and
seller agents. This system is applied for searching procurable learning objects (LOs) in an
e-Learning environment. Keywords and keyphrases are often used to describe LOs as
well as learner queries in such environments. However, such a flat representation does
not lend itself to hierarchical LO matching enabled by the Learning Object Metadata
(LOM) standard and does not reflect user preferences about the relative importance of the
parts of an LOM description. AgentMatcher combines both of these expressive
extensions into tree-structured descriptions with arc weights for the queries, enhancing
the precision of LO retrieval.

In this paper we describe the Java-based AgentMatcher match-making architecture as
applied to the XML-based Canadian Learning Object Metadata (CanLOM) of the
Canadian eduSource project [5]. The indexer of this architecture, the Learning Object
Metadata Generator (LOMGen) described in companion work [3], extracts CanLOM
metadata from HTML learning objects (LOs). LOMGen-extracted terms are offered to
learners for selection from a query interface that permits convenient entry of relevant tree
components and weights. Web-based prefiltering is then performed over the CanLOM
metadata kept in the relational database of the KnowledgeAgora e-Learning repository of
TeleEducation New Brunswick (TeleEd). The prefiltering result is transformed to

 1

Weighted Object-Oriented (WOO) RuleML [6] via an XML-to-XML translator. This is
then compared to the WOO RuleML-serialised tree obtained from the query interface,
using our similarity algorithm [1], and a percentage-ranked LO list is obtained for
presentation to the learner.

2. Overview

The AgentMatcher architecture can be applied to match-making [7] between buyer and
seller agents in e-Business, e-Learning and other environments. The core of the
AgentMatcher consists of similarity computation between metadata descriptions carried
by buyer and seller agents. In the AgentMatcher instantiation for e-Learning, buyers are
learners and sellers are learning object (LO) providers. We use the e-Learning standard
CanLOM to describe learning objects (LOs). Thus, the match-making between buyer and
seller agents corresponds to the matching of learner queries and CanLOM descriptions.

The architecture of the AgentMatcher as adapted to e-Learning is depicted in Fig. 1
showing the top-level retrieval and indexing components. There are three retrieval
components, the User Interface, Similarity Engine and Translator, while the LOM
Generator (LOMGen) performs indexing. Each of these four major components of the
system is detailed in the ensuing sections.
 Retriveal Components

Components developed by TeleEd or
a third party

Components developed by UNB/NRC

Dataflow realized by TeleEd

Dataflow realized by UNB

Dataflow between TeleEd
and UNB/NRC

 Results

 Search

Administrator
input

Keyword Table

 UI
(Java)

 DATABASE
 (Access)

prefiltered
CanCore files WOO

RuleML files
HTML
files

Recommended
results

WOO RuleML
file

user
input

Administrator

End
user

 LOR
(HTML)

LOMGen
(Java)

partial CanCore
files

Prefilter
(SQL)

CANLOM
(XML)

CanCore
 files

Translator
 (XSLT)

Similarity
 Engine
 (Java)

Indexing Components
Prefilter parameter
(Query URI)

Figure 1. The AgentMatcher architecture.

 2

3. User Interface

The user interface is employed for interaction between the end user and all other
components. It permits a user to enter search parameters and retrieve ranked search
results in a new browser window.

Figure 2. The user interface.

As shown in Fig. 2, the user interface is split into multiple boxes, each of which contains
one or more search parameters chosen from the same category in the CanCore schema.
Accompanying each search parameter is a slider, permitting the user to input not only the
value for the parameter but also a corresponding weight. This weight indicates the
importance of a parameter to the user relative to other parameters within the same
category. All the weights within one box add up to 1.0. The user is also able to input a
threshold for the search result recommendations, causing all the LOs with a similarity
value above the threshold to be considered as the recommendations.

After the user submits the advanced search request, the internal functions will be invoked
according to the dataflow in Fig. 1. First of all, a Weighted Object-Oriented RuleML
(WOO RuleML) parameter file (hereafter referred to as user.xml) is generated by the
user interface. WOO RuleML is the native format required by the Similarity Engine.
Then selected search parameters are sent to the KnowledgeAgora database server for pre-
filtering, using the conventional database query functionality to select relevant LOs by
examining their Learning Object Metadata (LOM). The response from KnowledgeAgora
is parsed into multiple XML files. These files are translated by the Translator into WOO
RuleML files and passed to the Similarity Engine. At this point, user.xml is compared
with each of the LOM files translated into WOO RuleML. The final result of the
similarity computations is then displayed as a list of LOs ranked according to their

 3

similarity to the original search parameters entered by the user. Only those LOs with
similarities above the threshold are recommended to the user.

4. Translator

The translator is responsible for translating the pre-filtered LOM files from the CanLOM
repository into Weighted Object-Oriented RuleML, required by the Similarity Engine. It
defaults LOM weights to equal values (up to rounding) on all tree levels, since this e-
Learning application of AgentMatcher uses proper weights only for the query trees. The
translator uses the Extensible Stylesheet Language Transformations (XSLT), a W3C
Recommended language for transforming XML documents into other XML documents.

The (abbreviated) sample illustrated in Figure 3 demonstrates the mapping between the
two formats. Additional information about this translation process is available in a
separate report [4]. When translation is complete, the resulting WOO RuleML files are
passed to the Similarity Engine for comparison to the WOO RuleML representation of
the search parameters specified by the user.

<lom>
 <general>
 ...
 <title>
 <string>
 Introduction to Databases
 </string>
 </title>
 ...
 </general>
 ...
</lom>

<cterm>
 <_opc>
 <ctor>lom</ctor>
 </_opc>
 ...
 <_slot name="general" weight="0.16667">
 <cterm>
 <_opc>
 <ctor>general_set</ctor>
 </_opc>
 ...
 <_slot name="title" weight="0.33333">
 <ind>
 Introduction to Databases
 </ind>
 </_slot>
 ...
 </cterm>
 </_slot>
 ...
</cterm>

CanLOM XML WOO RuleML

Figure 3. Mapping between WOO RuleML and CanLOM XML

5. Similarity Engine

The Similarity Engine is responsible for computing the similarity of the query and LOM files
using our tree similarity algorithm [1]. It also displays the ranked list of search results in a
browser window. The inputs of the Similarity Engine are the query file user.xml
generated from the user interface and translated LOMs, as shown in Fig. 4. Similarity values

 4

fall into the real interval [0.0, 1.0]. The user will find on the top of the list the LOM that has
the highest similarity value with his/her query.

 Translated LOMs (XML files):

Query (XML File)
generated from the user
interface:

 Similarity
Engine

L

L

Query
L

Figure 4. Inputs of the Similarity Engine.

After computing the similarity between the query and LOMs, the
of the LOs in descending order of similarity, graphically sepa
similarity values fall below the threshold.

Figure 5. Snapshot of search results (low th

Fig. 5 shows the ranking and HTML output for a relatively low
columns in the result table: Rank, Similarity, LOMs and LO
relevance of the LOs to the user, where higher rank indicates hi
query and the LOM. The actual similarity values are displayed in
LOMs and LOs shown in the final two columns are clickable; c
(e.g. WOORuleML10.xml) displays the metadata (in XML form

 5
OM 1
OM n
OM 2

 Similarity Engine ranks all
rating those results whose

reshold).

 threshold. There are four
s. The rank represents the
gher similarity between the
 the second column. All the
licking the link of an LOM
at) corresponding to the LO.

The “Go to the website” links in the final column point to organizations’ websites that
display the contents of LOs.

Besides showing the search results above the threshold, we also show those that are below
the threshold in case some users want to see more LOMs and LOs. Links for these results are
displayed in white color.

Figure 6. Snapshot of search results (high threshold).

Sometimes a user may input a too high similarity threshold that may result in a failed search.
In this case, we do not ask users to go back to the user interface to input a lower threshold,
but give users warning that their threshold is too high and still show all the search results that
are below the threshold. Fig. 6 shows the search results in this situation. If users want to
change other inputs (e.g., keywords), they have to go back to the interface to input again.

 6

6. LOM Generator (LOMGen)

The process of manually entering metadata to describe an LO is a time-consuming
process. The process requires the metadata administrator/author to be familiar with the
LO content to a great extent. A semi-automated process which extracts information from
the LO can alleviate the difficulties associated with this time-consuming process. The
Learning Object Metadata Generator (LOMGen) aims at automating the metadata
extraction process with minimal user intervention.

LOMGen works with LOs in Hypertext Markup Language (HTML) format. LOMGen
uses the Free Online Dictionary of Computing (FOLDOC) to generate keywords and key
phrases from an LO. It obtains the most frequent words and phrases from the contents of
the LO. In order to get relevant results, frequently occurring stop words like is, are, the,
in, etc. are ignored. This data combined with the Meta information found in the HTML
file is passed on to a database module, which interfaces with the dictionary. Additional
key phrases that may not be present in the LO but are relevant, are generated with the
help of the dictionary. The metadata administrator is then presented with a Graphical
User Interface (GUI) for key phrase selection, synonym and term addition (see Fig. 8).
The updates made by the administrator are stored in a database. Subsequently, while
parsing another LO, the newly added terms are considered to provide better choices to the
administrator.

M
T

update

retrieve

Validated
XML file

CANLOM
XML file
 template

Metadata Administrator

HTML file

Keywords/Key phrases
 Database

Updated
XML file

XML Generator
 Synonym/Related
 Terms Finder

Frequency Counter

HTML Parser

Learning Object
Repository (LOR)

CANLOM
Metadata

Repository

Figure 7. LO

1. Prompts administrator to select relevant
key phrases and add more if required
1

2

2.Administrator provides new key phrases if
required. The vocabulary gets updated with more
terms as greater number of LO’s are parsed.
Extracted key phrases, description, and title
MGen architecture.

7
Uses template, updates
general identifier
Fills in remaining
tag values
Free text
ost Frequent
erms
Retrieved
HTML
file from
LOR

As shown in Fig. 7, the LOMGen architecture consists of an HTML file reader module
which can read an LO file from a Uniform Resource Identifier (URI) or the disk, an
HTML parser, a word frequency counter, a database interface module, and an XML file
writer which updates the metadata repository with a newly generated LOM file.

A snapshot of the GUI presented to the metadata administrator is shown below in Fig. 7.

The GUI presents a list of keywords and keyphrases which were extracted or derived
from the LO. The checkboxes present under the title “KEYPHRASE” allow the metadata
administrator to select the most important keywords or keyphrases. The textboxes under
“ADD SYNONYMS” allow the administrator to add a term which acts as a synonym for
the corresponding keyphrase on the left. These synonyms, if added by the administrator,
are also added to the database. The choices made by the administrator populate the
domain term dropdown listbox. A domain term gives a hierarchy for classifying the LO.

If an LO lacks sufficient information in the text and HTML metatags, the quality of the
keywords or keyphrases extracted by LOMGen may not be satisfactory. In such a
scenario, the GUI enables the administrator to add more terms explicitly to describe the
LO.

Finally, clicking the “OK” button generates an LOM file with the metadata and posts it to
the LO repository.

Figure 8. GUI for key phrase selection.

 8

The LOMGen component can be used as a training module to a text summarizer which
uses machine learning techniques, with the intention of eliminating administrator inputs
over a period of time.

7. Conclusion

The AgentMatcher match-making system is applied to e-Learning scenarios where
learners are in search of procurable LOs. The resulting Java-based architecture takes
advantage of the added expressiveness possible with tree-based matching and user-
assigned weights. CanLOM metadata is extracted from HTML LOs by the LOMGen
indexer, greatly speeding the task of metadata generation. The metadata is first
prefiltered via a query URI, and then transformed to Weighted Object-Oriented RuleML
via an XSLT translator. The results are then compared to another tree representation of
the learner query as generated by the user interface. Finally, a list of learning objects is
presented to the learner in descending order of similarity, computed by the weighted tree
similarity algorithm.

This application of AgentMatcher, restricted to the computer science domain for the
purposes of this project, demonstrates enhanced precision relative to standard keyword-
based searches. AgentMatcher is easily adapted to match-making in other domains; in
fact, an application currently in development involves technology transfer.

Acknowledgements

We thank the CANARIE eduSource Project and NSERC as well as the New Brunswick
Department of Education for their support.

References

[1] Bhavsar, V.C., H. Boley, L. Yang, “A Weighted-Tree Similarity Algorithm for Multi-
Agent Systems in E-Business Environments”, In Proceedings of 2003 Workshop on
Business Agents and the Semantic Web, Halifax, June 14, 2003, National Research
Council of Canada, Institute for Information Technology, Fredericton, pp. 53-72, 2003.
(Revised version to appear in Computational Intelligence, November 2004.)

[2] Sarno, R., L. Yang, V.C. Bhavsar and H. Boley, “The AgentMatcher architecture
applied to power grid transactions”, In Proceedings of the First International Workshop
on Knowledge Grid and Grid Intelligence, Halifax, 2003, pp. 92-99.

[3] Singh, A., H. Boley and V.C. Bhavsar, “A Learning Object Metadata Generator
Applied to Computer Science Terminology,” Presented at Learning Objects Summit,
Fredericton, March 29-30, 2004.

[4] Hirtle, D. and Z. Sun, “CanCore WOO RuleML”, Internal Report, Faculty of
Computer Science, University of New Brunswick, December 2003.

 9

[5] eduSource Canada: Canadian Network of Learning Object Repositories,
http://www.edusource.ca/english/home_eng.html, June 13, 2004.

[6] Boley, H. 2003. Object-Oriented RuleML: User-level roles, URI-grounded clauses
and order-sorted terms. Springer-Verlag, Heidelberg, LNCS-2876, pp. 1-16.

[7] Sycara, K., M. Paolucci, M. van Velsen, and J. A. Giampapa. 2001. The RETSINA
MAS infrastructure. Robotics Institute, Carnegie Mellon University, CMU-RI-TR-01-05.

 10

http://www.edusource.ca/english/home_eng.html

	Abstract
	The AgentMatcher architecture is developed for Canadian Learning Object Metadata (CanLOM) of the eduSource e-Learning project. The LOMGen indexer, described in a companion paper, extracts CanLOM metadata from HTML learning objects (LOs). LOMGen-extra
	1. Introduction
	We have developed the AgentMatcher system [2] for match-making between buyer and seller agents. This system is applied for searching procurable learning objects (LOs) in an e-Learning environment. Keywords and keyphrases are often used to describe LOs
	In this paper we describe the Java-based AgentMatcher match-making architecture as applied to the XML-based Canadian Learning Object Metadata (CanLOM) of the Canadian eduSource project [5]. The indexer of this architecture, the Learning Object Metadata
	2. Overview
	3. User Interface
	
	
	
	
	
	7. Conclusion
	Acknowledgements

	References

