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Abstract

The human brain exhibits dynamic interactions among brain regions when responding to stimuli 

and executing tasks, which can be recorded using functional magnetic resonance imaging (fMRI). 

Functional MRI signals collected in response to specific tasks consist of a combination of task-

related and spontaneous (task-independent) activity. By exploiting the highly structured 

spatiotemporal patterns of resting state networks, this paper presents a matched-filter approach to 

decomposing fMRI signals into task and resting-state components. To perform the decomposition, 

we first use a temporal alignment procedure that is a windowed version of the brainsync transform 

to synchronize a resting template to the brain’s response to tasks. The resulting ‘matched filter’ 

removes the components of the fMRI signal that can be described by resting connectivity, leaving 

the portion of brain activity directly related to tasks. We present a closed-form expression for the 

windowed synchronization transform that is used by the matched filter. We demonstrate 

performance of this procedure in application to motor task and language task fMRI data. We show 

qualitatively and quantitatively that by removing the resting activity, we are able to identify task 

activated regions in the brain more clearly. Additionally, we show improved prediction accuracy in 

multivariate pattern analysis when using the matched filtered fMRI data.

1 Introduction

The human brain exhibits intricate, complex, and dynamic interactions among functional 

regions. Functional MRI (fMRI) recorded during rest or task activity can be used to image 

these interactions. Researchers have typically focused on finding large-scale network 

organization either in resting-state [9] or event-related task paradigms [2]. However, It has 

been shown that, the signal component in fMRI data that is predominantly observed during 

rest due to body regulation, as well as in the default mode network, is active not only during 

wakeful rest and mind-wandering but also during goal-oriented tasks [11]. A number of 

neuroimaging studies have shown that brain activity during rest may have even higher power 

when performing specific tasks, those involving cognitive challenges [3]. Separating event-

related and spontaneous components in fMRI recordings can potentially improve detection 

of task-related components as well as offer new insights into the interaction between 

intrinsic brain activity [10] and the brain’s response to external stimulation and challenges.
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Given the task design, a generalized linear regression (GLM) model is often fit to the fMRI 

time courses, which leads to a statistical parametric map of brain regions associated with 

tasks. Alternatively, independent component analysis (ICA) based methods extract task-

associated components [13]. However, statistical power can be limited due to the limited 

number of samples and trials during fMRI acquisition and the presence of non-task-related 

components. Due to the finite length of the acquisition, the design blocks may correlate with 

these unrelated spontaneous components. Another confound is that some of the spontaneous 

components may be anti-correlated (e.g. the default mode network) with a task and show 

significance even though they are not directly involved in responding to the task [11]. 

Filtering out spontaneous components from task fMRI recordings can therefore potentially 

improve the statistical power of task-related studies.

We exploit the learned resting state connectivity patterns between brain networks to identify 

and remove on-going brain activity unconnected to the task from fMRI signals. Specifically, 

we describe a method that decomposes fMRI signals into an on-going or ‘resting’ 

component, the component which has connectivity (correlation) patterns similar to that 

observed during rest, and a residual ‘task’ component, the component which is related to 

tasks and differs in its dynamics and connectivity from resting activity. This decomposition 

allows us to study the brain’s functional dynamics, at a high spatial as well as temporal 

resolution. For this purpose, we first learn a ‘resting template’ based on resting fMRI 

collected from a control group. Next, we develop a windowed extension of the brainsync 

transform to perform a matched filtering of fMRI data using this template. The modified 

transform is then applied to perform a matched filtering of the task fMRI data, as explained 

below. Results in application to task data from the Human Connectome Project (HCP) are 

presented.

2 Materials and Methods

As input, we assume that the resting state fMRI data has been preprocessed and mapped to 

the grayordinate system that represents fMRI data on a tessellated surface of the cerebral 

cortex and volumetric subcortical gray matter [5]. The cortical surfaces for each subject are 

also assumed to be aligned and resampled onto a common mesh. The grayordinate 

representation of fMRI data for each subject is represented as a matrix F of size T × V, 

where V is the number of vertices in the cortical mesh plus the number of subcortical voxels 

and T is the number of time points, respectively. Hence the corresponding columns in F 

represents the time-series at homologous locations in the brains. The data vectors in each 

column are normalized to have zero mean and unit norm. We want to decompose fMRI data 

into two components as follows:

F (t, x) = S(t, x) + D(t, x) (1)

where F(t, x) is the fMRI signal at location x and time point t, S(t, x) is the resting 

component and D(t, x) is the task component (Fig. 1(a)). We perform this decomposition by 

designing a matched filter which ensures that S(t, x) has functional connectivity (correlation) 

matched to that observed during rest. This is done by first generating a template from resting 

state fMRI data of short time-length and then matching it to the original data F(t, x) in a 
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sliding window manner using the brainsync transform. Brainsync is an orthogonal transform 

[7] that can be used for comparison of fMRI scans that are collected during rest or task 

paradigms across different subjects. This transform finds an orthogonal matrix that 

‘synchronizes’ fMRI data between two subjects, such that the time series at homologous 

locations in the two brains become approximately equal.

2.1 Resting Template Generation

We considered 40 normal subjects, each with Tr × V data matrices, from the HCP database 

(Tr = 1200 and V = 91, 282 for HCP resting fMRI data) and synchronized them to a 

representative subject using the brainsync transform. The representative subject was chosen 

to be the one that has the least root mean square (RMS) distance to the rest of the subjects 

[7]. The synchronized data was then averaged over subjects to generate a single average 

dataset of size Tr × V. This average data set was then reduced to dimension T = 21 by 

projection onto the temporal singular vectors corresponding to the 21 largest singular values 

to capture the significant variations in the resting template, as illustrated in Fig. 1(b). The 

reduced dimension T = 21 was chosen based on the spread of the singular values of the data 

matrix, as illustrated in Fig. 1(b). This template Y, as shown in Fig. 1(a), largely retains the 

correlation structure of the original data because of the reduced-rank optimality properties of 

the truncated SVD. Next, we develop a weighted extension of the brainsync transform to use 

this template for the proposed matched filtering.

2.2 Windowed Brainsync Transform

We use the resting template pattern Y to identify and remove the components in the task data 

which exhibit the same connectivity (correlation) pattern as the template. In order to 

estimate the resting component we synchronize the template Y to a windowed (with 

arbitrary window W) data segment X at each time point of the target fMRI data F (Fig. 1). 

For this purpose, we solve the orthogonal Procrustes problem with a weighting defined by 

W.

Let XT×V = {xij} denote a length-T fMRI data segment in F(t, x) centered at some given 

time point, YT×V = {yij} denote the resting-template with the same length, and OT×T denote 

the orthogonal transform which transforms Y to match X. We assume the resting component 

of F has the same correlation structure as the template and can therefore be approximated 

using an orthogonal transformed version of Y [7]. We include a scaling factor α to scale the 

resting-template signal and W, a diagonal matrix representing the window centered on the 

current time point. The scaling factor α and the orthogonal transform O are obtained by 

minimizing the energy

E = W (αOY − X)
F

2

= ∑
n = 1

V

W αOyn − xn

2

subject to the orthogonality constraints on O: ∑k = 1
T

OkiOkj − δij = 0, where δij is the 

Kronecker delta. Here, yn and xn denote columns of Y and X, centered on the current time 
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sample and of length equal to the dimension of W, respectively. To enforce the orthogonality 

constraint, we define a symmetric Lagrange multiplier lij = lji and the Lagrangian cost G as:

G = ∑
i, j = 1

T

lij( ∑
k = 1

T

OkiOkj − δij) + ∑
n = 1

V

∑
i = 1

T

W i
2( ∑

j = 1

T

αOijyjn − xin)

2

To find Oij, we take derivatives of G w.r.t. Oij and equate it to zero and follow the 

simplifying steps in [8]. This leads to a closed form expression for O as follow. Define the 

weighted correlation matrix R = W2XY T and its SVD R = BΛAT. The orthogonal matrix is 

then given simply by:

O = BA
T . (2)

Now to find α, we compute

∂E

∂α
= 2 ∑

n = 1

V

W αOyn − xn
T

W Oyn = 0

α =
trace (W X)T(W OY )

trace (W OY )T(W OY )
.

(3)

Finally, the estimated resting component at a particular time t is given by αOY evaluated at 

the central time point and the task component is obtained by subtracting the resting 

component from the original data. This procedure is performed in a sliding window manner 

to construct the entire resting component S(t, x) as well as the task component D(t, x) as 

depicted in Fig. 1(a). We chose a triangle window W for this analysis in order to emphasize 

the current time point and linearly weight neighboring time points in the sliding window 

analysis.

3 Applications and Experimental Results

In order to explore the performance of our matched filtering, we applied the filter to 

minimally preprocessed (ICA-FIX denoised) resting and task fMRI data from 40 

independent subjects (all right-handed, age 26–30, 16 male and 24 female), which are 

publicly available from HCP [1,5]. The resting template was built using the method 

described in Sect. 2.1 and the matched filtering was performed using the weighted brainsync 

transform as explained in Sect. 2.2.

3.1 Motor Task

The motor task in the HCP project involves right versus left toe (foot block) and finger (hand 

block) movements, as well as tongue movement (tongue block). While this task usually 

presents a clear contrast, even without our matched filtering, here we use it for illustrative 

purpose, aiming at demonstration of the ability of the matched filter to distinguish resting 

and task components. Matched filtering was performed for each member of the subject 

population. The population average signal at a single time point in the ‘right-hand’ block is 

shown in Fig. 2. It can be seen that while the direct average signal clearly shows the hand 
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associated region, there is also a large amount of activity in other areas of the brain. The 

estimated resting component shown in the middle row clearly shows the resting-related 

activity which forms a significant part of the signal power, but does not contain significant 

task-related activity. The task component from the decomposition retains a relatively large 

signal in the left somatomotor cortex while the activity elsewhere in the brain is significantly 

reduced.

3.2 Language Task

The language task in the HCP data contains two design blocks. One block is an auditory 

story presentation with comprehension questions and the second block includes a set of math 

problems [1]. Similar to Sect. 3.1, the matched filtering was performed and the signal was 

averaged over subjects and displayed for two time points as described in the caption of Fig. 

3. For the ‘story’ block, the activation in Broca’s and Wernicke’s areas is much clearer after 

subtraction of the estimated resting component. Also, stronger activation of the anterior 

temporal lobe associated with language comprehension and processing was observed. 

Similarly, for the ‘math’ block, Fig. 3(f) demonstrates that the angular gyrus (indicated by an 

arrow in Fig. 3(f)) that is associated with arithmetic processing is clear in the task 

component, while it is more difficult to discern without the matched filtering (Fig. 3(d)).

We also computed the signal averaged over the time samples for one design block of the 

story task. We see in Fig. 4 that the language areas are much more clearly delineated in the 

average task component. It should be noted that the results of the standard GLM analysis 

presented in [1] and other HCP publications are similar to our average signal results. To 

quantitatively evaluate the contrast enhancement in the task data, we first identified the 

points in the grayordinates that are associated with the tasks. For this purpose, we averaged 

the z-score maps for each task as provided by the HCP project, and computed the average 

over the 40 subjects [1]. The average z-score maps were converted to p-value maps and 

corrected for multiple comparisons using Benjamini-Hochberg FDR correction. The task 

associated regions were generated by choosing a threshold of p < 0.05. Next, we computed 

the difference between the average signal in these task associated regions and the average 

signal of the rest in the brain during the task blocks. This statistic was computed for the task 

fMRI data-sets for each of the 40 subjects and the means and variances of the statistic across 

subjects are tabulated in Table 1. Statistical testing using a ranksum test showed that there is 

a significant increase in contrast in the task component for all tasks in all cases (p-val < 

1e-6) after matched filtering.

3.3 MVPA Analysis of Language Data

To further explore the applicability of the matched filter in task studies, we also performed a 

multivariate pattern analysis (MVPA) of the language data for 40 subjects from the HCP 

dataset. We ignored the data between task blocks. We performed MVPA analysis [6] of story 

vs math blocks with and without the proposed filtering.

The MVPA analysis uses a Support Vector Machine to classify the annotated time series 

fMRI data. Specifically, we used Support Vector Classification (SVC) [4] with C = 1 and a 

linear kernel. We performed 5-fold cross-validation (CV), which involves iteratively training 
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the SVM classifier using 80% of the time series and its annotations and making predictions 

of the annotation for the remaining 20% of the time series. The mean (std) CV accuracy for 

story vs math paradigm, for the original data was 0.7815(0.1232) and for the matched 

filtered data was 0.8054(0.1423). Each of the ‘story’ and ‘math’ tasks is subdivided into 

‘present’, ‘question’ and ‘response’ sub-blocks. Next, we considered the six sub-blocks as 

separate labels for the time series and performed multi-class SVM analysis (one vs one 

classification). The CV accuracy in this case, for the original data, was 0.7423(0.1026) and 

for the matched filtered data, was 0.8423(0.0976).

4 Discussion and Conclusion

We present a matched filter approach for decomposition of fMRI data into task-independent 

and task-related components. By removing the confounding non-task-related on-going (or 

‘resting’) activity from the fMRI data, the contrasts in the task data are enhanced. Previous 

studies have shown that subtracting resting activity as a baseline can reduce or eliminate the 

effects related to the task function [12]. In contrast, in our approach, the component being 

subtracted was generated by leveraging the brainsync transform. This method involves 

application of an orthogonal transform and scaling of the template to the original signal, 

rather than simple subtraction. Therefore, the proposed approach might be more suitable for 

removing non-task-related activity from task fMRI recordings.

In the current work, a common factor α is applied and one matched filter is designed for the 

entire resting-state network. However, different components representing sub-networks 

within the resting state might have different contributions as well as individual variation over 

time in the task data. An alternative approach could be to design separate matched filters for 

different sub-networks within the resting state network. We will explore this approach in the 

future.
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Fig. 1. 
(a) Schematic of the proposed method; (b) Singular values for a typical resting state fMRI 

scan.
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Fig. 2. 
The fMRI signal at a single time point during the ‘right hand’ block in the motor task fMRI 

data. Top row shows the direct average of the signal over 40 subjects; the second row shows 

the extracted resting component; and the bottom row shows the extracted task component.
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Fig. 3. 
The fMRI at a single time point during the ‘story’ block (a–c) and ‘math’ block (d–f) in the 

language task: (a, d) direct average over subjects; (b, e) resting component and (c, f) task 

components extracted using matched filtering.
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Fig. 4. 
The fMRI signal averaged over the ‘story’ block in the language task: (top row) direct 

average; (bottom row) averaged task components extracted using the proposed matched 

filtering.
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Table 1.

Differences in average signals in task associated and non-associated areas in the brain. The mean and 

variances of the observed contrast is reported.

Task (subtask) Original Match filtered p-value

Motor (hand) 0.10 (0.04) 0.16 (0.02) 3e-7

Motor (right foot) 0.09 (0.03) 0.11 (0.02) 4e-7

Motor (tongue) 0.10 (0.04) 0.14 (0.03) 1e-11

Language (story) 0.06 (0.05) 0.18 (0.02) 8e-13

Language (math) 0.04 (0.06) 0.11 (0.03) 1e-6
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